Отворете
Близо

Дефиниция на логаритъма и неговите свойства: теория и решаване на проблеми. Какво е логаритъм? Решаване на логаритми

Логаритъм с основа ае функция на y (x) = log a x, обратна на експоненциалната функция с основа a: x (y) = a y.

Десетичен логаритъме логаритъмът към основата на число 10 : log x ≡ log 10 x.

Натурален логаритъме логаритъма при основата на e: ln x ≡ log e x.

2,718281828459045... ;
.

Графиката на логаритъма се получава от графиката на експоненциалната функция, като я отразява огледално спрямо правата линия y = x. Отляво има графики на функцията y (x) = log a xза четири стойности логаритмични основи: a = 2 , a = 8 , a = 1/2 и а = 1/8 . Графиката показва, че когато a > 1 логаритъма нараства монотонно. С увеличаване на x растежът се забавя значително. При 0 < a < 1 логаритъма намалява монотонно.

Свойства на логаритъма

Област, набор от стойности, нарастване, намаляване

Логаритъмът е монотонна функция, така че няма екстремуми. Основните свойства на логаритъма са представени в таблицата.

Домейн 0 < x < + ∞ 0 < x < + ∞
Диапазон от стойности - ∞ < y < + ∞ - ∞ < y < + ∞
Монотонен монотонно нараства монотонно намалява
Нули, y = 0 x = 1 x = 1
Пресечете точки с ординатната ос, x = 0 Не Не
+ ∞ - ∞
- ∞ + ∞

Частни ценности


Извиква се логаритъм при основа 10 десетичен логаритъми се обозначава по следния начин:

Логаритъм към основа дНаречен натурален логаритъм:

Основни формули за логаритми

Свойства на логаритъма, произтичащи от дефиницията на обратната функция:

Основното свойство на логаритмите и последствията от него

Формула за заместване на основата

Логаритъме математическата операция за вземане на логаритъм. Когато се вземат логаритми, продуктите от фактори се преобразуват в суми от членове.

Потенциранее обратната математическа операция на логаритъма. По време на потенцирането дадена основа се повишава до степента на изразяване, върху която се извършва потенцирането. В този случай сумите на членовете се трансформират в произведения на фактори.

Доказателство на основни формули за логаритми

Формулите, свързани с логаритмите, следват от формули за експоненциални функции и от дефиницията на обратна функция.

Разгледайте свойството на експоненциалната функция
.
Тогава
.
Нека приложим свойството на експоненциалната функция
:
.

Нека докажем формулата за заместване на основата.
;
.
Ако приемем c = b, имаме:

Обратна функция

Обратната функция на логаритъм по основа а е експоненциална функция с показател а.

Ако , тогава

Ако , тогава

Производна на логаритъм

Производна на логаритъма на модул x:
.
Производна от n-ти ред:
.
Извеждане на формули >>>

За да се намери производната на логаритъм, тя трябва да бъде намалена до основата д.
;
.

Интеграл

Интегралът на логаритъма се изчислява чрез интегриране по части: .
Така,

Изрази, използващи комплексни числа

Разгледайте функцията за комплексно число z:
.
Нека изразим комплексно число zчрез модул rи аргумент φ :
.
Тогава, използвайки свойствата на логаритъма, имаме:
.
Или

Въпреки това аргументът φ не е еднозначно дефиниран. Ако поставите
, където n е цяло число,
тогава ще бъде едно и също число за различни н.

Следователно логаритъмът, като функция на комплексна променлива, не е еднозначна функция.

Разширение на степенни редове

Когато се извършва разширяването:

Препратки:
И.Н. Бронщайн, К.А. Семендяев, Наръчник по математика за инженери и студенти, “Лан”, 2009 г.

Логаритъмът на положително число b при основа a (a>0, a не е равно на 1) е число c, такова че a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       

Имайте предвид, че логаритъма на неположително число е недефиниран. Освен това основата на логаритъма трябва да е положително число, което не е равно на 1. Например, ако повдигнем на квадрат -2, получаваме числото 4, но това не означава, че логаритъма при основа -2 от 4 е равно на 2.

Основно логаритмично тъждество

a log a b = b (a > 0, a ≠ 1) (2)

Важно е обхватът на дефиницията на дясната и лявата страна на тази формула да е различен. Лявата страна е дефинирана само за b>0, a>0 и a ≠ 1. Дясната страна е дефинирана за всяко b и изобщо не зависи от a. По този начин прилагането на основното логаритмично „тъждество” при решаване на уравнения и неравенства може да доведе до промяна в OD.

Две очевидни следствия от дефиницията на логаритъм

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Наистина, при повишаване на числото a на първа степен получаваме същото число, а при повдигане на нулева степен получаваме единица.

Логаритъм от произведението и логаритъм от частното

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Бих искал да предупредя учениците да не използват необмислено тези формули при решаване на логаритмични уравнения и неравенства. Когато ги използвате „отляво надясно“, ODZ се стеснява, а когато се движите от сумата или разликата на логаритмите към логаритъма на произведението или частното, ODZ се разширява.

Наистина, изразът log a (f (x) g (x)) е дефиниран в два случая: когато и двете функции са строго положителни или когато f(x) и g(x) са и двете по-малки от нула.

Преобразувайки този израз в сумата log a f (x) + log a g (x), ние сме принудени да се ограничим само до случая, когато f(x)>0 и g(x)>0. Има стесняване на обхвата на допустимите стойности, което е категорично недопустимо, тъй като може да доведе до загуба на решения. Подобен проблем съществува и за формула (6).

Степента може да бъде извадена от знака на логаритъма

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

И отново искам да призова за точност. Разгледайте следния пример:

Log a (f (x) 2 = 2 log a f (x)

Лявата страна на равенството очевидно е дефинирана за всички стойности на f(x) с изключение на нула. Дясната страна е само за f(x)>0! Като извадим степента от логаритъма, ние отново стесняваме ODZ. Обратната процедура води до разширяване на обхвата на допустимите стойности. Всички тези забележки се отнасят не само за степен 2, но и за всяка четна степен.

Формула за преминаване към нова основа

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Този рядък случай, когато ODZ не се променя по време на трансформация. Ако сте избрали разумно база c (положителна и не равна на 1), формулата за преминаване към нова база е напълно безопасна.

Ако изберем числото b като нова база c, получаваме важен специален случай на формула (8):

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Няколко прости примера с логаритми

Пример 1. Изчислете: log2 + log50.
Решение. log2 + log50 = log100 = 2. Използвахме формулата за сумата от логаритми (5) и дефиницията на десетичния логаритъм.


Пример 2. Изчислете: lg125/lg5.
Решение. log125/log5 = log 5 125 = 3. Използвахме формулата за преместване към нова база (8).

Таблица с формули, свързани с логаритми

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

Както знаете, когато се умножават изрази със степени, техните показатели винаги се събират (a b *a c = a b+c). Този математически закон е изведен от Архимед, а по-късно, през 8-ми век, математикът Вирасен създава таблица с цели показатели. Именно те послужиха за по-нататъшното откриване на логаритми. Примери за използване на тази функция могат да бъдат намерени почти навсякъде, където трябва да опростите тромавото умножение чрез просто събиране. Ако прекарате 10 минути в четене на тази статия, ще ви обясним какво представляват логаритмите и как да работите с тях. На прост и достъпен език.

Дефиниция в математиката

Логаритъмът е израз на следната форма: log a b=c, т.е. логаритъмът на всяко неотрицателно число (т.е. всяко положително) „b“ спрямо основата му „a“ се счита за степен „c“ ”, до която трябва да се повдигне основата „a”, за да се получи в крайна сметка стойността „b”. Нека анализираме логаритъма с примери, да кажем, че има израз log 2 8. Как да намерим отговора? Много е просто, трябва да намерите такава степен, че от 2 до необходимата степен да получите 8. След като направим някои изчисления наум, получаваме числото 3! И това е вярно, защото 2 на степен 3 дава отговора като 8.

Видове логаритми

За много ученици и студенти тази тема изглежда сложна и неразбираема, но всъщност логаритмите не са толкова страшни, основното е да разберете общото им значение и да запомните техните свойства и някои правила. Има три отделни вида логаритмични изрази:

  1. Натурален логаритъм ln a, където основата е числото на Ойлер (e = 2,7).
  2. Десетично a, където основата е 10.
  3. Логаритъм на произволно число b при основа a>1.

Всяка от тях се решава по стандартен начин, включващ опростяване, редукция и последваща редукция до един логаритъм с помощта на логаритмични теореми. За да получите правилните стойности на логаритмите, трябва да запомните техните свойства и последователността от действия, когато ги решавате.

Правила и някои ограничения

В математиката има няколко правила-ограничения, които се приемат като аксиома, тоест не подлежат на обсъждане и са истината. Например, невъзможно е да се разделят числа на нула и също така е невъзможно да се извлече четен корен от отрицателни числа. Логаритмите също имат свои собствени правила, следвайки които лесно можете да се научите да работите дори с дълги и обемни логаритмични изрази:

  • Основата „а“ винаги трябва да е по-голяма от нула и да не е равна на 1, в противен случай изразът ще загуби значението си, тъй като „1“ и „0“ във всяка степен винаги са равни на техните стойности;
  • ако a > 0, тогава a b > 0, се оказва, че „c” също трябва да е по-голямо от нула.

Как се решават логаритми?

Например, дадена е задачата да намерите отговора на уравнението 10 x = 100. Това е много лесно, трябва да изберете степен, като увеличите числото десет, до което получаваме 100. Това, разбира се, е 10 2 = 100.

Сега нека представим този израз в логаритмична форма. Получаваме log 10 100 = 2. При решаването на логаритми всички действия практически се събират, за да се намери степента, на която е необходимо да се въведе основата на логаритъма, за да се получи дадено число.

За да определите точно стойността на неизвестна степен, трябва да се научите как да работите с таблица с градуси. Изглежда така:

Както можете да видите, някои показатели могат да бъдат познати интуитивно, ако имате технически ум и познаване на таблицата за умножение. Въпреки това, за по-големи стойности ще ви е необходима таблица за мощност. Може да се използва дори от тези, които не разбират нищо от сложни математически теми. Лявата колона съдържа числа (основа a), горният ред от числа е стойността на степен c, на която е повдигнато числото a. В пресечната точка клетките съдържат числовите стойности, които са отговорът (a c =b). Да вземем, например, първата клетка с числото 10 и да я поставим на квадрат, получаваме стойността 100, която е посочена в пресечната точка на нашите две клетки. Всичко е толкова просто и лесно, че и най-истинският хуманист ще разбере!

Уравнения и неравенства

Оказва се, че при определени условия показателят е логаритъм. Следователно всички математически числови изрази могат да бъдат записани като логаритмично равенство. Например, 3 4 =81 може да бъде записано като логаритъм с основа 3 от 81, равен на четири (log 3 81 = 4). За отрицателните степени правилата са същите: 2 -5 = 1/32, записваме го като логаритъм, получаваме log 2 (1/32) = -5. Един от най-завладяващите раздели на математиката е темата "логаритми". Ще разгледаме примери и решения на уравнения по-долу, веднага след изучаването на техните свойства. Сега нека да разгледаме как изглеждат неравенствата и как да ги различим от уравненията.

Даден е следният израз: log 2 (x-1) > 3 - това е логаритмично неравенство, тъй като неизвестната стойност “x” е под логаритмичния знак. И също така в израза се сравняват две количества: логаритъма на желаното число при основа две е по-голям от числото три.

Най-важната разлика между логаритмичните уравнения и неравенствата е, че уравненията с логаритми (например логаритъм 2 x = √9) предполагат една или повече конкретни числени стойности в отговора, докато при решаване на неравенство, както обхватът на приемливите стойностите​​и точките се определят чрез нарушаване на тази функция. Вследствие на това отговорът не е прост набор от отделни числа, както в отговора на уравнение, а непрекъсната серия или набор от числа.

Основни теореми за логаритмите

При решаване на примитивни задачи за намиране на стойностите на логаритъма, неговите свойства може да не са известни. Въпреки това, когато става дума за логаритмични уравнения или неравенства, на първо място е необходимо ясно да се разберат и приложат на практика всички основни свойства на логаритмите. По-късно ще разгледаме примери за уравнения; нека първо разгледаме всяко свойство по-подробно.

  1. Основната идентичност изглежда така: a logaB =B. Прилага се само когато a е по-голямо от 0, не е равно на единица, и B е по-голямо от нула.
  2. Логаритъмът на продукта може да бъде представен в следната формула: log d (s 1 * s 2) = log d s 1 + log d s 2. В този случай задължителното условие е: d, s 1 и s 2 > 0; a≠1. Можете да дадете доказателство за тази логаритмична формула с примери и решение. Нека log a s 1 = f 1 и log a s 2 = f 2, тогава a f1 = s 1, a f2 = s 2. Получаваме, че s 1 * s 2 = a f1 *a f2 = a f1+f2 (свойства на градуса ), и след това по дефиниция: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, което трябваше да бъде доказано.
  3. Логаритъмът на частното изглежда така: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Теоремата под формата на формула приема следния вид: log a q b n = n/q log a b.

Тази формула се нарича „свойство на степента на логаритъм“. Той прилича на свойствата на обикновените градуси и не е изненадващо, защото цялата математика се основава на естествени постулати. Нека да разгледаме доказателството.

Нека log a b = t, оказва се, че a t = b. Ако повдигнем двете части на степен m: a tn = b n ;

но тъй като a tn = (a q) nt/q = b n, следователно log a q b n = (n*t)/t, тогава log a q b n = n/q log a b. Теоремата е доказана.

Примери за задачи и неравенства

Най-често срещаните видове задачи за логаритми са примери за уравнения и неравенства. Има ги в почти всички сборници със задачи, а също така са задължителна част от изпитите по математика. За да влезете в университет или да преминете приемни изпити по математика, трябва да знаете как правилно да решавате такива задачи.

За съжаление, няма единен план или схема за решаване и определяне на неизвестната стойност на логаритъма, но определени правила могат да бъдат приложени към всяко математическо неравенство или логаритмично уравнение. На първо място, трябва да разберете дали изразът може да бъде опростен или намален до обща форма. Можете да опростите дълги логаритмични изрази, ако използвате техните свойства правилно. Нека бързо да ги опознаем.

Когато решаваме логаритмични уравнения, трябва да определим какъв тип логаритъм имаме: примерен израз може да съдържа натурален логаритъм или десетичен.

Ето примери ln100, ln1026. Тяхното решение се свежда до факта, че те трябва да определят степента, на която основата 10 ще бъде равна съответно на 100 и 1026. За да решите естествени логаритми, трябва да приложите логаритмични идентичности или техните свойства. Нека да разгледаме примери за решаване на различни видове логаритмични задачи.

Как да използваме логаритмични формули: с примери и решения

И така, нека да разгледаме примери за използване на основните теореми за логаритмите.

  1. Свойството логаритъм на произведение може да се използва в задачи, при които е необходимо да се разложи голяма стойност на числото b на по-прости множители. Например log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Отговорът е 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - както виждате, използвайки четвъртото свойство на степента на логаритъм, успяхме да решим един на пръв поглед сложен и неразрешим израз. Просто трябва да факторизирате основата и след това да извадите стойностите на степента от знака на логаритъма.

Задачи от Единния държавен изпит

Логаритмите често се срещат в приемните изпити, особено много логаритмични задачи в Единния държавен изпит (държавен изпит за всички завършили училище). Обикновено тези задачи присъстват не само в част А (най-лесната тестова част от изпита), но и в част В (най-сложните и обемни задачи). Изпитът изисква точни и завършени познания по темата “Натурални логаритми”.

Примерите и решенията на задачите са взети от официалните версии на Единния държавен изпит. Да видим как се решават такива задачи.

Даден е log 2 (2x-1) = 4. Решение:
нека пренапишем израза, като го опростим малко log 2 (2x-1) = 2 2, по дефиницията на логаритъма получаваме, че 2x-1 = 2 4, следователно 2x = 17; х = 8,5.

  • Най-добре е да намалите всички логаритми до една и съща основа, така че решението да не е тромаво и объркващо.
  • Всички изрази под знака за логаритъм са посочени като положителни, следователно, когато показателят на израз, който е под знака за логаритъм и като негова основа е изваден като множител, изразът, който остава под логаритъма, трябва да бъде положителен.

Днес ще говорим за логаритмични формулии ще дадем ориентировъчно примери за решение.

Самите те предполагат модели на решение според основните свойства на логаритмите. Преди да приложим логаритмични формули за решаване, нека ви напомним всички свойства:

Сега, въз основа на тези формули (свойства), ще покажем примери за решаване на логаритми.

Примери за решаване на логаритми по формули.

Логаритъмположително число b по основа a (означено с log a b) е показател, до който a трябва да се повдигне, за да се получи b, с b > 0, a > 0 и 1.

Според дефиницията log a b = x, което е еквивалентно на a x = b, следователно log a a x = x.

Логаритми, примери:

log 2 8 = 3, защото 2 3 = 8

log 7 49 = 2, защото 7 2 = 49

log 5 1/5 = -1, защото 5 -1 = 1/5

Десетичен логаритъм- това е обикновен логаритъм, чиято основа е 10. Означава се като lg.

log 10 100 = 2, защото 10 2 = 100

Натурален логаритъм- също обикновен логаритъм, логаритъм, но с основа e (e = 2,71828... - ирационално число). Означава се като ln.

Препоръчително е да запомните формулите или свойствата на логаритмите, защото те ще ни трябват по-късно при решаване на логаритми, логаритмични уравнения и неравенства. Нека да разгледаме всяка формула отново с примери.

  • Основно логаритмично тъждество
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Логаритъмът на произведението е равен на сбора от логаритмите
    log a (bc) = log a b + log a c

    log 3 8.1 + log 3 10 = log 3 (8.1*10) = log 3 81 = 4

  • Логаритъмът на частното е равен на разликата на логаритмите
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Свойства на степента на логаритмично число и основата на логаритъма

    Показател на логаритмичното число log a b m = mlog a b

    Показател на основата на логаритъма log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    ако m = n, получаваме log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Преход към нова основа
    log a b = log c b/log c a,

    ако c = b, получаваме log b b = 1

    тогава log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Както можете да видите, формулите за логаритми не са толкова сложни, колкото изглеждат. Сега, след като разгледахме примери за решаване на логаритми, можем да преминем към логаритмични уравнения. Ще разгледаме по-подробно примери за решаване на логаритмични уравнения в статията: "". Не пропускайте!

Ако все още имате въпроси относно решението, напишете ги в коментарите към статията.

Забележка: решихме да получим различен клас образование и да учим в чужбина като опция.

основни свойства.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

идентични основания

Log6 4 + log6 9.

Сега нека усложним малко задачата.

Примери за решаване на логаритми

Ами ако основата или аргументът на логаритъм е степен? Тогава показателят на тази степен може да бъде изваден от знака на логаритъма съгласно следните правила:

Разбира се, всички тези правила имат смисъл, ако се спазва ODZ на логаритъма: a > 0, a ≠ 1, x >

Задача. Намерете значението на израза:

Преход към нова основа

Нека е даден логаритъм logax. Тогава за всяко число c, такова че c > 0 и c ≠ 1, равенството е вярно:

Задача. Намерете значението на израза:

Вижте също:


Основни свойства на логаритъма

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Показателят е 2,718281828…. За да запомните показателя, можете да изучите правилото: показателят е равен на 2,7 и два пъти годината на раждане на Лев Николаевич Толстой.

Основни свойства на логаритмите

Познавайки това правило, вие ще знаете както точната стойност на експонента, така и датата на раждане на Лев Толстой.


Примери за логаритми

Логаритмични изрази

Пример 1.
А). x=10ac^2 (a>0,c>0).

Използвайки свойства 3.5, изчисляваме

2.

3.

4. Където .



Пример 2. Намерете x if


Пример 3. Нека е дадена стойността на логаритмите

Изчислете log(x), ако




Основни свойства на логаритмите

Логаритмите, като всички числа, могат да се събират, изваждат и трансформират по всякакъв начин. Но тъй като логаритмите не са съвсем обикновени числа, тук има правила, които се наричат основни свойства.

Определено трябва да знаете тези правила - без тях не може да се реши нито една сериозна логаритмична задача. Освен това има много малко от тях - можете да научите всичко за един ден. Така че да започваме.

Събиране и изваждане на логаритми

Помислете за два логаритма с еднакви основи: logax и logay. След това те могат да се събират и изваждат и:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

И така, сумата от логаритми е равна на логаритъма от произведението, а разликата е равна на логаритъма от частното. Моля, обърнете внимание: ключовият момент тук е идентични основания. Ако причините са различни, тези правила не работят!

Тези формули ще ви помогнат да изчислите логаритмичен израз, дори когато отделните му части не се вземат предвид (вижте урока „Какво е логаритъм“). Разгледайте примерите и вижте:

Тъй като логаритмите имат еднакви основи, ние използваме формулата за сумата:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Задача. Намерете стойността на израза: log2 48 − log2 3.

Базите са еднакви, използваме формулата за разликата:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Задача. Намерете стойността на израза: log3 135 − log3 5.

Отново основите са същите, така че имаме:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Както можете да видите, оригиналните изрази са съставени от „лоши“ логаритми, които не се изчисляват отделно. Но след трансформациите се получават напълно нормални числа. Много тестове се основават на този факт. Да, изрази, подобни на тестове, се предлагат напълно сериозно (понякога почти без промени) на Единния държавен изпит.

Извличане на показателя от логаритъма

Лесно се вижда, че последното правило следва първите две. Но все пак е по-добре да го запомните - в някои случаи това значително ще намали количеството на изчисленията.

Разбира се, всички тези правила имат смисъл, ако се спазва ODZ на логаритъма: a > 0, a ≠ 1, x > 0. И още нещо: научете се да прилагате всички формули не само отляво надясно, но и обратно , т.е. Можете да въведете числата преди знака за логаритъм в самия логаритъм. Това е, което най-често се изисква.

Задача. Намерете стойността на израза: log7 496.

Нека се отървем от степента в аргумента, използвайки първата формула:
log7 496 = 6 log7 49 = 6 2 = 12

Задача. Намерете значението на израза:

Обърнете внимание, че знаменателят съдържа логаритъм, чиято основа и аргумент са точни степени: 16 = 24; 49 = 72. Имаме:

Мисля, че последният пример изисква известно пояснение. Къде изчезнаха логаритмите? До последния момент работим само със знаменателя.

Логаритмични формули. Логаритми примерни решения.

Представихме основата и аргумента на логаритъма, който стои там под формата на степени и извадихме показателите - получихме "триетажна" дроб.

Сега нека разгледаме основната фракция. Числителят и знаменателят съдържат едно и също число: log2 7. Тъй като log2 7 ≠ 0, можем да намалим дробта - 2/4 ще остане в знаменателя. Според правилата на аритметиката четворката може да се прехвърли в числителя, което и беше направено. Резултатът беше отговорът: 2.

Преход към нова основа

Говорейки за правилата за събиране и изваждане на логаритми, специално подчертах, че те работят само с еднакви основи. Ами ако причините са различни? Ами ако не са точни степени на едно и също число?

Формулите за преход към нова основа идват на помощ. Нека ги формулираме под формата на теорема:

Нека е даден логаритъм logax. Тогава за всяко число c, такова че c > 0 и c ≠ 1, равенството е вярно:

По-специално, ако зададем c = x, получаваме:

От втората формула следва, че основата и аргументът на логаритъма могат да се разменят, но в този случай целият израз се „обръща“, т.е. логаритъма се появява в знаменателя.

Тези формули рядко се срещат в обикновени числови изрази. Възможно е да се оцени колко са удобни само при решаване на логаритмични уравнения и неравенства.

Има обаче проблеми, които изобщо не могат да бъдат решени, освен чрез преминаване към нова основа. Нека да разгледаме няколко от тях:

Задача. Намерете стойността на израза: log5 16 log2 25.

Обърнете внимание, че аргументите на двата логаритма съдържат точни степени. Нека извадим индикаторите: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Сега нека "обърнем" втория логаритъм:

Тъй като продуктът не се променя при пренареждане на множителите, ние спокойно умножихме четири и две и след това се справихме с логаритмите.

Задача. Намерете стойността на израза: log9 100 lg 3.

Основата и аргументът на първия логаритъм са точни степени. Нека запишем това и да се отървем от индикаторите:

Сега нека се отървем от десетичния логаритъм, като преминем към нова основа:

Основно логаритмично тъждество

Често в процеса на решаване е необходимо да се представи число като логаритъм на дадена основа. В този случай ще ни помогнат следните формули:

В първия случай числото n става експонента в аргумента. Числото n може да бъде абсолютно всичко, защото е само логаритъм.

Втората формула всъщност е перифразирана дефиниция. Така се казва: .

Всъщност, какво се случва, ако числото b се повдигне на такава степен, че числото b на тази степен дава числото a? Точно така: резултатът е същото число a. Прочетете внимателно този параграф отново - много хора се забиват в него.

Подобно на формулите за преминаване към нова база, основното логаритмично тъждество понякога е единственото възможно решение.

Задача. Намерете значението на израза:

Обърнете внимание, че log25 64 = log5 8 - просто взе квадрат от основата и аргумента на логаритъма. Като вземем предвид правилата за умножение на степени с една и съща основа, получаваме:

Ако някой не знае, това беше истинска задача от Единния държавен изпит :)

Логаритмична единица и логаритмична нула

В заключение ще дам две тъждества, които трудно могат да бъдат наречени свойства - по-скоро те са следствия от дефиницията на логаритъма. Те постоянно се появяват в проблеми и, изненадващо, създават проблеми дори за „напреднали“ ученици.

  1. logaa = 1 е. Запомнете веднъж завинаги: логаритъмът при всяка основа а на самата тази основа е равен на едно.
  2. log 1 = 0 е. Основата a може да бъде всякаква, но ако аргументът съдържа единица, логаритъма е равен на нула! Тъй като a0 = 1 е пряко следствие от определението.

Това са всички имоти. Не забравяйте да се упражнявате да ги прилагате на практика! Изтеглете измамника в началото на урока, разпечатайте го и решете задачите.

Вижте също:

Логаритъмът от b при основа а означава израза. Да се ​​изчисли логаритъм означава да се намери степен x (), при която равенството е изпълнено

Основни свойства на логаритъма

Необходимо е да се знаят горните свойства, тъй като почти всички задачи и примери, свързани с логаритми, се решават на тяхна основа. Останалите екзотични свойства могат да бъдат извлечени чрез математически манипулации с тези формули

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Когато изчислявате формулата за сбора и разликата на логаритмите (3.4), срещате доста често. Останалите са малко сложни, но в редица задачи са незаменими за опростяване на сложни изрази и изчисляване на техните стойности.

Често срещани случаи на логаритми

Някои от често срещаните логаритми са тези, при които основата е дори десет, експоненциална или две.
Логаритъмът по основа десет обикновено се нарича десетичен логаритъм и се означава просто с lg(x).

От записа става ясно, че основното не е написано в записа. Например

Натурален логаритъм е логаритъм, чиято основа е показател (обозначен с ln(x)).

Показателят е 2,718281828…. За да запомните показателя, можете да изучите правилото: показателят е равен на 2,7 и два пъти годината на раждане на Лев Николаевич Толстой. Познавайки това правило, вие ще знаете както точната стойност на експонента, така и датата на раждане на Лев Толстой.

И друг важен логаритъм при основа две е означен с

Производната на логаритъма на функция е равна на единица, разделена на променливата

Интегралният или противопроизводният логаритъм се определя от връзката

Даденият материал е достатъчен, за да решите широк клас задачи, свързани с логаритми и логаритми. За да ви помогна да разберете материала, ще дам само няколко общи примера от училищната програма и университетите.

Примери за логаритми

Логаритмични изрази

Пример 1.
А). x=10ac^2 (a>0,c>0).

Използвайки свойства 3.5, изчисляваме

2.
По свойството разлика на логаритмите имаме

3.
Използвайки свойства 3.5 намираме

4. Където .

Привидно сложен израз се опростява, за да се формира с помощта на редица правила

Намиране на логаритмични стойности

Пример 2. Намерете x if

Решение. За изчисление прилагаме към последния термин 5 и 13 свойства

Записваме го и скърбим

Тъй като основите са равни, приравняваме изразите

Логаритми. Първо ниво.

Нека е дадена стойността на логаритмите

Изчислете log(x), ако

Решение: Нека вземем логаритъм на променливата, за да запишем логаритъма чрез сумата от нейните членове


Това е само началото на нашето запознаване с логаритмите и техните свойства. Практикувайте изчисления, обогатете практическите си умения - скоро ще имате нужда от знанията, които придобивате, за решаване на логаритмични уравнения. След като изучихме основните методи за решаване на такива уравнения, ще разширим знанията ви към друга също толкова важна тема - логаритмичните неравенства...

Основни свойства на логаритмите

Логаритмите, като всички числа, могат да се събират, изваждат и трансформират по всякакъв начин. Но тъй като логаритмите не са съвсем обикновени числа, тук има правила, които се наричат основни свойства.

Определено трябва да знаете тези правила - без тях не може да се реши нито една сериозна логаритмична задача. Освен това има много малко от тях - можете да научите всичко за един ден. Така че да започваме.

Събиране и изваждане на логаритми

Помислете за два логаритма с еднакви основи: logax и logay. След това те могат да се събират и изваждат и:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

И така, сумата от логаритми е равна на логаритъма от произведението, а разликата е равна на логаритъма от частното. Моля, обърнете внимание: ключовият момент тук е идентични основания. Ако причините са различни, тези правила не работят!

Тези формули ще ви помогнат да изчислите логаритмичен израз, дори когато отделните му части не се вземат предвид (вижте урока „Какво е логаритъм“). Разгледайте примерите и вижте:

Задача. Намерете стойността на израза: log6 4 + log6 9.

Тъй като логаритмите имат еднакви основи, ние използваме формулата за сумата:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Задача. Намерете стойността на израза: log2 48 − log2 3.

Базите са еднакви, използваме формулата за разликата:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Задача. Намерете стойността на израза: log3 135 − log3 5.

Отново основите са същите, така че имаме:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Както можете да видите, оригиналните изрази са съставени от „лоши“ логаритми, които не се изчисляват отделно. Но след трансформациите се получават напълно нормални числа. Много тестове се основават на този факт. Да, изрази, подобни на тестове, се предлагат напълно сериозно (понякога почти без промени) на Единния държавен изпит.

Извличане на показателя от логаритъма

Сега нека усложним малко задачата. Ами ако основата или аргументът на логаритъм е степен? Тогава показателят на тази степен може да бъде изваден от знака на логаритъма съгласно следните правила:

Лесно се вижда, че последното правило следва първите две. Но все пак е по-добре да го запомните - в някои случаи това значително ще намали количеството на изчисленията.

Разбира се, всички тези правила имат смисъл, ако се спазва ODZ на логаритъма: a > 0, a ≠ 1, x > 0. И още нещо: научете се да прилагате всички формули не само отляво надясно, но и обратно , т.е. Можете да въведете числата преди знака за логаритъм в самия логаритъм.

Как се решават логаритми

Това е, което най-често се изисква.

Задача. Намерете стойността на израза: log7 496.

Нека се отървем от степента в аргумента, използвайки първата формула:
log7 496 = 6 log7 49 = 6 2 = 12

Задача. Намерете значението на израза:

Обърнете внимание, че знаменателят съдържа логаритъм, чиято основа и аргумент са точни степени: 16 = 24; 49 = 72. Имаме:

Мисля, че последният пример изисква известно пояснение. Къде изчезнаха логаритмите? До последния момент работим само със знаменателя. Представихме основата и аргумента на логаритъма, който стои там под формата на степени и извадихме показателите - получихме "триетажна" дроб.

Сега нека разгледаме основната фракция. Числителят и знаменателят съдържат едно и също число: log2 7. Тъй като log2 7 ≠ 0, можем да намалим дробта - 2/4 ще остане в знаменателя. Според правилата на аритметиката четворката може да се прехвърли в числителя, което и беше направено. Резултатът беше отговорът: 2.

Преход към нова основа

Говорейки за правилата за събиране и изваждане на логаритми, специално подчертах, че те работят само с еднакви основи. Ами ако причините са различни? Ами ако не са точни степени на едно и също число?

Формулите за преход към нова основа идват на помощ. Нека ги формулираме под формата на теорема:

Нека е даден логаритъм logax. Тогава за всяко число c, такова че c > 0 и c ≠ 1, равенството е вярно:

По-специално, ако зададем c = x, получаваме:

От втората формула следва, че основата и аргументът на логаритъма могат да се разменят, но в този случай целият израз се „обръща“, т.е. логаритъма се появява в знаменателя.

Тези формули рядко се срещат в обикновени числови изрази. Възможно е да се оцени колко са удобни само при решаване на логаритмични уравнения и неравенства.

Има обаче проблеми, които изобщо не могат да бъдат решени, освен чрез преминаване към нова основа. Нека да разгледаме няколко от тях:

Задача. Намерете стойността на израза: log5 16 log2 25.

Обърнете внимание, че аргументите на двата логаритма съдържат точни степени. Нека извадим индикаторите: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Сега нека "обърнем" втория логаритъм:

Тъй като продуктът не се променя при пренареждане на множителите, ние спокойно умножихме четири и две и след това се справихме с логаритмите.

Задача. Намерете стойността на израза: log9 100 lg 3.

Основата и аргументът на първия логаритъм са точни степени. Нека запишем това и да се отървем от индикаторите:

Сега нека се отървем от десетичния логаритъм, като преминем към нова основа:

Основно логаритмично тъждество

Често в процеса на решаване е необходимо да се представи число като логаритъм на дадена основа. В този случай ще ни помогнат следните формули:

В първия случай числото n става експонента в аргумента. Числото n може да бъде абсолютно всичко, защото е само логаритъм.

Втората формула всъщност е перифразирана дефиниция. Така се казва: .

Всъщност, какво се случва, ако числото b се повдигне на такава степен, че числото b на тази степен дава числото a? Точно така: резултатът е същото число a. Прочетете внимателно този параграф отново - много хора се забиват в него.

Подобно на формулите за преминаване към нова база, основното логаритмично тъждество понякога е единственото възможно решение.

Задача. Намерете значението на израза:

Обърнете внимание, че log25 64 = log5 8 - просто взе квадрат от основата и аргумента на логаритъма. Като вземем предвид правилата за умножение на степени с една и съща основа, получаваме:

Ако някой не знае, това беше истинска задача от Единния държавен изпит :)

Логаритмична единица и логаритмична нула

В заключение ще дам две тъждества, които трудно могат да бъдат наречени свойства - по-скоро те са следствия от дефиницията на логаритъма. Те постоянно се появяват в проблеми и, изненадващо, създават проблеми дори за „напреднали“ ученици.

  1. logaa = 1 е. Запомнете веднъж завинаги: логаритъмът при всяка основа а на самата тази основа е равен на едно.
  2. log 1 = 0 е. Основата a може да бъде всякаква, но ако аргументът съдържа единица, логаритъма е равен на нула! Тъй като a0 = 1 е пряко следствие от определението.

Това са всички имоти. Не забравяйте да се упражнявате да ги прилагате на практика! Изтеглете измамника в началото на урока, разпечатайте го и решете задачите.