Open
Close

Формулы количества теплоты плавления и нагревания тела. Тема урока: "Количество теплоты

Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количествоv теплоты.

– это изменение внутренней энергии тела в процессе теплопередачи без совершения работы. Количество теплоты обозначают буквой Q .

Работа, внутренняя энергия и количество теплоты измеряются в одних и тех же единицах - джоулях (Дж ), как и всякий вид энергии.

В тепловых измерениях в качестве единицы количества теплоты раньше использовалась особая единица энергии - калория (кал ), равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 градус Цельсия (точнее, от 19,5 до 20,5 °С). Данную единицу, в частности, используют в настоящее время при расчетах потребления тепла (тепловой энергии) в многоквартирных домах. Опытным путем установлен механический эквивалент теплоты - соотношение между калорией и джоулем: 1 кал = 4,2 Дж .

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество тепла требуется ему для нагревания. То же самое и с охлаждением.

Количество теплоты, необходимое для нагревания тела зависит еще и от рода вещества, из которого это тело сделано. Эта зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.

– это физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К). Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой с . Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг °К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Поскольку кол-во теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С . В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Q , необходимое для нагревания тела массой m от температуры t 1 °С до температуры t 2 °С , равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

Q = c ∙ m (t 2 — t 1)

По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

Это конспект по теме «Количество теплоты. Удельная теплоёмкость» . Выберите дальнейшие действия:

  • Перейти к следующему конспекту:

Внутренняя энергия тела изменяется при совершении работы или теплопередаче. При явлении теплопередачи внутренняя энергия передается теплопроводностью, конвекцией или излучением.

Каждое тело при нагревании или охлаждении (при теплопередаче) получает или теряет какое-то количество энергии. Исходя из этого, принято это количество энергии назвать количеством теплоты.

Итак, количество теплоты - это та энергия, которую отдает или получает тело в процессе теплопередачи.

Какое количество теплоты необходимо для нагревания воды? На простом примере можно понять, что для нагревания разного количества воды потребуется разное количество теплоты. Допустим, возьмем две пробирки с 1 литром воды и с 2-мя литрами воды. В каком случае потребуется большее количество теплоты? Во втором, там, где в пробирке 2 литра воды. Вторая пробирка будет нагреваться дольше, если мы подогреваем их одинаковым источником огня.

Таким образом, количество теплоты зависит от массы тела. Чем больше масса, тем большее количество теплоты требуется для нагрева и, соответственно, на охлаждение тела требуется большее время.

От чего еще зависит количество теплоты? Естественно, от разности температур тел. Но это еще не все. Ведь если мы попытаемся нагреть воду или молоко, то нам потребуется разное количество времени. Т.е получается, что количество теплоты зависит от вещества, из которого состоит тело.

В итоге получается, что количество теплоты, которое нужно для нагревания или количество теплоты, которое выделяется при остывании тела, зависит от его массы, от изменения температуры и от вида вещества, из которого состоит тело.

В чем измеряется количество теплоты

За единицу количества теплоты принято считать 1 Джоуль . До появления единицы измерения энергии ученые считали количество теплоты калориями. Сокращенно эту единицу измерения принято писать - “Дж”

Калория - это количество теплоты, которое необходимо для того, чтобы нагреть 1 грамм воды на 1 градус Цельсия. Сокращенно единицу измерения калории принято писать - “кал”.

1 кал = 4,19 Дж.

Обратите внимание, что в этих единицах энергии принято отмечать пищевую ценность продуктов питания кДж и ккал.

1 ккал = 1000 кал.

1 кДж = 1000 Дж

1 ккал = 4190 Дж = 4,19 кДж

Что такое удельная теплоемкость

Каждое вещество в природе имеет свои свойства, и для нагрева каждого отдельного вещества требуется разное количество энергии, т.е. количества теплоты.

Удельная теплоемкость вещества - это величина, равная количеству теплоты, которое нужно передать телу с массой 1 килограмм, чтобы нагреть его на температуру 1 0 C

Удельная теплоемкость обозначается буквой c и имеет величину измерения Дж/кг*

Например, удельная теплоемкость воды равна 4200 Дж/кг* 0 C. То есть это то количество теплоты, которое нужно передать 1 кг воды, чтобы нагреть ее на 1 0 C

Следует помнить, что удельная теплоемкость веществ в разных агрегатных состояниях различна. То есть для нагревания льда на 1 0 C потребуется другое количество теплоты.

Как рассчитать количество теплоты для нагревания тела

Например, необходимо рассчитать количество теплоты, которое нужно потратить для того, чтобы нагреть 3 кг воды с температуры 15 0 С до температуры 85 0 С. Нам известна удельная теплоемкость воды, то есть количество энергии, которое нужно для того, чтобы нагреть 1 кг воды на 1 градус. То есть для того, чтобы узнать количество теплоты в нашем случае, нужно умножить удельную теплоемкость воды на 3 и на то количество градусов, на которое нужно увеличить температуры воды. Итак, это 4200*3*(85-15) = 882 000.

В скобках мы рассчитываем точное количество градусов, отнимая от конечного необходимого результата начальное

Итак, для того, чтобы нагреть 3 кг воды с 15 до 85 0 С, нам потребуется 882 000 Дж количества теплоты.

Количество теплоты обозначается буквой Q, формула для его расчета выглядит следующим образом:

Q=c*m*(t 2 -t 1).

Разбор и решение задач

Задача 1 . Какое количество теплоты потребуется для нагрева 0,5 кг воды с 20 до 50 0 С

Дано:

m = 0,5 кг.,

с = 4200 Дж/кг* 0 С,

t 1 = 20 0 С,

t 2 = 50 0 С.

Величину удельной теплоемкость мы определили из таблицы.

Решение:

2 -t 1 ).

Подставляем значения:

Q=4200*0,5*(50-20) = 63 000 Дж = 63 кДж.

Ответ: Q=63 кДж.

Задача 2. Какое количество теплоты потребуется для нагревания алюминиевого бруска массой 0,5 кг на 85 0 С?

Дано:

m = 0,5 кг.,

с = 920 Дж/кг* 0 С,

t 1 = 0 0 С,

t 2 = 85 0 С.

Решение:

количество теплоты определяется по формуле Q=c*m*(t 2 -t 1 ).

Подставляем значения:

Q=920*0,5*(85-0) = 39 100 Дж = 39,1 кДж.

Ответ: Q= 39,1 кДж.

ТЕПЛООБМЕН.

1.Теплообмен.

Теплообмен или теплопередача – это процесс передачи внутренней энергии одного тела другому без совершения работы.

Существуют три вида теплообмена.

1) Теплопроводность – это теплообмен между телами при их непосредственном контакте.

2) Конвекция – это теплообмен, при котором перенос тепла осуществляется потоками газа или жидкости.

3) Излучение – это теплообмен посредством электромагнитного излучения.

2.Количество теплоты.

Количество теплоты – это мера изменения внутренней энергии тела при теплообмене. Обозначается буквой Q .

Единица измерения количества теплоты = 1 Дж.

Количество теплоты, полученное телом от другого тела в результате теплообмена, может тратиться на увеличение температуры (увеличение кинетической энергии молекул) или на изменение агрегатного состояния (увеличение потенциальной энергии).

3.Удельная теплоёмкость вещества.

Опыт показывает, что количество теплоты, необходимое для нагревания тела массой m от температуры Т 1 до температуры Т 2 пропорционально массе тела m и разности температур (Т 2 – Т 1), т.е.

Q = cm 2 – Т 1 ) = с m Δ Т,

с называется удельной теплоёмкостью вещества нагреваемого тела.

Удельная теплоёмкость вещества равна количеству теплоту, которое необходимо сообщить 1 кг вещества, чтобы нагреть его на 1 К.

Единица измерения удельной теплоёмкости =.

Значения теплоёмкости различных веществ можно найти в физических таблицах.

Точно такое же количество теплоты Q будет выделяться при охлаждении тела на ΔТ.

4.Удельная теплота парообразования.

Опыт показывает, что количество теплоты, необходимое для превращения жидкости в пар, пропорционально массе жидкости, т.е.

Q = Lm ,

где коэффициент пропорциональности L называется удельной теплотой парообразования.

Удельная теплота парообразования равна количеству теплоты, которое необходимо для превращения в пар 1 кг жидкости, находящейся при температуре кипения.

Единица измерения удельной теплоты парообразования .

При обратном процессе, конденсации пара, теплота выделяется в том же количестве, которое затрачено на парообразование.

5.Удельная теплота плавления.

Опыт показывает, что количество теплоты, необходимое для превращения твёрдого тела в жидкость, пропорционально массе тела, т.е.

Q = λ m ,

где коэффициент пропорциональности λ называется удельной теплотой плавления.

Удельная теплота плавления равна количеству теплоты, которое необходимо для превращения в жидкость твёрдого тела массой 1 кг при температуре плавления.

Единица измерения удельной теплоты плавления .

При обратном процессе, кристаллизации жидкости, теплота выделяется в том же количестве, которое затрачено на плавление.

6.Удельная теплота сгорания.

Опыт показывает, что количество теплоты, выделяемое при полном сгорании топлива, пропорционально массе топлива, т.е.

Q = q m ,

Где коэффициент пропорциональности q называется удельной теплотой сгорания.

Удельная теплота сгорания равна количеству теплоты, которое выделяется при полном сгорании 1 кг топлива.

Единица измерения удельной теплоты сгорания.

7.Уравнение теплового баланса.

В теплообмене участвуют два или более тела. Одни тела отдают теплоту, а другие принимают. Теплообмен происходит до тех пор, пока температуры тел не станут равными. По закону сохранения энергии, количество теплоты, которое отдаётся, равно количеству, которое принимается. На этом основании записывается уравнение теплового баланса.

Рассмотрим пример.

Тело массой m 1 , теплоёмкость которого с 1 , имеет температуру Т 1 , а тело массой m 2 , теплоёмкость которого с 2 , имеет температуру Т 2 . Причём Т 1 больше Т 2 . Эти тела приведены в соприкосновение. Опыт показывает, что холодное тело (m 2) начинает нагреваться, а горячее тело (m 1) – охлаждаться. Это говорит о том, что часть внутренней энергии горячего тела передаётся холодному, и температуры выравниваются. Обозначим конечную общую температуру θ.

Количество теплоты, переданной горячим телом холодному

Q передан. = c 1 m 1 1 θ )

Количество теплоты, полученной холодным телом от горячего

Q получен. = c 2 m 2 (θ Т 2 )

По закону сохранения энергии Q передан. = Q получен. , т.е.

c 1 m 1 1 θ )= c 2 m 2 (θ Т 2 )

Раскроем скобки и выразим значение общей установившейся температуры θ.

Значение температуры θ в данном случае получим в кельвинах.

Однако, так как в выражениях для Q передан. и Q получен. стоит разность двух температур, а она и в кельвинах, и в градусах Цельсия одинакова, то расчёт можно вести и в градусах Цельсия. Тогда

В этом случае значение температуры θ получим в градусах Цельсия.

Выравнивание температур в результате теплопроводности можно объяснить на основании молекулярно-кинетической теории как обмен кинетической энергией между молекулами при сталкивании в процессе теплового хаотического движения.

Этот пример можно проиллюстрировать графиком.

Изменить внутреннюю энергию газа в цилиндре можно не только совершая работу, но и нагревая газ (рис. 43). Если закрепить поршень, то объем газа не будет изменяться, но температура, а следовательно, и внутренняя энергия будут возрастать.

Процесс передачи энергии от одного тела к другому без совершения работы называют теплообменом или теплопередачей.

Энергию, переданную телу в результате теплообмена, называют количеством теплоты. Количеством теплоты называют также энергию, которую тело отдает в процессе теплообмена.

Молекулярная картина теплообмена. При теплообмене на границе между телами происходит взаимодействие медленно движущихся молекул холодного тела с более быстро движущимися молекулами горячего тела. В результате кинетические энергии

молекул выравниваются и скорости молекул холодного тела увеличиваются, а горячего уменьшаются.

При теплообмене не происходит превращения энергии из одной формы в другую: часть внутренней энергии горячего тела передается холодному телу.

Количество теплоты и теплоемкость. Из курса физики VII класса известно, что для нагревания тела массой от температуры до температуры необходимо сообщить ему количество теплоты

При остывании тела, его конечная температура меньше начальной и количество теплоты, отдаваемое телом, отрицательно.

Коэффициент с в формуле (4.5) называют удельной теплоемкостью. Удельная теплоемкость - это количество теплоты, которое получает или отдает 1 кг вещества при изменении его температуры на 1 К-

Удельную теплоемкость выражают в джоулях, деленных на килограмм, умноженный на кельвин. Различным телам требуется неодинаковое количество энергии для увеличения температуры на I К. Так, удельная теплоемкость воды а меди

Удельная теплоемкость зависит не только от свойств вещества, но и от того, при каком процессе осуществляется теплопередача Если нагревать газ при постоянном давлении, то он будет расширяться и совершать работу. Для нагревания газа на 1 °С при постоянном давлении ему нужно будет передать большее количество теплоты, чем для нагревания его при постоянном объеме.

Жидкие и твердые тела расширяются при нагревании незначительно, и их удельные теплоемкости при постоянном объеме и постоянном давлении мало различаются.

Удельная теплота парообразования. Для превращения жидкости в пар необходима передача ей определенного количества теплоты. Температура жидкости при этом превращении не меняется. Превращение жидкости в пар при постоянной температуре не ведет к увеличению кинетической энергии молекул, но сопровождается увеличением их потенциальной энергии. Ведь среднее расстояние между молекулами газа во много раз больше, чем между молекулами жидкости. Кроме того, увеличение объема при переходе вещества из жидкого состояния в газообразное требует совершения работы против сил внешнего да вления.

Количество теплоты, необходимое для превращения при постоянной температуре 1 кг жидкости в пар, называют

удельной теплотой парообразования. Обозначают эту величину буквой и выражают в джоулях на килограмм

Очень велика удельная теплота парообразования воды: при температуре 100°С. У других жидкостей (спирт, эфир, ртуть, керосин и др.) удельная теплота парообразования меньше в 3-10 раз.

Для превращения в пар жидкости массой требуется количество теплоты, равное:

При конденсации пара происходит выделение такого же количества теплоты:

Удельная теплота плавления. При плавлении кристаллического тела вся подводимая к нему теплота идет на увеличение потенциальной энергии молекул. Кинетическая энергия молекул не меняется, так как плавление происходит при постоянной температуре.

Количество теплоты А, необходимое для превращения 1 кг кристаллического вещества при температуре плавления в жидкость той же температуры, называют удельной теплотой плавления.

При кристаллизации I кг вещества выделяется точно такое же количество теплоты. Удельная теплота плавления льда довольно велика:

Для того чтобы расплавить кристаллическое тело массой необходимо количество теплоты, равное:

Количество теплоты, выделяемое при кристаллизации тела, равно:

1. Что называют количеством теплоты? 2. От чего зависит удельная теплоемкость веществ? 3. Что называют удельной теплотой парообразования? 4. Что называют удельной теплотой плавления? 5. В каких случаях количество переданной теплоты отрицательно?

Внутреннюю энергию термодинамической системы можно изменить двумя способами:

  1. совершая над системой работу,
  2. при помощи теплового взаимодействия.

Передача тепла телу не связана с совершением над телом макроскопической работы. В данном случае изменение внутренней энергии вызвано тем, что отдельные молекулы тела с большей температурой совершают работу над некоторыми молекулами тела, которое имеет меньшую температуру. В этом случае тепловое взаимодействие реализуется за счет теплопроводности. Передача энергии также возможна при помощи излучения. Система микроскопических процессов (относящихся не ко всему телу, а к отдельным молекулам) называется теплопередачей. Количество энергии, которое передается от одного тела к другому в результате теплопередачи, определяется количеством теплоты, которое предано от одного тела другому.

Определение

Теплотой называют энергию, которая получается (или отдается) телом в процессе теплообмена с окружающими телами (средой). Обозначается теплота, обычно буквой Q.

Это одна из основных величин в термодинамике. Теплота включена в математические выражения первого и второго начал термодинамики. Говорят, что теплота – это энергия в форме молекулярного движения.

Теплота может сообщаться системе (телу), а может забираться от нее. Считают, что если тепло сообщается системе, то оно положительно.

Формула расчета теплоты при изменении температуры

Элементарное количество теплоты обозначим как . Обратим внимание, что элемент тепла, которое получает (отдает) система при малом изменении ее состояния не является полным дифференциалом. Причина этого состоит в том, что теплота является функцией процесса изменения состояния системы.

Элементарное количество тепла, которое сообщается системе, и температура при этом меняется от Tдо T+dT, равно:

где C – теплоемкость тела. Если рассматриваемое тело однородно, то формулу (1) для количества теплоты можно представить как:

где – удельная теплоемкость тела, m – масса тела, - молярная теплоемкость, – молярная масса вещества, – число молей вещества.

Если тело однородно, а теплоемкость считают независимой от температуры, то количество теплоты (), которое получает тело при увеличении его температуры на величину можно вычислить как:

где t 2 , t 1 температуры тела до нагрева и после. Обратите внимание, что температуры при нахождении разности () в расчетах можно подставлять как в градусах Цельсия, так и в кельвинах.

Формула количества теплоты при фазовых переходах

Переход от одной фазы вещества в другую сопровождается поглощением или выделением некоторого количества теплоты, которая носит название теплоты фазового перехода.

Так, для перевода элемента вещества из состояния твердого тела в жидкость ему следует сообщить количество теплоты () равное:

где – удельная теплота плавления, dm – элемент массы тела. При этом следует учесть, что тело должно иметь температуру, равную температуре плавления рассматриваемого вещества. При кристаллизации происходит выделение тепла равного (4).

Количество теплоты (теплота испарения), которое необходимо для перевода жидкости в пар можно найти как:

где r – удельная теплота испарения. При конденсации пара теплота выделяется. Теплота испарения равна теплоте конденсации одинаковых масс вещества.

Единицы измерения количества теплоты

Основной единицей измерения количества теплоты в системе СИ является: [Q]=Дж

Внесистемная единица теплоты, которая часто встречается в технических расчетах. [Q]=кал (калория). 1 кал=4,1868 Дж.

Примеры решения задач

Пример

Задание. Какие объемы воды следует смешать, чтобы получить 200 л воды при температуре t=40С, если температура одной массы воды t 1 =10С, второй массы воды t 2 =60С?

Решение. Запишем уравнение теплового баланса в виде:

где Q=cmt – количество теплоты приготовленной после смешивания воды; Q 1 =cm 1 t 1 - количество теплоты части воды температурой t 1 и массой m 1 ; Q 2 =cm 2 t 2 - количество теплоты части воды температурой t 2 и массой m 2 .

Из уравнения (1.1) следует:

При объединении холодной (V 1) и горячей (V 2) частей воды в единый объем (V) можно принять то, что:

Так, мы получаем систему уравнений:

Решив ее получим: