Open
Close

Возможные механизмы регуляции процессов пролиферации, дифференцировки и апоптоза у клеток нейробластомы. Регуляция пролиферации стволовых клеток

Клетка является элементарной единицей всего живого. Вне клетки жизни нет. Размножение клеток происходит только путем деления исходной клетки, которому предшествует воспроизведение ее генетического материала. Активация деления клетки происходит вследствие воздействия на нее внешних или внутренних факторов. Процесс деления клетки с момента ее активации называется пролиферацией. Иными словами, пролиферация – это размножение клеток, т.е. увеличение числа клеток (в культуре или ткани), происходящее путем митотических делений. Время существования клетки как таковой, от деления до деления, обычно называют клеточным циклом.

ВВЕДЕНИЕ 3
ГЛАВА I. Пролиферация 4
Клеточный цикл 5
Регуляция клеточного цикла 6
Экзогенные регуляторы пролиферации 7
Эндогенные регуляторы пролиферации 7
Пути регуляции CDK 8
Регуляция G1 фазы 10
Регуляция S фазы 11
Регуляция G2 фазы 12
Регуляция митоза 12
Повреждение ДНК 13
1.10.1 Пути восстановления двуцепочечных разрывов ДНК 13
1.10.2 Клеточный ответ на повреждение ДНК и его регуляция 14
1.11. Регенерация тканей 15
1.11.1Формы регенерации 16
1.11.2. Регуляция регенерации тканей 17
ГЛАВА II. АПОПТОЗ 18
2.1. Характерные признаки апоптоза 19
2.2. Механизм апоптоза 19
2.3. Роль апоптоза в защите от онкологических заболеваний 20
2.4. Регуляция апоптоза 21
СПИСОК ЛИТЕРАТУРЫ 24

Работа содержит 1 файл

Российский государственный педагогический университет имени А. И. Герцена

Факультет биология

КУРСОВАЯ РАБОТА

Пролиферация клетки

СПб 2010
ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ 3

ГЛАВА I. Пролиферация 4

    1. Клеточный цикл 5
    2. Регуляция клеточного цикла 6
    3. Экзогенные регуляторы пролиферации 7
    4. Эндогенные регуляторы пролиферации 7
    5. Пути регуляции CDK 8
    6. Регуляция G1 фазы 10
    7. Регуляция S фазы 11
    8. Регуляция G2 фазы 12
    9. Регуляция митоза 12
    10. Повреждение ДНК 13

1.10.1 Пути восстановления двуцепочечных разрывов ДНК 13

1.10.2 Клеточный ответ на повреждение ДНК и его регуляция 14

1.11. Регенерация тканей 15

1.11.1Формы регенерации 16

1.11.2. Регуляция регенерации тканей 17

      ГЛАВА II. АПОПТОЗ 18

2.1. Характерные признаки апоптоза 19

2.2. Механизм апоптоза 19

2.3. Роль апоптоза в защите от онкологических заболеваний 20

2.4. Регуляция апоптоза 21

СПИСОК ЛИТЕРАТУРЫ 24

Введение

Клетка является элементарной единицей всего живого. Вне клетки жизни нет. Размножение клеток происходит только путем деления исходной клетки, которому предшествует воспроизведение ее генетического материала. Активация деления клетки происходит вследствие воздействия на нее внешних или внутренних факторов. Процесс деления клетки с момента ее активации называется пролиферацией . Иными словами, пролиферация – это размножение клеток, т.е. увеличение числа клеток (в культуре или ткани), происходящее путем митотических делений. Время существования клетки как таковой, от деления до деления, обычно называют клеточным циклом .

Во взрослом организме человека клетки различных тканей и органов имеют неодинаковую способность к делению. Кроме того при старении интенсивность пролиферации клеток снижается (т.е. увеличивается интервал между митозами ). Встречаются популяции клеток, полностью потерявшие свойство делиться. Это, как правило, клетки, находящиеся на терминальной стадии дифференцировки , например, зрелые нейроны , зернистые лейкоциты крови , кардиомиоциты . В этом отношении исключение составляют иммунные В- и Т-клетки памяти , которые, находясь в конечной стадии дифференцировки, при появлении в организме определенного стимула в виде ранее встречавшегося антигена , способны начать пролиферировать. В организме есть постоянно обновляющиеся ткани – различные типы эпителия, кроветворные ткани. В таких тканях существует пул клеток, которые постоянно делятся, заменяя отработавшие или погибающие типы клеток (например, клетки крипт кишечника , клетки базального слоя покровного эпителия, кроветворные клетки костного мозга ). Также в организме существуют клетки, которые не размножаются в обычных условиях, но вновь приобретают это свойство при определенных условиях, в частности при необходимости регенерации тканей и органов.

Процесс пролиферации клеток жестко регулируется как самой клеткой (регуляция клеточного цикла, прекращение или замедление синтеза аутокринных ростовых факторов и их рецепторов), так и ее микроокружением (отсутствие стимулирующих контактов с соседними клетками и матриксом, прекращение секреции и/или синтеза паракринных ростовых факторов). Нарушение регуляции пролиферации приводит к неограниченному делению клетки, что в свою очередь инициирует развитие онкологического процесса в организме.

Пролиферация

Основную функцию, связанную с инициацией пролиферации, берет на себя плазматическая мембрана клетки. Именно на ее поверхности происходят события, которые связаны с переходом покоящихся клеток в активированное состояние, предшествующее делению. Плазматическая мембрана клеток за счет располагающихся в ней молекул-рецепторов воспринимает различные внеклеточные митогенные сигналы и обеспечивает транспорт в клетку необходимых веществ, принимающих участие в инициации пролиферативного ответа. Митогенными сигналами могут служить контакты между клетками, между клеткой и матриксом, а также взаимодействие клеток с различными соединениями, стимулирующими их вступление в клеточный цикл , которые получили название факторов роста. Клетка, получившая митогенный сигнал на пролиферацию, запускает процесс деления.

Клеточный цикл

Весь клеточный цикл состоит из 4 этапов: пресинтетического (G1),
синтетического (S), постсинтетического (G2) и собственно митоза (М).
Кроме того, существует так называемый G0-период, характеризующий
состояние покоя клетки. В G1-периоде клетки имеют
диплоидное
содержание ДНК на одно ядро. В этот период начинается рост клеток,
главным образом, за счет накопления клеточных белков, что обусловлено
увеличением количества РНК на клетку. Кроме того, начинается подготовка к синтезу ДНК. В следующем S-периоде происходит удвоение количества
ДНК и соответственно удваивается число хромосом. Постсинтетическая G2 фаза называется также премитотической. В этой фазе происходит активный синтез мРНК (матричная РНК). Вслед за этой стадией следует собственно деление клетки надвое или митоз.

Деление всех эукариотических клеток связано с конденсацией удвоенных (реплицированных ) хромосом. В результате деления эти хромосомы переносятся в дочерние клетки. Такой тип деления эукариотических клеток – митоз (от греч. mitos – нити) – является единственным полноценным способом увеличения числа клеток. Процесс митотического деления подразделяют на несколько этапов: профаза, прометафаза, метафаза, анафаза, телофаза .

Регуляция клеточного цикла


Назначение регуляторных механизмов клеточного цикла состоит не в регуляции прохождения клеточного цикла как такового, а в том, чтобы обеспечить, в конечном счете, безошибочность распределения наследственного материала в процессе репродукции клеток. В основе регуляции размножения клеток лежит смена состояний активной пролиферации и пролиферативного покоя . Регуляторные факторы, контролирующие размножение клеток можно условно разделить на две группы: внеклеточные (или экзогенные) или внутриклеточные (или эндогенные). Экзогенные факторы находятся в микроокружении клетки и взаимодействуют с поверхностью клетки. Факторы, которые синтезируются самой клеткой и действуют внутри нее, относятся к
эндогенным факторам . Такое подразделение весьма условно, поскольку некоторые факторы, будучи эндогенными по отношению к продуцирующей их клетке, могут выходить из нее и действовать как экзогенные регуляторы на другие клетки. Если регуляторные факторы взаимодействуют с теми же клетками, которые их продуцируют, то такой тип контроля называется аутокринным. При паракринном контроле синтез регуляторов осуществляется другими клетками.

Экзогенные регуляторы пролиферации

У многоклеточных организмов регуляция пролиферации различных типов клеток происходит вследствие действия не одного какого-либо ростового фактора, а их совокупности. Кроме того, некоторые ростовые факторы , будучи стимуляторами для одних типов клеток, ведут себя как ингибиторы по отношению к другим. Классические ростовые факторы представляют собой полипептиды с молекулярной массой 7-70 кДа. К настоящему моменту известно более сотни таких ростовых факторов

PDGF тромбоциты. Освобождаясь при разрушении сосудистой стенки, PDGF участвует в процессах тромбообразования и заживления ран. PDGF является мощным ростовым фактором для покоящихся фибробластов . Наряду с PDGF, не менее обстоятельно изучен эпидермальный фактор роста (EGF ), который также способен стимулировать пролиферацию фибробластов. Но, кроме этого также стимулирующе влияет и на другие типы клеток, в частности на хондроциты .

Большую группу ростовых факторов составляют цитокины (интерлейкины , факторы некроза опухоли , колоние-стимулирующие факторы и т.д.). Все цитокины полифункциональны. Они могут, как усиливать, так и угнетать пролиферативные ответы. Так, например, разные субпопуляции CD4+ Т-лимфоцитов, Th1 и Th2 , продуцирующие разный спектр цитокинов, по отношению друг к другу являются антагонистами. То есть, Th1 цитокины стимулируют пролиферацию клеток, которые их продуцируют, но в то же время подавляют деление Th2 клеток, и наоборот. Таким образом, в норме в организме сохраняется постоянный баланс этих двух типов Т-лимфоцитов. Взаимодействие факторов роста с их рецепторами на поверхности клетки приводит к запуску целого каскада событий внутри клетки. В результате чего происходит активация факторов транскрипции и экспрессия генов пролиферативного ответа, что в конечном итоге инициирует репликацию ДНК и вступление клетки в митоз.

Эндогенные регуляторы клеточного цикла

В нормальных эукариотических клетках прохождение клеточного цикла жестко регулируется. Причиной онкологических заболеваний является трансформация клеток, как правило, связанная с нарушениями регуляторных механизмов клеточного цикла. Одним из основных результатов дефективности клеточного цикла является генетическая нестабильность, поскольку клетки с ущербным контролем клеточного цикла теряют способность корректно удваивать и распределять между дочерними клетками свой геном . Генетическая нестабильность приводит к приобретению новых особенностей, которые отвечают за прогрессирование опухоли.

Пролиферативные процессы при остром воспалении начинаются вскоре после воздействия флогогенного фактора на ткань и более выражены по периферии зоны воспаления. Одним из условий оптимального течения пролифрации является затухание процессов альтерации и экссудации.

Пролиферация

Фагоциты также продуцируют и выделяют в межклеточную жидкость ряд БАВ, регулирующих развитие либо иммунитета, либо аллергии, либо состояния толерантности. Таким образом, воспаление непосредственно связано с формированием иммунитета или иммунопатологических реакций в организме.

Пролиферация - компонент воспалительного процесса и завершающая его стадия - характеризуется увеличением числа стромальных и, как правило, паренхиматозных клеток, а также образованием межклеточного вещества в очаге воспаления, Эти процессы направлены на регенерацию альтерированных и/или замещение разрушенных тканевых элементов. Существенное значение на этой стадии воспаления имеют различные БАВ, в особенности стимулирующие пролиферацию клеток (митогены).

Формы и степень пролиферации органоспецифических клеток различны и определяются характером клеточных популяций (см. статью «Популяция клеток» в приложении «Справочник терминов»).

У части органов и тканей (например, печени, кожи, ЖКТ, дыхательных путей) клетки обладают высокой пролиферативной способностью, достаточной для ликвидации дефекта структур в очаге воспаления.

У других органов и тканей эта способность весьма ограничена (например, у тканей сухожилий, хрящей, связок, почек и др.).

У ряда органов и тканей паренхиматозные клетки практически не обладают пролиферативной активностью (например, миоциты сердечной мышц, нейроны). В связи с этим при завершении воспалительного процесса в тканях миокарда и нервной системы на месте очага воспаления пролиферируют клетки стромы, в основном фибробласты, которые образуют и неклеточные структуры. В результате этого формируется соединительнотканный рубец. Вместе с тем известно, что паренхиматозные клетки указанных тканей обладают высокой способностью к гипертрофии и гиперплазии субклеточных структур.

Активация пролиферативных процессов коррелирует с образованием БАВ, обладающих антивоспалительным эффектом (своеобразных противовоспалительных медиаторов). К числу наиболее действенных среди них относятся:

Ингибиторы гидролаз, в частности протеаз (например, антитрипсина),  ‑микроглобулина, плазмина или факторов комплемента;

Антиоксиданты (например, церулоплазмин, гаптоглобин, пероксидазы, СОД);

Полиамины (например, путресцин, спермин, кадаверин);

Глюкокортикоиды;

Гепарин (подавляющий адгезию и агрегацию лейкоцитов, активность кининов, биогенных аминов, факторов комплемента).



Замещение погибших и повреждённых при воспалении тканевых элементов отмечается после деструкции и элиминации их (этот процесс получил название раневого очищения).

Реакции пролиферации как стромальных, так и паренхиматозных клеток регулируется различными факторами. К числу наиболее значимых среди них относят:

Многие медиаторы воспаления (например, ФНО, подавляющий пролиферацию; лейкотриены, кинины, биогенные амины, стимулирующие деление клеток).

Специфические продукты метаболизма лейкоцитов (например, монокины, лимфокины, ИЛ, факторы роста), а также тромбоцитов, способные активировать пролиферацию клеток.

Низкомолекулярные пептиды, высвобождающиеся при деструкции тканей, полиамины (путресцин, спермидин, спермин), а также продукты распада нуклеиновых кислот, активирующие размножение клеток.

Гормоны (СТГ, инсулин, T 4 , кортикоиды, глюкагон), многие из них способные как активировать, так и подавлять пролиферацию в зависимости от их концентрации, активности, синергических и антагонистических взаимодействий; например, глюкокортикоиды в низких дозах тормозят, а минералокортикоиды - активируют реакции регенерации.

На процессы пролиферации оказывает влияние и ряд других факторов, например, ферменты (коллагеназа, гиалуронидаза), ионы, нейромедиаторы и другие.


Эндокринная, паракринная и аутокринная регуляция. В норме клетки делятся исключительно под воздействием различных факторов внутренней среды организма (и внешних - по отношению к клетке). В этом состоит их коренное отличие от трансформированных клеток, деля­щихся под воздействием эндогенных стимулов. Существуют два типа физиологической регуляции - эндокринная и паракринная. Эндокринная регуляция осуществляется специализированными органами (железами внутренней секреции), в числе которых гипофиз, надпочечники, щитовид­ная, паращитовидная, поджелудочная и половые железы. Они секретируют продукты своей активности в кровь и оказывают генерализованное воздействие на весь организм.
Паракринная регуляция характеризуется тем, что в одной и той же ткани соседние клетки воздействуют друг на друга посредством секретируемых и распространяющихся диффузией активных веществ. К числу таких митогенных стимуляторов (полипептидные ростовые факторы) относятся эпидермальный фактор роста, фактор роста тромбоцитов, ин­терлейкин-2 (фактор роста Т-клеток), фактор роста нервов и множество других.
Аутокринная регуляция, характерная для опухолевых клеток, отли­чается от паракринной тем, что одна и та же клетка является и источни­ком ростового фактора, и его мишенью. Результат - непрекращающееся, самоподдерживающееся митогенное «возбуждение» клетки, приводящее к нерегулируемому размножению. При этом клетка не нуждается во вне­шних митогенных стимулах и становится полностью автономной.
Перенос митогенного сигнала - процесс многоэтапный. В зави­симости от типа клетки и от конкретного митогенного стимула реализу­ется один из множества сигнальных путей. Ниже в качестве «прототипа» описан так называемый МАР-киназный каскад.
Ростовые факторы (регуляторы пролиферации) секретируются одними клетками и действуют паракринным образом на другие. Это небольшие белки. Полипептидная цепь EGF (epidermal growth factor) состоит, например, из 53 аминокислот. Существует несколько семейств ростовых факторов, представитель каждого из которых объединен структурным и функциональным сходством. Одни из них стимулируют пролиферацию (например, EGF и PDGF, platelet-derived growth factor, тромбоцитарный фактор роста), а другие (TGF-p, TNF, интерфероны) - подавляют.
Рецепторы расположены на клеточной поверхности. Каждая клет­ка имеет присущий ей репертуар рецепторов и соответственно свой осо­бый набор ответных реакций. Очень важное в функциональном отноше­нии семейство образуют так называемые тирозинкиназные рецепторы (ТКР), обладающие ферментативной (протеинкиназной) активностью. Они состоят из нескольких доменов (структурно-функциональных блоков): внеклеточного (взаимодействующего с лигандом - в данном случае с ростовым фактором), трансмембранного и подмембранного, обладающего тирозинпротеинкиназной активностью. В зависимости от структу­ры ТКР подразделяют на несколько субклассов.
При связывании с ростовыми факторами (например, EGF) молеку­лы рецепторов димеризуются, их внутриклеточные домены сближаются и индуцируют межмолекулярное автофосфорилирование по тирозину. Этоттрансмембранный перенос сигнала - начало волны «возбуждения», распространяющейся затем в виде каскада реакций фосфорилирования внутрь клетки и достигающей в итоге хромосомного аппарата ядра. ТКР обладают тирозинкиназной активностью, но по мере продвижения сигнала внутрь клетки тип фосфорилирования меняется на серин/треониновый.
Ras-белки. Одним из наиболее важных является сигнальный путь с участием Ras белков (это подсемейство так называемых G-белков, обра­зующих комплексы с гуаниловыми нуклеотидами; Ras-GTP - активная форма, Ras-GDP - неактивная). Этот путь - один из основных в регуля­ции клеточного деления у высших эукариот - настолько консервативен, что его компоненты способны заменить соответствующие гомологи в клет­ках дрозофилы, дрожжей и нематод. Он опосредует многочисленные сиг­налы, исходящие из окружающей среды, и функционирует, по-видимо­му, в каждой клетке организма. Ras играет роль своеобразного турникета, через который должен пройти почти любой из поступающих в клетку сиг­налов. Критическая роль этого белка в регуляции клеточного деления из­вестна с середины 80-х годов, когда активированная форма соответству­ющего гена (онкоген Ras) была обнаружена во многих опухолях человека. Активация онкогена (онкогены - гены, вызывающие нерегулируемое клеточное деление) - одно из главных событий канцерогенеза. Это такое повреждение нормального, участвующего в регуляции клеточного размно­жения гена (протоонкогена - нормального клеточного гена, способного при нарушении структуры индуцировать опухолевый рост), которое де­лает его перманентно работающим (активным) и, тем самым, индуциру­ющим столь же непрерывное (нерегулируемое) клеточное деление. Поскольку в регуляции клеточного размножения принимает участие мно­жество клеточных генов (протоонкогенов), повреждение которых потенциально способно вызывать опухолевый рост, то соответственно существует и множество (несколько десятков, а возможно и сотен) онко­генов.
В конкретной ситуации Ras-опосредованного сигнального пути (на­пример, при взаимодействии EGF с рецептором) димеризация последнего приводит к автофосфорилированию одного из остатков тирозина в его подмембранном домене. В результате этого становится возможной са­мосборка («рекрутирование» в комплекс) ряда белков, расположенных ниже в сигнальном пути (адаптерный белок Grb2, белок Sos1). Этот муль­тибелковый комплекс локализован в плазматической мембране.
МАР-киназный каскад. МАР-киназы (mitogen activated protein kinases) - серин/треониновые протеинкиназы, активируемые в резуль­тате митогенной стимуляции клетки. Киназный каскад возникает как следствие последовательной активации одного фермента другим, стоящим «выше» в сигнальном пути. Как следствие стимуляции белка Ras и фор­мирования подмембранного комплекса повышается активность двух ци­топлазматических серин/треониновых МАР-киназ (известных так же как ERK1 и ERK2, extracellular signal-regulated protein kinases 1 and 2), кото­рые перемещаются из цитоплазмы в ядро клетки, где фосфорилируют ключевые факторы транскрипции - белки-регуляторы активности различных генов.
Активация транскрипции. Группа генов, определяющих вхождение клетки в фазу S, активируется транскрипционным фактором АР-1 - ком­плексом белков Jun и Fos (гены, их кодирующие - c-Jun и c-Fos, относятся к числу протоонкогенов; с - от cell, обозначает их клеточное про­исхождение в отличие от вирусных онкогенов v-Jun и v-Fos). Эти транскрипционные факторы могут взаимодействовать между собой с образованием множества гомо- и гетеродимеров, связывающихся с опре­деленными участками ДНК и стимулирующих синтез РНК на прилежащих к этим участкам генах. МАР-киназы повышают активность АР-1 двояким образом:
опосредованным, активируя гены, кодирующие эти транскрипцион­ные факторы, и увеличивая тем самым их содержание в клетке;
прямым, фосфорилируя входящие в их состав сериновые и треониновые остатки.
В результате активации генов продуцируются белки, необходимые для синтеза ДНК и последующего митоза. Некоторые из новообразованных белков (Fos, Jun, Мус), известные как белки раннего ответа (immediateearly proteins), выполняют регуляторные функции; связываясь со специ­фическими участками ДНК, они активируют прилежащие гены. Другую группу составляют такие ферменты, как тимидинкиназа, рибонуклеотидредуктаза, дигидрофолатредуктаза, тимидилат-синтаза, орнитиндекарбоксилаза, ДНК-полимеразы, топоизомеразы и ферменты, которые имеют непосредственное отношение к синтезу ДНК. Кроме того, усили­вается общий белковый синтез, поскольку при каждом цикле удвоения воспроизводятся все клеточные структуры.
Реализация митогенного сигнала. Результатом переноса мито­генного сигнала является реализация сложной программы клеточного деления.
Клеточный цикл. Клетки могут находиться в одном из трех состоя­ний - в цикле деления, в стадии покоя с сохранением возможности воз­врата в цикл и, наконец, в стадии терминальной дифференцировки, при которой способность к делению полностью утрачена. Образовывать опу­холи могут только те клетки, которые сохранили способность к делению.
Цикл удвоения разных клеток человека варьирует от 18 ч (клетки ко­стного мозга) до 450 ч (клетки крипт толстой кишки), в среднем - 24 ч. Митоз (М) и синтез ДНК (фаза S), между которыми выделяют 2 промежу­точных (gap) периода - G1 и G2, наиболее заметны; во время интерфазы (период между двумя делениями) клетка растет и готовится к митозу. В период фазы G1 существует момент (так называемая точка рестрикции R), когда осуществляется выбор между вхождением в следующий цикл деления или переходом в стадию покоя G0. Вхождение клетки в цикл де­ления - процесс вероятностный, определяемый сочетанием ряда усло­вий (внутренних и внешних); однако после того, как выбор сделан, по­следующие этапы совершаются автоматически. Хотя клетка может блокироваться на той или иной стадии цикла деления, обычно это может быть следствием каких-то особых обстоятельств.
Особенно важными в цикле являются моменты вхождения клетки в фазу синтеза ДНК (граница фаз G/S) и митоз (граница фаз G2/M), где действуют своеобразные «контрольно-пропускные пункты» (checkpoints), которые проверяют в первом случае целость ДНК (ее готовность к репли­кации), а во втором - завершенность репликации. Клетки с поврежден­ной или недореплицированной ДНК блокируются на границе соответству­ющих фаз, что предотвращает возможность передачи потомству дефектов ее структуры в виде мутаций, делеций и иных нарушений. Некая система надзора, по-видимому, существующая в клетке, индуцирует систему ре­парации ДНК, после завершения которой продвижение клетки по циклу может быть продолжено. Альтернативой репарации является апоптоз, радикальным образом устраняющий опасность возникновения в организ­ме клона дефектных (потенциально опухолевых) клеток. Конкретный вы­бор зависит от множества условий, в том числе от индивидуальных осо­бенностей клетки.
Процесс репликации ДНК сложен и длителен (занимает несколько часов), поскольку весь генетический материал клетки должен быть воспроизведен абсолютно точно. При возникновении в нем каких-либо от­клонений клетка блокируется на подходе к митозу (на границе фаз G2/M) и также может подвергнуться апоптозу. Защитное значение checkpoints трудно переоценить, поскольку их функциональные дефекты в конечном итоге имеют следствием и опухолевую трансформацию клетки и прогрес­сию уже сформировавшейся опухоли.
Циклические реакции. Существуют два семейства белков, «движу­щих» клеточный цикл - циклин(сусНп)-зависимые серин/треониновые протеинкиназы (Cdk, cyclin-dependent kinases) и сами циклины. Циклины регулируют активность Cdk и тем самым их способность модифициро­вать структуры-мишени, непосредственно участвующие в метаморфозах цикла. С их участием осуществляются такие важные этапы цикла, как дезинтеграция ядерной мембраны, конденсация хроматина, формирование веретена и ряд других. Cdk активны только в комплексе с одним из циклинов. В связи с этим сборка и активация многочисленных комплексов Cdkcyclin, а также их диссоциация - ключевые моменты клеточного цикла.
Как следует из их названия, циклины синтезируются и распадаются в строго определенные моменты цикла, различные для разных циклинов. Имеется три основных их класса: йЛциклины, необходимые для прохож­дения GyS, S-циклины - для прохождения S-фазы и G2 (или митотичес­кие) - циклины для вхождения в митоз. В клетках млекопитающих име­ется также несколько семейств Cdk, участвующих в разных регуляторных влияниях. Удаление того или иного циклина из внутриклеточной среды строго в определенный момент столь же важно, как и его появление (уст­ранение циклинов из внутриклеточной среды достигается как их дегра­дацией, так и блоком синтеза), например в митозе (на границе мета- и анафазы) в результате протеолиза один из циклинов быстро деградиру­ет; если же этого не происходит, то митоз не может завершиться и разде­ления дочерних клеток не происходит.
Продвижение в фазе S требует активации киназ Cdk2, Cdk4 и Cdk6, которые взаимодействуют с вЛфазными циклинами (в частности, с cyclin D). Комплекс Cdc2 с первым йЛфазным циклином индуцируеттранскрипцию гена следующего циклина и т.д., продвигая клетки все дальше по цик­лу. Cdc2-cyclin D в самом начале замещается на Cdc2-cyclin Е, а тот в свою очередь - на Cdc2-cyclin А, активирующий аппарат синтеза ДНК. Когда клетка входит в S-фазу, йЛциклины деградируют и появляются вновь лишь в фазе G1 следующего цикла.
Контрольно-пропускные пункты (checkpoints - англ.). Любое стрессорное воздействие (например, отсутствие питательных веществ, гипоксия, особенно повреждение ДНК) блокирует движение’по циклу в одном из двух упомянутых выше контрольных пунктов (checkpoints). Во время этих остановок активируются механизмы надзора, способные:
обнаружить повреждение ДНК;
передать сигнал неблагополучия, блокирующий синтез ДНК или
митоз;
активировать механизмы репарации ДНК.
Благодаря этому обеспечивается стабильность генома. Как упоминалось выше, механизм контроля G/S блокирует репликацию ДНК и ак­тивирует процессы репарации (или индуцирует апоптоз), тогда как меха­низм контроля G2/M запрещает митоз до завершения репликации Дефекты этих механизмов могут привести к появлению дочерних клеток с поврежденным геномом.
В механизме checkpoint участвуют комплексы Cdk-cyclin и ряд допол­нительных белков - Rb, р53 и другие. Их совокупность образует систему «тормозов», не позволяющих клетке делиться в отсутствие адекватных стимулов. Гены, кодирующие эти белки, называют генами-супрессора­ми. Особая значимость этой системы заключается в том, что раковая трансформация клетки становится возможной лишь после ее инактива­ции. В соматической клетке существуют по два аллеля каждого из генов, втом числе и генов-супрессоров, и, следовательно, для их инактивации необходимы два независимых события (например, делеция одного алле­ля и мутация другого). Именно по этой причине «спорадические» опухоли появляются относительно редко (вероятность возникновения в одной клетке нескольких независимых мутаций, причем поражающих один и тот же локус обеих хромосом, относительно невелика), а «семейные» чрез­вычайно часты (в «раковых» семействах один из двух наследуемых алле­лей того или иного гена-супрессора исходно дефектен). В последнем слу­чае система «тормозов» у всех клеток данного организма обеспечивается лишь одним нормальным аллелем, что резко снижает ее надежность и повышает риск возникновения опухоли. Именно это и происходит при наследственной ретинобластоме (делеция одного аллеля Rb) и других наследственных синдромах (делеция или повреждение одного аллеля р53 или других генов-супрессоров).
У клеток с дефектным или отсутствующим белком-супрессором р53 контрольный пункт GyS неполноценен. Это проявляется в том, что повреж­дения ДНК, индуцированные ионизирующей радиацией или каким-либо другим способом, не приводят ни к задержке клеток на границе фаз G 1/S, ни капоптозу. В результате в популяции накапливаются клетки с мно­жественными нарушениями структуры ДНК; появляется и со временем нарастает нестабильность генома, которая способствует возникновению новых клеточных клонов. Их естественный отбор лежит в основе опухоле­вой прогрессии - постоянного «дрейфа» опухоли ко все большей авто­номности и злокачественности.
Апоптоз (или программируемая клеточная гибель) - широко распространенный биологический феномен клеточного «самоубийства», ко­торое индуцируется либо разнообразными внешними стимулами, либо неразрешимыми «внутренними» конфликтами (например, невозможностью репарации повреждений ДНК). Роль апоптоза велика не только в фор­мообразовательных процессах во время эмбриогенеза (формирование органов, замена одних тканей другими, резорбция временных органов и т.д.), но и в поддержании тканевого гомеостаза во взрослом организме.
В регуляции тканевого гомеостаза гибель клетки выполняет функцию, комплементарную митозу. У опухолевых клеток программа гибели клеток в большинстве случаев блокирована, что вносит существенный вклад в увеличение массы опухоли.
Механизмы апоптоза. Принципиальное значение имеет тот факт, что механизмы апоптоза чрезвычайно консервативны и сохраняют свои основные закономерности у весьма далеких в эволюционном отношении организмов. Это обстоятельство позволило идентифицировать у млекопитающих (в частности у человека) гены, гомологичные генам апоптоза у нематоды, - организма, у которого впервые была обнаружена и изучена генетическая система, управляющая этим процессом.
В результате у млекопитающих были идентифицированы гены семейства Вс1 -2. Роль самого Вс1-2 и некоторых его гомологов - антиапоптическая (предотвращение гибели клеток), тогда как у других членов се­мейства, например Вах, - проапоптическая. Белки Вах и Вс1-2 способны к комплексообразованию друг с другом. В зависимости от относительно­го внутриклеточного содержания про- и антиапоптических белков реша­ется судьба данной клетки. Механизм действия белков семейства Вс1-2 не до конца ясен.
Большое функциональное значение имеет механизм апоптоза, индуцируемого через специфические рецепторы CD95 (трансмембранный белок-рецептор размером 45 кДа, который при связывании со специфическим лигандом или антителами передает сигнал к апоптозу) и TNF-R (tumor necrosis factor receptor, рецептор фактора некроза опухолей). Эти рецепторы, объединяемые сходством внеклеточных доменов, входят в состав большого семейства. Лигандами (молекулами, специфически вза­имодействующими с рецепторами TNF-R и CD95) являются соответствен­но TNF и CD95-L, которые представляют собой трансмембранные белки, но могут функционировать и в растворимой, «свободной» форме. Осо­бенно интересен, с онкологической точки зрения, TNF - цитокин, произ­водимый многими клетками (макрофагами, моноцитами, лимфоидными клетками, фибробластами) в ответ на воспаление, инфекцию и другие стрессорные воздействия. Он индуцирует широкий спектр иногда проти­воположных по направленности реакций, включая лихорадку, шок, некроз опухоли, анорексию; а также иммунорегуляторные сдвиги, клеточное раз­множение, дифференцировку и апоптоз. В этом случае апоптоз осуще­ствляется с участием специфической цистеиновой протеазы ICE, разру­шающей многие внутриклеточные белки-мишени. Гиперэкспрессия ICE в клетке вызывает апоптоз. size=5 face="Times New Roman">

1. Факторы роста (макрофаги, лимфоциты, фибробласты, тромбоциты и др.) –стимуляция пролиферации и ограничение апоптоза.

2. Кейлоны – гликопротеидные тканеспецифические ингибиторы роста.

3. Фибронектин- хемоаттрактант фибробластов.

4. Ламинин -главный адгезивный белок базальных мембран.

5. Синдекан -интегральный протеогликан клеточных мембран, связывает коллаген, фибронектин и тромбоспондин.

6. Тромбоспондин – гликопротеид, образует комплексы с синдеканом, коллагеном и гепарином, играет существенную роль в сборке костной ткани.

Образование и реализация эффектов биологически активных веществ (БАВ) - одно из ключевых звеньев воспаления. БАВ обеспечивают закономерный характер развития воспаления, формирование его общих и местных проявлений, а также исходы воспаления. Именно поэтому БАВ нередко именуют как «медиаторы воспаления».

Медиаторы воспаления - это местные химические сигналы, образую­щиеся, высвобождаемые либо активируемые в очаге воспаления, действую­щие и разрушаемые также в пределах очага. Под медиаторами (посредниками) воспаления понимают биологически активные вещества, ответственные за возникновение или поддержание тех или иных воспалительных явлений, например повышенной сосудистой проницаемости, эмиграции и т. д.

Это те же вещества, которые в условиях нормальной жизнедеятельности организма, образуясь в различных органах и тканях в физиологических концентрациях, ответственны за регуляцию функций на клеточном, тканевом уровне. При воспалении, местно высвобождаясь (вследствие активации клеток и жидких сред) в больших количествах, они приобретают новое качество - медиаторов воспаления. Практически все медиаторы являются и модуляторами воспаления, т. е. способны усиливать или ослаблять выраженность воспалительных явлений. Это обусловлено комплексностью их влияния и взаимодействием их как с клетками-продуцентами этих веществ, так и между собой. Соответственно эффект медиатора может быть добавочным (аддитивным), потенцирующим (синергистическим) и ослабляющим (антагонистическим), а взаимодействие медиаторов возможно на уровне их синтеза, секреции или эффектов.

Медиаторное звено является основным в патогенезе воспаления. Оно координирует взаимодействие множества клеток - эффекторов воспаления, смену клеточных фаз в очаге воспаления. Соответственно патогенез воспаления можно представить себе как цепь множественных межклеточных взаимодействий, регулируемых медиаторами-модуляторами воспаления.

Медиаторы воспаления обусловливают развитие и регуляцию процессов альтерации (включая изменение обмена веществ, физико‑химических параметров, структуры и функции), развитие сосудистых реакций, экссудации жидкости и эмиграции клеток крови, фагоцитоза, пролиферации и репаративных процессов в очаге воспаления.


Большинство медиаторов выполняют свои биологические функции специфически воздействуя на рецепторы клеток-мишеней. Однако некоторые из них имеют прямую ферментативную или токсическую активность (напри­мер, лизосомальные гидролазы и активные кислородные радикалы). Функции каждого медиатора регулируются соответствующими ингибиторами.

Источниками медиаторов воспаления могут служить плазма крови и клетки-участники воспаления. В соответствии с этим выделяют 2 большие группы медиаторов воспаления: гуморальные и клеточные . Гуморальные

медиаторы в основном представлены полипептидами, которые постоянно цир­кулируют в крови в неактивном состоянии и синтезируются преимуществен­но в печени. Эти медиаторы составляют так называемую «сторожевую поли­систему плазмы крови». Клеточные медиаторы могут синтезироваться de novo (например, метаболиты арахидоновой кислоты) или высвобождаться из клеточных депо (например, гистамин). Источниками клеточных медиаторов в очаге воспаления являются, в основном, макрофаги, нейтрофилы и базофилы.

Из гуморальных медиаторов воспаления наиболее важными являютсяпроизводные комплемента. Среди почти 20 различных белков, образующихся при активации комплемента, непосредственное отношение к воспалению имеют его фрагменты С5а, С3а, С3b и комплекс С5b-С9. При этом С5а и в меньшей степени С3а являются медиаторами острого воспаления. СЗb опсонизирует патогенный агент и соответственно способствует иммунной адгезии и фагоцитозу. Комплекс С5b-С9 ответствен за лизис микроорганизмов и патологически измененных клеток. Источником комплемента является плазма крови и в меньшей мере тканевая жидкость. Усиленная поставка плазменного комплемента в ткань является одним из важных назначений экссудации. С5а, образующийся из него в плазме и тканевой жидкости под влиянием карбоксипептидазы N, C5a des Arg и С3а повышают проницаемость посткапиллярных венул. При этом C5a и С3а, будучи анафилатоксинами (т. е. либераторами гистамина из тучных клеток), повышают проницаемость как прямо, так и опосредованно через гистамин Эффект C5a des Arg не связан с гистамином, но является нейтрофилзависимым, т. е. осуществляется за счет факторов проницаемости, вьсвобождаемых из полиморфноядерных гранулоцитов, - лизосомальных ферментов и неферментных катионных белков, активных метаболитов кислорода. Кроме того, C5a и C5a des Arg привлекают нейтрофилы. В отличие от них С3а практически не обладает хемотаксическими свойствами. Активные компоненты комплемента высвобождают не только гистамин и гранулоцитарные продукты, но и интеряейкин-1, простагландины, лейкотриены, фактор, активирующий тромбоциты, и синергистически взаимодействуют с простагландинами и веществом Р.

Кинины - вазоактивные пептиды, образующиеся из кининогенов (альфа2-глобулинов) под влиянием калликреинов в плазме (нонапептид брадикинин) и в тканевой жидкости (декапептид лизилбрадикинин, или каллидин). Пусковым фактором активации калликреин-кининовой системы является активация при повреждении ткани фактора Хагемана (XII фактор свертывания крови), превращающего прекалликреины в калликреины.

Кинины опосредуют расширение артериол и повышение проницаемости венул путем контракции эндотелиальных клеток. Они сокращают гладкую мускулатуру вен и повышают внутрикапиллярное и венозное давление. Кинины угнетают эмиграцию нейтрофилов, модулируют распределение макрофагов, стимулируют миграцию и митогенез Т-лимфоцитов и секрецию лимфокинов. Они также усиливают пролиферацию фибробластов и синтез коллагена и, следовательно, могут иметь значение в репаративных явлениях и в патогенезе хронического воспаления.

Один из наиболее значимых эффектов кининов- активация рефлексов путем раздражения окончаний чувствительных нервов и опосредование, таким образом, воспалительной боли. Кинины вызывают или усиливают высвобождение гистамина из тучных клеток, синтез простагландинов многими типами клеток, поэтому некоторые из их основных эффектов- вазодилятация, сокращение гладкой мускулатуры, боль - связывают с высвобождением других медиаторов, особенно простагландинов.

Активация фактора Хагемана запускает не только процесс кининообразования, но и свертывания крови и фибринолиза. При этом образуются такие медиаторы, как фибринопептиды и продукты деградации фибрина, которые являются мощными хематтрактантами. Кроме того, фибринолиз и образование тромбов в сосудах очага имеют существенное значение как в патологических, так и в защитных явлениях воспаления.

Из клеточных медиаторов первостепенный интерес вызываютэйкозаноиды поскольку скорее всего именно они являются центральным медиаторным звеном воспалительной реакции. В пользу этого свидетельствуют продолжительное поддержание продукции эйкозаноидов в очаге, их тесная связь с ключевым событием воспалительного процесса - лейкоцитарной инфильтрацией, мощный противовоспалительный эффект ингибиторов их синтеза.

Основную роль в продукции эйкозаноидов в очаге воспаления играют лейкоциты, особенно моноциты и макрофаги, хотя они образуются почти всеми типами ядерных клеток при стимуляции последних. Преобладающими эйкозаноидами в очаге воспаления почти всегда оказываются простагландин (ПГ) Е2, лейкотриен (ЛТ) B4 и 5-гидроксиэйкозатетраеновая кислота (5-ГЭТЕ). Образуются также, хотя и в меньшем количестве, тромбоксан (Ткс) А2, ПГF2альфа, ПГD2, простациклин (ПГ12), ЛТС4, ЛТD4, ЛТЕ4, другие ГЭTЕ.

Главными эффектами эйкозаноидов при воспалении являются влияния на лейкоциты. ПГ, Ткс и особенно ЛТ являются мощными хематтрактантами и играют, таким образом, важную роль в механизмах самоподдержания лейкоцитарной инфильтрации. ПГ сами не повышают сосудистую проницаемость, но, будучи сильными вазодилятаторами, усиливают гиперемию и, следовательно, экссудацию. ЛТС4, JITD4, ЛТЕ4 повышают проницаемость сосудов путем прямой контракции эндотелиальных клеток, а ЛТВ4 - как нейтрофилзависимый медиатор. ПГ и ЛТ имеют значение в генезе воспалительной боли. При этом ПГЕ2, не обладая прямой болевой активностью, повышает чувствительность рецепторов афферентных болевых нервных окончаний к брадикинину и гистамину. ПГЕ2 является сильным жароповышающим агентом, и лихорадка при воспалении может быть отчасти обусловлена его высвобождением. ПГ играют ключевую роль в модуляции воспалительного процесса, осуществляя двунаправленную регуляцию экссудации, эмиграции и дегрануляции лейкоцитов, фагоцитоза. Так, например, ПГЕ способны потенцировать развитие отека, вызванного гистамином или брадикинином, а ПГF2альфа, напротив, ослаблять. Аналогичные отношения между ПГЕ и ПГF2альфа распространяются также на эмиграцию лейкоцитов.

Особо широкий спектр взаимодействий с другими медиаторами воспаления характерен для ЛТ. Они синергистически взаимодействуют в отношении бронхоспазма с гистамином, ацетилхолином, ПГ и Ткс, стимулируют высвобождение ПГ и Ткс. Модуляторная функция эйкозаноидов осуществляется через изменения соотношения циклических нуклеотидов в клетках.

Источникамигистамина являются базофилы и тучные клетки.Серотонин (нейромедиатор) у человека кроме незначительного количества в тучных клетках содержится также в тромбоцитах и энтерохромаффинных клетках. Благодаря быстрому высвобождению при дегрануляции тучных клеток, способности изменять просвет микрососудов и вызывать непосредственную контракцию эндотелиальных клеток венул гистамин и серотонин считаются основными медиаторами первоначальных микроциркуляторных нарушений в очаге острого воспаления и немедленной фазы повышения проницаемости сосудов. Гистамин играет дуалистическую роль как в отношении сосудов, так и клеток. Через Н2-рецепторы он расширяет артериолы, а через H1-рецепторы суживает венулы и, таким образом, повышает внутрикапиллярное давление. Че­рез Hi -рецепторы гистамин стимулирует, а через Нг-рецепторы угнетает эмиграцию и дегрануляцию лейкоцитов. При обычном течении воспаления гистамин действует преимущественно через Нг-рецепторы на нейтрофилах, ограничивая их функциональную активность, и через Hi -рецепторы на моно­цитах, стимулируя их. Таким образом, на­ряду с провоспалительными сосудистыми эффектами он оказывает противовоспали­тельные клеточные. Серотонин также сти­мулирует моноциты в очаге воспаления. Гистамин осуществляет двунаправленную регуляцию пролиферации, дифференцировки и функциональной активности фибробластов и, следовательно, может иметь значение в репаративных явлениях. Моду­ляторные эффекты гистамина также опосредуются циклическими нуклеотидами.

Что касается взаимодействий биогенных аминов в очаге воспаления, то известно, что гистамин через Hi-рецепторы может за­пускать или усиливать синтез простагландинов, а через На -рецепторы - угнетать. Биогенные амины взаимодействуют как меж­ду собой, так и с брадикинином, нуклео­тидами и нуклеозидами, веществом Р в по­вышении проницаемости сосудов. Сосудорас­ширяющее действие гистамина усиливается в комплексе с ацетилхолином, серотонином, брадикинином.

Основным источникомлизосомальных ферментов в очаге воспаления являются фагоциты - гранулоциты и моноциты-макрофаги. Несмотря на огромную важность в патогенезе воспаления фагоцитоза, фагоциты являются прежде всего подвиж­ными носителями медиаторов-модуляторов, секретируемых внеклеточно. Вывобождение лизосомального содержимого осуществляется в ходе их хемотаксической стимуляции, ми­грации, фагоцитоза, повреждения, гибели. Главными компонентами лизосом у челове­ка являются нейтральные протеиназы- эластаза, катепсин G и коллагеназы, содер­жащиеся в первичных, азурофильных, гра­нулах нейтрофилов. В процессах противомикробной защиты, в том числе при воспа­лении, протеиназы относятся к факторам “второй очереди” после кислородзависимых (миелопероксидаза - перекись водорода) и таких кислороднезависимых, как лактоферрин и лизоцим, механизмов. Они обеспе­чивают главным образом лизис уже убитых микроорганизмов. Основные же эффекты протеиназ - медиация и модуляция воспалительных явлений, в том числе повреждения собственных тканей. Медиаторный и модуляторный эффекты протеиназ осуществляются в отношении сосудистой проницаемости, эмиграции, фагоцитоза.

Повышение проницаемости сосудов под влиянием лизосомальных ферментов происходит за счет лизиса субэндотелиального матрикса, истончения и фрагментации эндотелиальных клеток и сопровождается геморрагией и тромбозом. Образуя или расщепляя важнейшие хемотаксические вещества, лизосомальные ферменты являются модуляторами лейкоцитарной инфильтрации. В первую очередь это касается компонентов системы комплемента и калликреин-кининовой.

Лизосомальные ферменты, в зависимости от концентрации, могут и сами усиливать или угнетать миграцию нейтрофилов. В отношении фагоцитоза нейтральные протеиназы также обладают рядом эффектов. В частности, эластаза может об­разовывать опсонин С3b; С3b является также важным для адгезии частиц к поверхности нейтрофила. Следовательно, нейтрофил сам обеспечивает себе механизм усиления фагоцитоза. Как катепсин G, так и эластаза повышают сродство Fc-рецептора мембраны нейтрофила к комплексам иммуноглобулинов и, соответственно, усиливают эффективность поглощения частиц.

Благодаря также способности лизосомальных ферментов активировать системы комплемента, калликреин-кининовую, свертывания и фибринолиза, высвобождать цитокины и лимфокины, воспаление развертывается и самоподдерживается в течение длительного времени.

Важнейшим свойствомнеферментных катионных белков, содержащихся как в азурофильных, так и в специфических гранулах нейтрофилов, являетсяих высокая микробицидность. В этом отношении они находятся в синергистическом взаимодействии с системой миелопероксидаза - перекись водорода. Катионные белки адсорбируются на отрицательно заряженной мембране бактериальной клетки путем электростатического взаимодействия. В результате этого нарушаются проницаемость и структура оболочки и наступает гибель микроорганизма, что является предпосылкой для последующего эффективного лизиса его лизосомальными протеиназами. Высвободившиеся внеклеточно катионные белки опосредуют повышение проницаемости сосудов (главным образом путем индукции дегрануляции тучных клеток и высвобождения гистамина), адгезию и эмиграцию лейкоцитов.

Главным источникомцитокинов (монокинов) при воспалении являются стимулированные моноциты и макрофаги. Кроме того, эти полипептиды продуцируются нейтрофилами, лимфоцитами, эндотелиальными и другими клетками. Наиболее изученными из цитокинов являются интерлейкин-1(ИЛ-1) и фактор некроза опухоли (ФНО). Цитокины повышают сосудистую проницаемость (неитрофилзависимым путем), адгезию и эмиграцию лейко­цитов. Наряду с провоспалительными свойствами цитокины могут иметь значение и в непосредственной защите организма, стимулируя нейтрофилы и моноциты к умерщвлению, поглощению и перевариванию внедрившихся микроорганизмов, а также усиливая фагоцитоз путем опсонизации патогенного агента.

Стимулируя раневое очищение, пролиферацию и дифференцировку клеток, цитокины усиливают репаративные процессы. Наряду с этим они могут опосредовать тканевую деструкцию (деградацию хрящевого матрикса и резорбцию кости) и, таким образом, играть роль в патогенезе заболеваний соединительной ткани, в частности ревматоидного артрита.

Действие цитокинов вызывает также ряд метаболических эффектов, лежащих в основе общих проявлений воспаления - лихорадки, сонливости, анорексии, изменения обмена веществ, стимуляции гепатоцитов к усиленному синтезу белков острой фазы, активации системы крови и т. д.

Цитокины взаимодействуют между собой, с простагландинами, нейропептидами и другими медиаторами.

К медиаторам воспаления относится также рядлимфокинов - полипептидов, продуцируемых стимулированными лимфоцитами. Наиболее изученными из лимфокинов, модулирующих воспалительный ответ, являются фактор, угнетающий макрофаги, макрофагактивирующий фактор, интерлейкин-2. Лимфокины координируют взаимодействие нейтрофилов, макрофагов и лимфоцитов, регулируя таким образом воспалительную реакцию в целом.

Активные метаболиты кислорода, прежде всего свободные радикалы - супероксидный анион радикал, гидроксильный радикал НО, пергидроксил, вследствие наличия на их внешней орбите одного или нескольких непарных электронов обладают повышенной реактивностью с другими молекулами и, следовательно, значительным деструктивным потенциалом, который имеет значение в патогенезе воспаления. Источником свободных радикалов, а также других кислородпроизводных медиаторов и модуляторов воспаления - перекиси водорода (Н 2 0 2), синглетного кислорода (f0 2), гипохлорида (НОС1) служат: дыхательный взрыв фагоцитов при их стимуляции, каскад арахидоновой кислоты в процессе образования эйкозаноидов, ферментные процессы в эндоплазматическом ретикулуме и пероксизомах, митохондриях, цитозоле, а также самоокисление малых молекул, таких, как гидрохиноны, лейкофлавины, катехоламины и др.

Роль активных метаболитов кислорода в воспалении состоит, с одной стороны, в повышении бактерицидной способности фагоцитов и, с другой стороны, - в их медиаторной и модуляторной функциях. Медиаторная роль активных метаболитов кислорода обусловлена их способностью вызывать перекисное окисление липидов, окисление белков, углеводов, повреждение нуклеиновых кислот. Указанные молекулярные изменения лежат в основе вызываемых активными метаболитами кислорода явлений, характерных для воспаления, - повышения проницаемости сосудов (вследствие повреждения эндотелиальных клеток), стимуляции фагоцитов.

Модуляторная ролъ, активных метаболитов кислорода может заключаться как в усилении воспалительных явлений (путем индукции высвобождения ферментов и взаимодействия с ними в повреждении ткани; не только инициации, но и модуляции каскада арахидоновой кислоты), так и в противовоспалительных эффектах (за счет инактивации лизосомальных гидролаз и других медиаторов воспаления).

Важное значение имеют активные метаболиты кислорода в поддержании хронического воспаления.

К медиаторам и модуляторам воспаления относят такженейропептиды - вещества, высвобождаемые С-волокнами в результате активации воспалительным агентом полимодальных ноцицепторов, играющих важную роль в возникновении аксонрефлексов в конечных разветвлениях первичных афферентных (чувствительных) нейронов. Наиболее изученными являются вещество Р, кальцитонин-генсвязанный пептид, нейрокинин А. Нейропептиды повышают проницаемость сосудов, и этаих способность во многом опосредована медиаторами, происходящими из тучных клеток. Между немиелинными нервами и тучными клетками имеются мембранные контакты, которые обеспечивают сообщение центральной нервной системы с очагом воспаления.

Нейропептиды синергистически взаимодействуют в повышении проницаемости сосудов как между собой, так и с гистамином, брадикинином, С5а, фактором, активирующим тромбоциты, лейкотриеном В4; антагонистически - с АТФ и аденозином. Они оказывают также потенцирующее воздействие на привлечение и цитотоксическую функцию нейтрофилов, усиливают адгезию нейтрофилов к эндотелию венул. Кроме того, нейропептиды повышают чувствительность ноцицепторов к действию различных медиаторов, в частности простагландина Е2 и простациклина, участвуя, таким образом, в воссоздании воспалительной боли.

Кроме вышеперечисленных веществ к медиаторам воспаления относятся также ацетилхолив и катехоламины, высвобождающиеся при возбуждении холин- и адренергических структур. Ацетилхолин вызывает расширение сосудов и играет роль в аксонрефлекторном механизме артериальной гиперемии при воспалении. Норадреналин и адреналин тормозят рост сосудистой проницаемости, выступая главным образом как модуляторы воспаления.

1

Наши экспериментальные результаты и опубликованные данные свидетельствуют о том, что регуляция процессов пролиферации, дифференцировки и апоптоза может происходить в клетках нейробластомы под действием сублетальных концентраций широкого спектра веществ, в том числе и изменение ионного состава культуральной среды. Клеточный цикл и дифференцировка клетки контролируются циклинами и циклин-зависимыми киназами. Однако молекулярные механизмы, лежащие в основе дифференцировки, все еще плохо поняты. Предложена простейшая модель регуляции фермента с центрами связывания для органических субстратов и для неорганических ионов. Активность такого фермента зависит не только от наличия субстрата, но и от внутриклеточных активностей неорганических ионов. Ионный состав цитоплазмы может осуществить тонкую регулировку различных ферментных систем клетки.

культура клеток

нейробластома

пролиферация

дифференцировка

неорганические ионы

1. Асланиди К.Б., Булгаков В.В., Замятнин А.А. (мл.), Маевский Е.И., Чайлахян Л.М. Модель метаболической регуляции мембранного электрогенеза животной клетки. // ДАН. – 1998. – Т.360, № 6. – С. 823–828.

2. Асланиди К.Б., Мякишева С.Н., Иваницкий Г.Р. Ионная регуляция пролиферации клеток нейробластомы мыши NIE-115 in vitro // ДАН – 2008. – Т. 423, № 2. – С. 1 – 3.

3. Асланиди К.Б., Мякишева С.Н. Влияние компонентов среды на время дифференцировки и продолжительность жизни клеток нейробластомы мыши NIE-115. //Биологические мембраны – 2011. – Т. 28, № 3. – С. 181–190.

4. Мякишева С.Н., Костенко М.А., Дриняев В.А., Мосин В.А. Пролиферация и морфологическая дифференцировка клеток нейробластомы в культуре под влиянием авермектинов // Морфология. – 2001. – Т.120, № 6. – С.24–26.

5. Мякишева С.Н., Крестинина О.В. Исследование влияния мелатонина на пролиферацию и индукцию дифференцировки клеток нейробластомы мыши N1E-115 // Современные проблемы науки и образования. – 2014. – № 6.

6. Мякишева С.Н., Крестинина О.В., Асланиди К.Б. Мелатонин ингибирует пролиферацию и индуцирует дифференцировку клеток нейробластомы. //Сб.ст.: Труды Международной научной конференции SCVRT2013–14. Москва-Протвино – 2013–2014. – С. 153–156.

7. Тирас Х.П., Петрова О.Н., Мякишева С.Н., Попова С.С., Асланиди К.Б. Влияние слабых магнитных полей в разные фазы регенерации планарии. // Биофизика – 2015. – Т.60, №1. – С. 158 – 163.

8. Aslanidi K.B., Boitzova L.J., Chailakhyan L.M., Kublik L.N., Marachova I.I., Potapova T.V., Vinogradova T.A. Energetic cooperation via ion-permeable junctions in mixed cell cultures. // FEBS Letters – 1991. – Vol.283, №2. – P.295–297.

9. Aslanidi K.B., Panfilov A.V. The Boyle-Conway model including the effect of an electrogenic pump for nonexcitable cells // Mathematical Biosciences – 1986. – Vol.79. – P.45–54.

10. Bell J.L., Malyukova A., Kavallaris M., Marshall G.M., Cheung B.B. TRIM16 inhibits neuroblastoma cell proliferation through cell cycle regulation and dynamic nuclear localization. // Cell Cycle – 2013. – Mar 15;12(6):889–98. doi: 10.4161/cc.23825. Epub 2013 Feb 19.

11. Cheung W.M., Chu P.W., Kwong Y.L. Effects of arsenic trioxide on the cellular proliferation, apoptosis and differentiation of human neuroblastoma cells // Cancer Lett. – 2007. – Feb 8;246(1–2):122–8. Epub 2006 Mar 29.

12. Chu J., Tu Y., Chen J., Tan D., Liu X., Pi R. Effects of melatonin and its analogues on neural stem cells // Mol Cell Endocrinol – 2016. – Jan 15;420:169–79. doi: 10.1016/j.mce.2015.10.012. Epub 2015 Oct 21.

13. Duffy DJ, Krstic A, Schwarzl T, Halasz M, Iljin K, Fey D, Haley B, Whilde J, Haapa-Paananen S, Fey V, Fischer M, Westermann F, Henrich KO, Bannert S, Higgins DG, Kolch W. Wnt signalling is a bi-directional vulnerability of cancer cells // Oncotarget – 2016. –Aug 11. doi: 10.18632/oncotarget.11203. .

14. Dziegiel P., Pula B., Kobierzycki C., Stasiolek M., Podhorska-Okolow M. Metallothioneins in Normal and Cancer Cells // Adv Anat Embryol Cell Biol – 2016; – 218:1–117. doi: 10.1007/978–3–319–27472–0_1.

15. Gohara D.W., Di Cera E. Molecular Mechanisms of Enzyme Activation by Monovalent Cations. // J Biol Chem – 2016. – Sep. 30;291(40):20840–20848. Epub 2016 Jul 26.

16. Hiyoshi H, Abdelhady S, Segerström L, Sveinbjörnsson B, Nuriya M, Lundgren TK, Desfrere L. Quiescence and γH2AX in neuroblastoma are regulated by ouabain/Na,K-ATPase. // Br J Cancer. – 2012. – May 22; 106(11):1807–15. doi: 10.1038/bjc.2012.159. Epub 2012 Apr 24.

17. Ikram F., Ackermann S., Kahlert Y., Volland R., Roels F., Engesser A., Hertwig F., Kocak H., Hero B., Dreidax D., Henrich K.O., Berthold F., Nürnberg P., Westermann F., Fischer M. Transcription factor activating protein 2 beta (TFAP2B) mediates noradrenergic neuronal differentiation in neuroblastoma. // Mol Oncol – 2016. – Feb;10(2):344–59. doi: 10.1016/j.molonc.2015.10.020. Epub 2015 Nov 7.

18. Leung Y.M., Huang C.F., Chao C.C., Lu D.Y., Kuo C.S., Cheng T.H., Chang L.Y., Chou C.H. Voltage-gated K+ channels play a role in cAMP-stimulated neuritogenesis in mouse neuroblastoma N2A cells // J Cell Physiol – 2011. – Apr;226(4):1090–8. doi: 10.1002/jcp.22430.

19. Luksch R., Castellani M.R., Collini P., De Bernardi B., Conte M., Gambini C., Gandola L., Garaventa A, Biasoni D, Podda M, Sementa AR, Gatta G, Tonini GP. Neuroblastoma (Peripheral neuroblastic tumours). // Crit Rev Oncol Hematol – 2016. – Nov. – 107:163–181. doi: 10.1016/j.critrevonc.2016.10.001. Epub 2016 Oct 6.

20. Morgan D.O. Principles of CDK regulation. // Nature – 1995, Vol. 374. – P. 131–134.

21. Narimanov A.A., Kublik L.N., Myakisheva S.N. Influence of cyanosis blue Polemonium Coeruleum L. extract on the growth of transformed cells in vitro. // Experimental Oncology –1996, Vol. 18. – P. 287–289.

22. Naveen C.R., Gaikwad S., Agrawal-Rajput R. Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells. // Phytomedicine – 2016, Jun 15. –23(7). – P. 736–44. doi: 10.1016/j.phymed.2016.03.013. Epub 2016 Apr 13.

23. Russo M., Russo G.L., Daglia M., Kasi P.D., Ravi S., Nabavi S.F., Nabavi S.M. Understanding genistein in cancer: The «good» and the «bad» effects: A review. // Food Chem – 2016, Apr 1. – 196:589–600. doi: 10.1016/j.foodchem.2015.09.085. Epub 2015 Sep 26.

24. Santamaria D., Ortega S. Cyclins and CDKS in development and cancer: lessons from genetically modified mice. // Front Biosci – 2006, Jan 1. – 11. – P. 1164–88.

25. Yuan Y., Jiang C.Y., Xu H., Sun Y., Hu F.F., Bian J.C., Liu X.Z., Gu J.H., Liu Z.P. Cadmium-induced apoptosis in primary rat cerebral cortical neurons culture is mediated by a calcium signaling pathway. // PLoS One – 2013, May 31. – 8(5):e64330. doi: 10.1371/journal.pone.0064330. Print 2013.

Нейробластома является наиболее распространенной солидной опухолью детского возраста и на нейробластому приходится до 15 % всех детских смертей от рака . Нейробластома представляет собой опухоль, возникающую из незрелых клеток эмбриональной симпатической нервной системы. Под действием различных факторов клетки нейробластомы могут пролиферировать, дифференцироваться или дедифференцироваться, а также погибать по механизмам некроза или апоптоза . Существуют и периферические виды нейробластомы, возникающие в надпочечниках или в забрюшинных ганглиях, в кости и в костном мозге .

Клетки нейробластомы являются классической экспериментальной моделью для исследования механизмов пролиферации, дифференцировки и апоптоза. По данным PubMed еженедельно выходит не менее 2-х обзоров о нейробластоме, а общее количество публикаций приблизилось к 37.000, увеличиваясь ежегодно почти на 1500 штук.

Корреляция между гистологическими и генетическими признаками у клеток нейробластомы отмечалась многими исследователями и клиницистами. Развитие и патогенез эмбриональной нервной системы связан главным образом с Wnt сигнальным путём. В клетках нейробластомы ингибирование Wnt сигнализации блокирует пролиферацию и способствует дифференцировке, а гиперактивация Wnt сигнализации направляет раковые клетки к апоптозу . Ранее нами было показано, что клетки мышиной нейробластомы N1Е -115 проявляют чувствительность к широкому кругу биологически активных веществ , а также к ионному составу культуральной среды . Однако остаётся вопрос, какие метаболические пути являются общими как для множества биологически активных веществ, так и для неорганических ионов, являющихся компонентами культуральных сред.

Целью работы является поиск мишеней, на которых совмещаются влияния многообразных экзогенных биологически активных веществ и неорганических ионов.

Морфология клеток нейробластомы мыши N1Е -115

Клетки нейробластомы культивировали при 37°С в среде DМЕМ (Sigma, США) с добавлением 10 % эмбриональной сыворотки (Fetal Bovine Serum, Flow Laboratories, Великобритания). Плотность посева в пластиковых флаконах (50 мл) составляла 104 клеток на см2 при объёме среды 5 мл. Через сутки после обычного пересева среду меняли на обычную среду DМЕМ без сыворотки . Исследования клеток проводили методом прижизненного наблюдения c использованием микроскопа.

Рис. 1. Типичная морфология пролиферирующих (А), дифференцированных (Б) и погибших (В) клеток нейробластомы

Адгезированные к поверхности клетки округлой или овальной формы, с наличием коротких отростков или без отростков определяли как пролиферирующие (рис. 1А). Критерием дифференцировки клетки было увеличение размеров и появление длинных аксоноподобных отростков (рис. 1Б). Погибшие клетки определяли как клетки округлой формы или деформированные с фрагментированной структурой ядра и цитоплазмы, как правило не адгезированные к поверхности (рис. 1В).

Влияние фармакологических препаратов на клетки нейробластомы

Ранее были иисследованы процессы пролиферации и морфологической дифференцировки клеток нейробластомы под действием аверсектина С, диметилсульфоксида (ДМСО) и форсколина . Доля дифференцированных клеток, обусловленная применением этих веществ в сублетальных концентрациях, через пять суток культивирования достигала 50 %. Эффект мелатонина на клетки нейробластомы зависел от концентрации в диапазоне 10-8М до 10-3М и приводил к торможению пролиферации и индукции дифференцировки . Некоторые растительные препараты также ингибируют пролиферацию и индуцируют дифференцировку . Аналогичное действие на клетки нейробластомы оказывал препарат растительного происхождения, полученный из синюхи голубой Polemonium coeruleum L. .

Приведённые экспериментальные данные свидетельствуют о том, что описанные морфологические изменения наблюдались при использовании сублетальных концентраций самых различных веществ, которые активируют или ингибируют различные сигнальные пути, в частности, Wnt сигнализацию или МАРК/ERK сигнальный путь . Отметим, что морфология пролиферирующих, дифференцированных или погибших клеток практически не зависит от природы действующего фактора. Более того, ниже будет показано, что процесс дифференцировки сопровождается закономерным изменением ионного состава внутриклеточной среды.

Влияние неорганических ионов на клетки нейробластомы

В наших экспериментах дифференцировка клеток нейробластомы NIE-115 происходила только на бессывороточных средах. Были выявлены зависимости скорости дифференцировки клеток от осмотичности среды, концентрации ионов Na+, значения рН, содержания аминокислот и углеводов в культуральной среде. Показано, что быстрая дифференцировка приводит к быстрой гибели клеток, а максимальную длительность жизни дифференцированных клеток обеспечивали среды, время дифференцировки в которых было сопоставимо с длительностью клеточного цикла . В рамках нашей теоретической модели дифференцировка клеток нейробластомы происходила при вполне определённых значениях внутриклеточных активностей неорганических ионов Na+, K+, Ca2+и рН . При этом неудивительно, что некоторые фармакологические препараты, непосредственно влияющие на распределение неорганических ионов между клеткой и средой, в частности, эндогенный сердечный гликозид оуабаин, действуя на Na+/К+ - АТФазу, вызывает у злокачественной нейробластомы человека обратимую остановку клеточного цикла в S-G2 фазе и увеличение содержание Na+ в цитоплазме , что активирует открытие Ca2+-каналов и вхождение Ca2+ в клетку . Отметим, что уже в течение первого часа инкубации культивируемых клеток с оуабаином ингибирование Na+/К+ - АТФазы приводило практически к полной деполяризации плазматической мембраны клетки . В клетках нейробластомы N2A имеются два типа потенциалзависимых К+ -каналов, которые ингибируются 4-аминопиридином и тетраэтиламмонием. Ингибирование калиевых потоков в этих каналах блокирует дифференцировку, в частности, нейритогенез, вызываемый внутриклеточным цАМФ .

Ионы кадмия Cd2+ нарушают гомеостаз свободного внутриклеточного кальция Са2+, что приводит к апоптозу в различных клетках, в том числе в первичной культуре нейронов мыши. Cd2+ ингибирует активность Na+/К+ - АТФазы, Са2+ - АТФазы и Mg2+ - АТФазы, нарушает транспорт Са2+ в эндоплазматическом ретикулуме, вызывая рост внутриклеточного Са2+, и активацию апоптотического сигнального пути в митохондриях . Триоксид мышьяка As2O3 при концентрации порядка 0,5×10-6М также вызывает доз-зависимое ингибирование пролиферации, а при концентрациях выше 1,5×10-6М приводит к апоптозу клеток нейробластомы . Известно, что мышьяк As3+ участвует в окислительно-восстановительных реакциях: окислительном распаде сложных углеводов, брожении, гликолизе и т. п. Возможно, что As3+ конкурирует с ионами Са2+ за соответствующие центры связывания на ферментах.

Все изменения основных параметров ионно-осмотического гомеостаза в процессе дифференцировки, которые были описаны в приведённых выше независимых экспериментах, могут быть описаны в рамках простейшей модели, учитывающей активный транспорт ионов Na+ и K+ .

Комплексообразование ферментов с ионами

Регуляция функциональной активности посредством комплексообразования с ионами металлов играет ключевую роль во многих ферментативных реакциях. До 40 % всех, исследованных на сегодняшний день белков, являются металлопротеинами . Металлы играют важную роль в формировании структуры белков. Многие ферменты содержат несколько металлов в своих активных центрах, расположенных в разных местах белковой цепи. В некоторых случаях замена одного металла на другой может ингибировать ферментативную активность и стать причиной отравления и гибели организма . Большинство белков ассоциируется с двухвалентными металлами: Fe2+ участвует в окислительно-восстановительных циклах, Zn2+- в каталитических реакциях, Ca2+ определяет стабильность структуры ферментов и играет ключевую роль в системе внутриклеточной сигнализации . Существует семейство низкомолекулярных металлопротеинов, связывающих Zn2+, и принимающих участие в важнейших физиологических процессах у всех живых существ, в частности, в процессах канцерогенеза . для функционирования биологических макромолекул необходимы и одновалентные ионы группы IА: Na+ и К+ .

Связывание одновалентного катиона с его аллостерическим центром влечет за собой активацию фермента и преобразование этого события в изменении каталитической активности. Ионы натрия и калия необходимы для функционирования многих ферментов, включая киназы, шапероны, фосфатазы, альдолазы, рекомбиназы, дегидрогеназы и рибокиназы, диалкилкарглициндекарбоксилазы, триптофансинтаза, тромбин и Na/K-АТФазы . Эффекты ионов Na+ или К+ для всех исследованных ферментов разнонаправлены.

Связь ферментативной активности и локальной концентрации ионов внутри клетки

Более 20 лет назад было показано, что электрофизиологические сдвиги коррелируют с изменениями синтетических процессов . Как клеточный цикл, так и процесс дифференцировки контролируются циклинами и циклин-зависимыми киназами Cdks. Нарушение активности циклинов и циклин-зависимых киназ приводит к развитию опухолей . В зависимости от дозы некоторых препаратов в клетках задействуются различные молекулярные механизмы, в результате чего может усилиться пролиферация или произойти дифференцировка клеток, приводящая к апоптозу .

Связь ферментативной активности с ионно-осмотическим гомеостазом клетки наглядно проявляется в теоретической модели, учитывающей потоки субстратов и продуктов обмена через плазматическую мембрану при различных функциональных нагрузках, таких как синтез нуклеиновых кислот, синтез белков, синтез липидов или двигательная активность, требующая большого расхода АТФ. Результаты, полученные на этой модели, могут объяснить наблюдаемые в экспериментах изменения ионных проницаемостей клеточной мембраны, мембранного потенциала и внутриклеточных активностей неорганических ионов в ходе клеточного цикла и в процессе дифференцировки . Отметим, что наличие доз-зависимых эффектов , зарегистрированных при действии многих веществ на процессы пролиферации, дифференцировки и клеточной гибели, свидетельствует о вероятностном механизме взаимодействия как биологически активных веществ, так и неорганических ионов с ферментом, являющимся первичной мишенью. Такими мишенями, на которых совмещаются влияния неорганических катионов и органических субстратов, могут быть, в частности, циклинзависимые киназы или циклины .

Уравнение Михаэлиса - Ментен для фермента, обладающего центрами связывания как для органического субстрата, так и для неорганических ионов, имеет вид:

где P - скорость ферментативной реакции; - внутриклеточная активность органического субстрата или конкретного неорганического иона; - внутриклеточная активность органического субстрата или конкретного неорганического иона, ингибирующего этот центр, kmi и kii - кажущиеся константы ассоциации органического субстрата или конкретного неорганического иона и их ингибиторов. Подобное выражение для скорости ферментативной реакции использовалось ранее для описания функционирования Na+/К+ - АТФазы плазматической мембраны при изменении ионного состава внешней среды и показало хорошее соответствие с результатами ряда независимых электрофизиологических экспериментов . Приведённое уравнение означает, что скорость ферментативной реакции P определяется произведением вероятностей заполнения всех n центров связывания фермента. При этом активность фермента зависит от внутриклеточных концентраций многих ионов, а роль ионно-осмотического гомеостаза заключается в поддержании внутриклеточных концентраций ионов на уровне, позволяющем производить тонкую регуляцию переключения различных ферментативных систем. При этом, лимитирующим фактором для активности фермента может оказаться внутриклеточная концентрация любого иона, если внутриклеточные концентрации других ионов оптимальны, т.е. вероятности заполнения соответствующих центров связывания близки к единице.

Заключение

В совокупности, представленные данные свидетельствуют о том, что морфогенез нейробластомы in vitro можно контролировать различными воздействиями, как биологически активными веществами, так и ионным составом культуральной среды. Все рассмотренные выше и полученные в независимых экспериментах биологические эффекты легко интерпретировать в рамках модели регуляции ферментативной активности, предполагающей совершение единичного акта при одновременном заполнении всех центров связывания для субстратов и неорганических ионов.

Действительно, в условиях культивирования могут реализоваться две стратегии развития клеток нейробластомы. Одна стратегия заключается в ее дифференцировке и старении, и, в конечном счете, индивидуальной гибели (апоптотической или некротической). Другая может заключаться в усилении пролиферации и даже в дедифференцировке. Первый сценарий развивается на бессывороточных средах и усиливается при воздействии экзогенных или эндогенных повреждающих факторов, в частности, при воздействии сублетальных концентраций самых разнообразных веществ или определённых изменений ионного состава культуральной среды . На уровне организма при достижении определённого предела компенсаторных возможностей клеток нарушается тканевой и функциональный гомеостаз в жизненно важных органах, что ведёт к старению и последующей гибели всего организма. В условиях культивирования присутствие сыворотки, в частности, наличие биологически активных вещества, способствует процессу пролиферации . На уровне организма усиление пролиферации стволовых клеток приводит к развитию клона неопластических клеток, к росту опухоли и последующей гибели организма. Обе рассмотренные стратегии представляют собой многостадийные процессы, некоторые этапы которых хорошо охарактеризованы, тогда как другие нуждаются в дополнительном исследовании. В частности, наличие ключевого фермента, обладающего центрами связывания для органического субстрата и неорганических ионов можно выявить с использованием слабых магнитных полей, настроенных в резонанс с определёнными неорганическими ионами, такими как Na+, K+, Ca2+ .

Библиографическая ссылка

Мякишева С.Н., Крестинина О.В., Асланиди К.Б. ВОЗМОЖНЫЕ МЕХАНИЗМЫ РЕГУЛЯЦИИ ПРОЦЕССОВ ПРОЛИФЕРАЦИИ, ДИФФЕРЕНЦИРОВКИ И АПОПТОЗА У КЛЕТОК НЕЙРОБЛАСТОМЫ // Международный журнал прикладных и фундаментальных исследований. – 2016. – № 12-8. – С. 1451-1455;
URL: https://applied-research.ru/ru/article/view?id=11060 (дата обращения: 25.12.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»