Open
Close

Плавный пуск светодиодной ленты. Схема плавного розжига и затухания светодиодов

Приветствую всех начинающих электронщиков и любителей радиотехники и тех, что любит что-то поделать своими руками. В данной статье я постараюсь убить сразу двух зайцев: постараюсь вам рассказать о том, как самому сделать печатную плату отличного качества, которая ничем не будет отличаться от заводского аналога, тем самым мы с вами будем делать . Данное устройство можно будет использовать в автомобиле для подключения светодиодов. Например, как в .

Для работы нам понадобятся:
  • Транзисторы – IRF9540N и КТ503;
  • Конденсатор на 25 V 100 пФ;
  • Диод выпрямительный 1N4148;
  • Резисторы:
    • R1 – 4.7 кОм 0,25 Вт;
    • R2 – 68 кОм 0,25 Вт;
    • R3 – 51 кОм 0,25 Вт;
    • R4 – 10 кОм 0,25 Вт.
  • Клеммники винтовые, 2-х и 3-х контактные, 5 мм
  • Текстолит односторонний и FeCl3 – хлорное железо
Ход Работы.

Первым делом нам необходимо подготовить плату. Для этого отмечаем на текстолите условные границы платы. Края платы делаем чуть больше чем рисунок дорожки. После того как отметили края границ можно начать вырезать. Вырезать можно ножницами по металлу, а если их под рукой нет, то можно попробовать вырезать с помощью канцелярского ножа.

После того как вырезали плату, ее нужно отшлифовать. Для этого наждачкой с зернистостью Р800-1000 прошкуриваем под водой плату. Далее сушим и обезжириваем поверхность 646-м растворителем. После чего прикасаться к плате не рекомендуется.

Далее скачиваем программу, что находится в конце статьи, SprintLayout и с помощью ее открываем схему платы и распечатываем ее на лазерном принтере на глянцевой бумаге. Важно, чтобы при печати в настройках принтера была выставлена высокая четкость и высокое качество изображения.

Затем необходимо будет утюгом подогреть подготовленную плату и приложить на нее нашу распечатку и утюгом хорошенько проутюжить плату в течение нескольких минут.

Далее дадим плате немного остыть, после чего опустим ее на несколько минут в чашку с холодной водой. Вода позволит легко отодрать глянцевую бумагу от платы. Если глянец целиком не отодрался, то можно просто скатывать потихоньку пальцами остатки бумаги.

Затем необходимо будет проверить качество дорожек, если имеются незначительные повреждения, то можно подкрасить плохие места простым маркером.

Итак, подготовительный этап завершен. Осталось . Для этого насаживаем нашу плату на двухсторонний скотч и приклеиваем ее на небольшой кусок пенопласта и опускаем ее в раствор хлорного железа. Чтобы ускорить процесс травления можно покачивать чашку с раствором.

После того как лишняя медь стравится необходимо будет отмыть плату в воде и с помощью растворителя очистить тонер с дорожек.

Осталось просверлить дырочки. Для нашего устройства были использованы сверла диаметром в 0.6 и 0.8 мм.

Важно не перегревать дорожки иначе можно их повредить.

Осталось собрать наше устройство. Предварительно схему с обозначениями рекомендуется распечатать на обычной бумаге и, ориентируясь по нему расположить все элементы на плате.

После того как все припаяно, надо полностью очистить плату от флюса. Для этого тщательно протрите плату тем 646 растворителем и хорошенько промойте щеткой и с мылом и высушите.

После просушки подключаем и проверяем с помощью работоспособность сборки. Для этого подключаем «постоянный плюс » и «минус» к питанию а вместо светодиодов подключаем мультиметр и проверяем нет ли напряжения. Если есть напряжение, то значит что флюс смут не полностью.

Как видите процесс изготовления платы не очень и сложный процесс. Данный способ изготовления платы называется ЛУТом (лазерно-утюжная технология) . Как было сказано выше, данная сборка может быть использована для ( , , , ), или же в любых других местах, где используются светодиода и питание в 12 вольт –

Всем спасибо за внимание! С удовольствием отвечу на все Ваши вопросы!

Удачи на дорогах!!!

ОБЯЗАТЕЛЬНО!!!

Приборы, действия и свойства которых вам мало известны, особенно самоделки, подключайте через предохранители.

В некоторых случаях требуется реализовать схему плавного включения или выключения светодиода (LED). Особенно востребовано данное решение в организации дизайнерских решениях. Для осуществления задуманного есть два пути решения. Первый – покупка готового блока розжига в магазине. Второй – изготовление блока своими руками. В рамках статьи выясним, почему стоит прибегнуть ко второму варианту, а также разберем самые популярные схемы.

Покупать или делать самому?

Если нужно срочно или нет желания и времени собирать блок плавного включения светодиодов своими руками, то можно и купить готовое устройство в магазине. Единственный минус – цена. Стоимость некоторых изделий, в зависимости от параметров и производителя, может превышать в несколько раз себестоимости устройства сделанного своими руками.

Если есть время и особенно желание, то стоит обратить внимание на давно разработанные и проверенные временем схемы плавного включения и выключения светодиодов.

Что нужно

Для того, чтобы собрать схему плавного розжига светодиодов в первую очередь потребуется небольшой набор радиолюбителя, как навыков, так и инструментов:

  • паяльник и припой;
  • текстолит для платы;
  • корпус будущего устройства;
  • набор полупроводниковых приборов (резисторы, транзисторы, конденсаторы, светодиоды, диоды и т.д.);
  • желание и время;

Как видно из списка, ничего особенного и сложного не требуется.

Основа основ плавного включения

Давайте начнем с элементарных вещей и вспомним, что такое RC – цепь и как она связана с плавным розжигом и затуханием светодиода. Посмотрите на схему.

В ее состав входит всего три компонента:

  • R – резистор;
  • C – конденсатор;
  • HL1 – подсветка (светодиод).

Два первых компонента и составляют RC – цепь (произведение сопротивления и емкости). От увеличения сопротивления R и емкости конденсатора C увеличивается время розжига LED. При уменьшении, наоборот.

Мы не будем углубляться в основы электроники и рассматривать, как протекают физические процессы (точнее ток) в данной схеме. Достаточно знать, что она лежит в основе работы всех устройств плавного розжига и затухания.

Рассмотренный принцип RC – задержки лежит в основе всех решений плавного включения и выключения светодиодов.

Схемы плавного включения и выключения светодиодов

Разбирать громоздкие схемы не имеет смысла, т.к. для решения большинства задач справляются простые устройства, работающие на элементарных схемах. Рассмотрим одну из таких схем плавного включения и выключения светодиодов. Несмотря на простоту, она имеет ряд плюсов, высокую надежность и низкую себестоимость.

Состоит из следующих деталей:

  • VT1 – полевой транзистор IRF540;
  • C1 – конденсатор емкостью 220 mF и напряжением 16V;
  • R1, R2, R3 – резисторы номиналом 10, 22, 40 kOm соответственно;
  • LED – светодиод.

Работает от напряжения 12 Вольт по следующему алгоритму:

  1. При включении схемы в цепь питания через R2 протекает ток.
  2. В это время C1 набирает емкость (заряжается), что обеспечивает постепенное открытие полевика VT
  3. Возрастающий ток на затворе (вывод 1) протекает через R1, и заставляет постепенно открываться сток полевика VT
  4. Ток уходит на исток все того же полевика VT1 и далее на LED.
  5. Светодиод постепенно усиливает излучение света.

Затухание светодиода происходит при снятии питания. Принцип обратный. После отключения питания, конденсатор C1 начинает постепенно отдавать свою емкость на сопротивления R1 и R2.

Скорость разряда, а тем самым и скорость плавного затухания светодиода, может регулироваться номиналом сопротивления R3. Поэкспериментируйте, чтобы понять, как номинал влияет на быстроту розжига и затухания LED. Принцип следующий – выше сопротивление, медленнее затухание, и наоборот.

Главный элемент – это полевой n-канальный MOSFET транзистор IRF540, все остальные полупроводниковые приборы играют вспомогательную роль (обвязка). Стоит отметить его важные характеристики:

  • ток стока: до 23 Ампер;
  • полярность: n;
  • напряжение сток – исток: 100 Вольт.

Более детальную информацию, в том числе и ВАХ, можно найти на сайте производителя в datasheet.

Доработанный вариант с возможностью настройки времени

Рассмотренный выше вариант предполагает использование устройства без возможности регулировки времени розжига и затухания LED. А иногда это необходимо. Для реализации всего лишь нужно дополнить схему несколькими элементами, а именно R4, R5 – регулируемые сопротивления. Они предназначены для реализации функции подстройки времени полного включения и выключения нагрузки.

Рассмотренные схемы плавного розжига и затухания отлично подойдут для реализации дизайнерской подсветки в автомобиле (багажник, двери, область ног передних пассажиров).

Еще одна популярная схема

Вторая самая популярная схема плавного включения и выключения светодиодов очень похожа на две рассмотренные, но сильно отличаются по принципу работы. Управление включением происходит по минусу.

Широкое применение схемы нашли в тех местах, где одна часть контактов замыкается по минусу, а другая по плюсу.

Отличия схемы от рассмотренных ранее. Главное отличие – это другой транзистор. Полевик обязательно нужно заменить на p – канальный (маркировка указана на схеме ниже). Нужно «перевернуть» конденсатор, теперь плюс кондера пойдет на исток транзистора. Не забывайте, доработанный вариант имеет питание с обратной полярностью.

Видео

Для углубленного понимания всего происходящего в рассмотренных вариантах предлагаем посмотреть интересное видео, автор которого, при помощи программы проектировки электронных схем, постепенно показывает принцип работы плавного включения и выключения светодиода на разных вариантах. Внимательно посмотрев видео, Вы поймете почему обязательно нужно использовать транзистор.

Вывод

Рассмотренные решения являются самыми популярными и востребованными. В сети интернет, на формуах ведутся большие дискуссии по поводу простоты и малой функциональности данных схем, однако практика показала, что в быту их функционала хватает сполна. Большой плюс рассмотренных решений включения и выключения светодиодов – это простота изготовления и низкая себестоимость. Для разработки готового решения уйдет не более 3-7 часов.

В данной статье будет рассмотрено несколько вариантов схем реализации идеи плавного включения и выключения светодиодов подсветки панели приборов, салонного света, а в некоторых случаях и более мощных потребителей – габаритов, ближнего света и им подобных. Если у вас панель приборов подсвечивается с помощью светодиодов, при включении габаритов подсветка приборов и кнопок на панели будет зажигаться плавно, что выглядит достаточно эффектно. То же можно сказать и про освещение салона, которое будет плавно загораться, и плавно же затухать после закрытия дверей автомобиля. В общем, неплохой такой вариант тюнинга подсветки:).

Схема управления плавным включением и выключением нагрузки, управляемая плюсом.

Данную схему можно использовать для плавного включения светодиодной подсветки приборной панели автомобиля.

Эту схему можно использовать и для плавного розжига стандартных ламп накаливания со спиралями небольшой мощности. При этом транзистор необходимо разместить на радиаторе с площадью рассеивания около 50 кв. см.

Схема работает следующим образом.
Управляющий сигнал поступает через диоды 1N4148 при подаче напряжения на «плюс» при включении габаритных огней и зажигания.
При включении любого из них подается ток через резистор 4,7 кОм на базу транзистора КТ503. При этом транзистор открывается, и через него и резистор 120 кОм начинает заряжаться конденсатор.
Напряжение на конденсаторе плавно растет, и далее через резистор 10 кОм поступает на вход полевого транзистора IRF9540.
Транзистор постепенно открывается, плавно увеличивая напряжение на выходе схемы.
При снятии управляющего напряжения транзистор КТ503 закрывается.
Конденсатор разряжается на вход полевого транзистора IRF9540 через резистор 51 кОм.
После окончания процесса разряда конденсатора схема перестает потреблять ток и переходит в режим ожидания. Потребляемый ток в этом режиме незначителен. При необходимости, изменить время розжига и затухания управляемого элемента (светодиоды или лампы) можно подбором номиналов сопротивлений и емкости конденсатора 220 мкФ.

При правильной сборке и исправных деталях этой схеме не нужны дополнительные настройки.

Вот вариант печатной платы для размещения деталей данной схемы:

Данная схема позволяет плавно включать – выключать светодиоды, а также уменьшать яркость подсветки при включении габаритов. Последняя функция может быть полезна в случае чрезмерно яркой подсветки, когда в темноте подсветка приборов начинает слепить и отвлекать водителя.

В схеме используется транзистор KT827. Переменное сопротивление R2 служит для установки яркости свечения подсветки в режиме включенных габаритов.
Подбором емкости конденсатора можно регулировать время загорания и угасания светодиодов.

Для того что бы реализовать функцию притухания подсветки при включении габаритов, нужно установить сдвоенный выключатель габаритов или использовать реле, которое бы срабатывало при включении габаритов и замыкало контакты выключателя.

Плавное выключение светодиодов.

Простейшая схема для плавного затухания светодиода VD1. Хорошо подойдет для реализации функции плавного угасания салонного света после закрытия дверей.

Диод VD2 подойдет почти любой, ток через него невелик. Полярность диода определяется в соответствии с рисунком.

Конденсатор C1 электролитический, большой емкости, емкость подбираем индивидуально. Чем больше емкость, тем дольше горит светодиод после отключения питания, но не стоит устанавливать конденсатор слишком большой емкости, так как будут обгорать контакты концевиков из-за большой величины зарядного тока конденсатора. К тому же, чем больше емкость — тем массивнее сам конденсатор, могут возникнуть проблемы с его размещением. Рекомендуемая емкость 2200 мкФ. При такой емкости подсветка затухает в течение 3-6 секунд. Конденсатор должен быть рассчитан на напряжение не менее 25В. ВАЖНО! При установке конденсатора соблюдайте полярность! При неправильной полярности подключения электролитический конденсатор может взорваться!

Помимо чисто декоративной функции, например, подсветки автосалона, применение плавного включения, или розжига, имеет основательное практическое значение для светодиодов – существенное продление срока службы. Поэтому рассмотрим, как сделать своими руками устройство для решения такой задачи, стоит ли вообще самостоятельно его мастерить или лучше купить готовое, что для этого потребуется, а также какие варианты схем при этом доступны для любительского изготовления.

Первейший вопрос, возникающий при необходимости включения в схему модуля плавного розжига светодиодов, это сделать ли его самостоятельно или купить. Естественно, легче приобрести готовый блок с заданными параметрами. Однако у такого способа решения задачи есть один серьезный минус – цена. При изготовлении своими руками себестоимость такого приспособления снизится в несколько раз. Кроме того, процесс сборки не займет много времени. К тому же, существуют проверенные варианты устройства – остается лишь обзавестись нужными компонентами и оборудованием и правильно, в соответствии с инструкцией их соединить.

Обратите внимание! Лэд-освещение находит широкое применение в автомобилях. Например, это могут быть дневные ходовые огни и внутренняя подсветка. Включение блока плавного розжига для светодиодных ламп позволяет в первом случае существенно продлить срок эксплуатации оптики, а во втором – предотвратить ослепление водителя и пассажиров резким включением лампочки в салоне, что делает подсветительную систему более визуально комфортной.

Что нужно

Чтобы грамотно собрать модуль плавного розжига для светодиодов, потребуется набор следующих инструментов и материалов:

  1. Паяльная станция и комплект расходников (припой, флюс и проч.).
  2. Фрагмент текстолитового листа для создания платы.
  3. Корпус для размещения компонентов.
  4. Необходимые полупроводниковые элементы – транзисторы, резисторы, конденсаторы, диоды, лед-кристаллы.

Однако прежде чем приступить к самостоятельному изготовлению блока плавного пуска/затухания для светодиодов, необходимо ознакомиться с принципом его работы.

На изображении представлена схема простейшей модели устройства:

В ней три рабочих элемента:

  1. Резистор (R).
  2. Конденсаторный модуль (C).
  3. Светодиод (HL).

Резисторно-конденсаторная цепь, основанная на принципе RC-задержки, по сути и управляет параметрами розжига. Так, чем больше значение сопротивления и емкости, тем дольше период или более плавно происходит включение лед-элемента, и наоборот.

Рекомендация! В настоящий момент времени разработано огромное количество схем блоков плавного розжига для светодиодов на 12В. Все они различаются по характерному набору плюсов, минусов, уровню сложности и качеству. Самостоятельно изготавливать устройства с пространными платами на дорогостоящих компонентах нет резона. Проще всего сделать модуль на одном транзисторе с малой обвязкой, достаточный для замедленного включения и выключения лед-лампочки.

Схемы плавного включения и выключения светодиодов

Существует два популярных и доступных для самостоятельного изготовления варианта схем плавного розжига для светодиодов:

  1. Простейшая.
  2. С функцией установки периода пуска.

Читайте также Динамическая подсветка монитора: характеристика, схема, настройка

Рассмотрим, из каких элементов они состоят, каков алгоритм их работы и главные особенности.

Простая схема плавного включения выключения светодиодов

Только на первый взгляд схема плавного розжига, представленная ниже, может показаться упрощенной. В действительности она весьма надежна, недорога и отличается множеством преимуществ.

В ее основе лежат следующие комплектующие:

  1. IRF540 – транзистор полевого типа (VT1).
  2. Емкостный конденсатор на 220 мФ, номиналом на 16 вольт (C1).
  3. Цепочка резисторов на 12, 22 и 40 килоОм (R1, R2, R3).
  4. Led-кристалл.

Устройство работает от источника питания постоянного тока на 12 В по следующему принципу:

  1. При запитывании цепи через блок R2 начинает течь ток.
  2. Благодаря этому элемент C1 постепенно заряжается (повышается номинал емкости), что в свою очередь способствует медленному открыванию модуля VT.
  3. Увеличивающийся потенциал на выводе 1 (затворе полевика) провоцирует похождение тока через R1, что способствует постепенному открыванию вывода 2 (стока VT).
  4. Как результат, ток переходит на исток полевого блока и на нагрузку и обеспечивает плавный розжиг светодиода.

Процесс угасания лед-элемента идет по обратному принципу – после снятия питания (размыкания «управляющего плюса»). При этом конденсаторный модуль, постепенно разряжаясь, передает потенциал емкости на блоки R1 и R2. Скорость процесса регламентируется номиналом элемента R3.

Основным элементом в системе плавного розжига для светодиодов является транзистор MOSFET IRF540 полевого n-канального типа (как вариант можно использовать российскую модель КП540).

Остальные компоненты относятся к обвязке и имеют второстепенное значение. Поэтому нелишним будет привести здесь его основные параметры:

  1. Сила тока стока – в пределах 23А.
  2. Значение полярности – n.
  3. Номинал напряжения сток-исток – 100В.

Важно! Ввиду того, что быстрота розжига и затухания светодиода полностью зависит от величины сопротивления R3, можно подобрать необходимое его значение для задания определенного времени плавного пуска и выключения лед-лампочки. При этом правило выбора простое – чем выше сопротивление, тем дольше зажигание, и наоборот.

Доработанный вариант с возможностью настройки времени

Нередко возникает необходимость изменения периода плавного розжига светодиодов. Рассмотренная выше схема не дает такой возможности. Поэтому в нее нужно внедрить еще два полупроводниковых компонента – R4 и R5. С их помощью можно задавать параметры сопротивления и тем самым контролировать скорость зажигания диодов.

Есть случаи, когда необходимо обеспечить плавное включение светодиодов, применяемых для освещения или подсветки, а в некоторых случаях и выключение. Плавный розжиг может потребоваться по разным причинам.

Во-первых, при мгновенном включении свет сильно «бьет по глазам» и заставляет нас жмуриться и прищуриваться, выжидая, пока глаза привыкнут к новому уровню яркости. Этот эффект связан с инерционностью процесса аккомодации глаза и конечно имеет место не только при включении светодиодов, но и любых других источников света.

Просто в случае со светодиодами он усугубляется тем, что излучающая поверхность очень мала. Если говорить научным языком – источник света имеет очень большую габаритную яркость.

Во-вторых, могут преследоваться чисто эстетические цели: согласитесь плавно загорающийся или гаснущий свет – это красиво. Схема питания светодиодов должна быть усовершенствована должным образом. Рассмотрим два различных способа плавного включения и выключения светодиодов.

Задержка RC-цепью

Первое что должно прийти в голову человеку, знакомому с электротехникой – введение задержки с помощью включения в схему питания светодиодов RC-цепочки: резистора и конденсатора. Схема приведена на рис.1. При подаче напряжения на вход – напряжение на конденсаторе, по мере его заряда, будет нарастать за время приблизительно равное 5τ, где τ=RC – постоянная времени. То есть, говоря простым языком, время включения света будет определяться произведением емкости конденсатора и сопротивления резистора. Соответственно, чем больше емкость и сопротивление, тем дольше будет происходить розжиг светодиодов. При отключении питания конденсатор будет разряжаться на светодиоды. Время, в течение которого будет происходить плавное затухание, также будет определяться τ, но в этом случае вместо R в произведение войдет динамическое сопротивление светодиодов. К примеру, конденсатор на 2200 мкФ и резистор на 1 кОм теоретически «растянут» время включения на 2,2 секунды. Естественно на практике это значение будет отличаться от расчетного как за счет разброса параметров (у электролитических конденсаторов допуски на номинал обычно очень большие) RC-цепи, так и за счет параметров самих светодиодов. Не нужно забывать, что p-n-переход начнет открываться и излучать свет при определенном пороговом значении. Представленная простейшая схема хорошо позволяет понять принцип действия этого метода, но для практической реализации она мало пригодна. Для получения рабочего решения усовершенствуем ее введением нескольких дополнительных элементов (рис.2).
Работает схема следующим образом: при включении питания конденсатор С1 заряжается через резистор R2, транзистор VT1, по мере изменения напряжения на затворе, уменьшает сопротивление своего канала, тем самым увеличивая ток через светодиод. Выключение питания приведет к разряду конденсатора через светодиоды и резистор R1.

Включим «мозги»…

Если схема должна обеспечить большую гибкость и функциональность, например, не меняя «железо» мы хотим получить несколько режимов работы и задавать время розжига и затухания более точно, то самое время включить в схему микроконтроллер и интегральный драйвер LED с входом управления. Микроконтроллер способен с высокой точностью отсчитывать необходимые интервалы времени и выдавать команды на управляющий вход драйвера в виде ШИМ. Переключение режимов работы можно предусмотреть заранее и вывести для этого соответствующую кнопку. Необходимо только сформулировать – что мы хотим получить и написать соответствующую программу. В качестве примера можно привести драйвер мощных светодиодов LDD-H, который выпускается с номинальными значениями токов от 300 до 1000 мА и имеет вход ШИМ. Схема включения конкретных драйверов обычно приводится в тех. описании производителя (data sheet). В отличие от предыдущего способа, время на включение и выключение не будет зависеть от разброса параметров элементов схемы, температуры окружающей среды или падения напряжения на светодиодах. Но за точность нужно будет заплатить – это решение дороже.