Open
Close

Расчет нарезания шестерни с простым числом зубьев. Делительные головки и их настройка


Если размер этой дуги взять столько раз, сколько имеется зубьев у колеса, т. е. z раз, то также получим длину начальной окружности; следовательно,

Π d = t z
отсюда
d = (t / Π) z

Отношение шага t зацепления к числу Π называется модулем зацепления, который обозначают буквой m , т. е.

t / Π = m

Модуль выражается в миллиметрах. Подставив это обозначение в формулу для d , получим.

d = mz
откуда
m = d / z

Следовательно, модуль можно назвать длиной, приходящейся по диаметру начальной окружности на один зуб колеса. Диаметр выступов равен диаметру начальной окружности плюс две высоты головки зуба (фиг. 517, б) т.е.

D e = d + 2h"

Высоту h" головки зуба принимают равной модулю, т. е. h" = m .
Выразим через модуль правую часть формулы:

D e = mz + 2m = m (z + 2)
следовательно
m = D e: (z +2)

Из фиг. 517,б видно также, что диаметр окружности впадин равен диаметру начальной окружности минус две высоты ножки зуба, т. е.

D i = d - 2h"

Высоту h" ножки зуба для цилиндрических зубчатых колес принимают равной 1,25 модуля: h" = 1,25m . Выразив через модуль правую часть формулы для D i получим

D i = mz - 2 × 1,25m = mz - 2,5m
или
Di = m (z - 2,5m)

Вся высота зуба h = h" + h" т.е

h = 1m + 1,25m = 2,25m

Следовательно, высота головки зуба относится к высоте ножки зуба как 1: 1,25 или как 4: 5 .

Толщину зуба s для необработанных литых зубьев принимают приблизительно равной 1,53m , а для обработанных на станках зубьев (например, фрезерованных) - равной приблизительно половине шага t зацепления, т. е. 1,57m . Зная, что шаг t зацепления равен толщине s зуба плюс ширина sв впадины (t = s + s в ) (Величину шага t определяем по формуле t/ Π = m или t = Πm ), заключаем, что ширина впадины для колес с литыми необработанными зубьями.

s в = 3,14m - 1,53m = 1,61m
A для колес с обработанными зубьями.
s в = 3,14m - 1,57m = 1,57m

Конструктивное оформление остальной части колеса зависит от усилий, которые испытывает колесо во время работы, от формы деталей, соприкасающихся с данным колесом, и др. Подробные расчеты размеров всех элементов зубчатого колеса даются в курсе «Детали машин». Для выполнения графического изображения зубчатых колес можно принять следующие приблизительные соотношения между их элементами:

Толщина ободаe = t/2
Диаметр отверстия для вала D в ≈ 1 / в D e
Диаметр ступицы D cm = 2D в
Длина зуба (т. е. толщина зубчатого венца колеса) b = (2 ÷ 3) t
Толщина диска К = 1/3b
Длина ступицы L = 1,5D в: 2,5D в

Размеры t 1 и b шпоночного паза берутся из таблицы №26 . После определения числовых величин модуля зацепления и диаметра отверстия для вала необходимо полученные размеры согласовать с ГОСТ 9563-60 (см таблицу №42) на модули и на нормальные линейные размеры по ГОСТ 6636-60 (таблица №43).

С точки зрения технологии и кинематики такой процесс, как нарезание зубчатых колес , является одной из самых сложных операций, выполняемых в процессе обработки заготовок на металлорежущих станках. Операции по нарезанию зубчатых коле с относятся к разряду весьма трудоемких, поскольку в процессе их осуществления требуется удалить немалый объем металла для того, чтобы обеспечить необходимую геометрическую конфигурацию готового изделия, причем таким образом, чтобы было обеспечено точное соответствие профилей зубьев расчетным параметрам.

Процедура нарезания зубьев на зубчатых колесах предполагает применение таких технологических процессов, как фрезерование, строгание, шлифование, долбление, протягивание, накатывание, а также некоторые другие.

Для достижения необходимой конфигурации профиля зуба при нарезании зубчатых колес используется два основных метода: обкатывание (огибание) и копирование (деление).

Метод копирования при нарезании зубчатых колес

Согласно этому распространенному методу при нарезании зубчатых колес методом копирования та впадина, которая располагается между зубьями, прорезается специализированным режущим инструментом (протяжкой, дисковой или пальчиковой фрезой, резцом, шлифовальным кругом), который имеет тот же профиль, что и сами режущие кромки. По технологии, он должен совпадать с тем профилем, который имеет впадина обрабатываемого колеса.

При использовании фрезерных станков для нарезания зубчатых колес методом копирования применяются дисковые модульные фрезы. Отдельно с каждым единичным делением нарезается строго определенный зуб колеса.

Чаще всего при помощи дисковых фрез производится нарезание зубьев на зубчатых колесах, которые используются в качестве запасных частей различных машин и механизмов. Это метод эффективен при изготовлении штучных изделий или небольших их партий. Следует заметить, что он не позволяет достичь высокой точности изготовления готовой продукции.

Нарезание зубьев с помощью дисковой фрезы производится следующим образом: заготовка закреплена в делительной головке, расположенной на столе фрезерного станка; он совершает поступательное движение на продольной подаче к фрезе, которая вращается, будучи закрепленной в шпинделе. Благодаря этому в заготовке прорезается паз, соответствующий конфигурации впадины, расположенной между зубьев. По окончании одной операции этого процесса при помощи делительной головки заготовка поворачивается и фиксируется в следующем положении, а процесс обработки повторяется заново, и так до тех пор, пока не будут нарезаны все зубья.

Методы зубонарезания

Пальчиковые модульные фрезы в большинстве случаев используются для того, чтобы производить нарезание зубчатых колес имеющих крупный модуль, на фрезерных станках. Обязательным условием успешного выполнения таких работ квалифицированным персоналом является необходимая конфигурация режущего инструмента: профиль как пальцевых, так и дисковых фрез обязательно должен совпадать с тем профилем, который имеют впадины, расположенные между зубьями обрабатываемого колеса.

Режим работы пальчиковых фрез достаточно сложен: они испытывают на себе ощутимые нагрузки, и поэтому нередко происходят их «отжимы», негативно влияющие на точность обрабатываемых изделий. Кроме того, нужно учитывать то обстоятельство, что режущий инструмент имеет конусную форму, а это означает, что при обработке им нельзя использовать повышенные режимы резания.

Метод обкатывания при нарезании зубчатых колес

При нарезании зубчатых колёс методом обкатки образование формы зуба зубчатого колеса происходит с помощью обкатки зубчатой пары, составным элементом которой является сама заготовка, а другим режущий инструмент. На практике его целесообразно использовать только при массовом производстве, поскольку необходимо изготавливать высокоточный инструмент (специальные фрезы).

Еще одним довольно распространенным способом производства зубчатых колес является применение червячных фрез. Этот режущий инструмент имеет трапецеидальную форму в нормальном сечении, а с точки зрения геометрической конфигурации является зубом рейки с определенными передними и задними углами заточки.

Нарезание зубьев при помощи червячных фрез осуществляется традиционным способом: режущему инструменту сообщается вращательное движение, а заготовке – поступательное в комбинации с вращательным. В результате такой комбинации движений получаются эвольвентные профили зубьев колес.

Для изготовления зубчатых колес используются и так называемые долбяки. Они, наряду с червячными фрезами, являются универсальными инструментами. Если говорить обо всех используемых методах изготовления зубчатых колес, то среди них наиболее производительным и точным является обкатывание.

Нарезание цилиндрических зубчатых колес на фрезерном станке с помощью универсальной делительной головки (УДГ)

1. Основные положения

Таблица 1.Набор из восьми дисковых модульных фрез

Профиль каждой фрезы набора изготовлен по наименьшему числу зубьев интервала (например, у фрезы № 2 по Z = 14), следовательно, наибольшая погрешность получается при изготовлении колёс с наибольшим числом зубьев каждого интервала. Кроме погрешности, связанной с неточностью инструмента, всегда имеет место погрешность в работе делительной головки.

Метод копирования применяется только в индивидуальном и иногда в мелкосерийном производстве.

2. Наладка станка

Заготовку зубчатого колеса закрепляют на оправке гайкой. Оправку зажимают в трёхкулачковом патроне , который навинчивается на шпиндель делительной головки . Второй конец оправки поддерживают задней бабкой (рис. 2).

Соответствующую дисковую модульную фрезу крепят на оправке шпинделя станка и устанавливают ее по центру заготовки. Для этого стол поднимают до тех пор, пока центр оправки заготовки не окажется на одном уровне с нижней частью фрезы. Затем стол передвигают в поперечном направлении до тех пор, пока центр оправки заготовки не совпадёт с вершиной зуба фрезы. После этого стол опускают и подводят заготовку под фрезу (продольной подачей) так, чтобы лист тонкой бумаги, помещённый между ними, закусывался. После этого заготовку отводят от фрезы, сообщая столу продольную подачу, и поднимают стол на глубину фрезерования, производя отсчёт по лимбу.

Прежде чем приступить к нарезанию зубьев, необходимо проверить наладку и настройку станка. Режимы резания – скорость резания и подача находятся по таблицам для обработки данного материала.

Глубина резания равна высоте зуба t = h.

3. Универсальные делительные головки

Делительные головки являются важными принадлежностями консольно-фрезерных станков, особенно универсальных, и применяются при необходимости фрезерования граней, пазов, шлицев, зубьев колёс и инструментов, расположенных под определённым углом друг относительно друга. Их можно использовать для простого и дифференциального деления.

Для подсчёта требуемого угла поворота шпинделя 1 делительной головки (рис. 4), а следовательно и оправки 7 с закреплённой на ней обрабатываемой деталью 6, служит делительный диск (лимб) 4, имеющий с обеих сторон несколько рядов отверстий, расположенных на концентрических окружностях. Отверстия на диске предназначены для фиксации рукоятки А в определённых положениях при помощи стержня фиксатора 5.


Рис. 4. Кинематическая схема универсальной делительной головки (удг)

Передача от рукоятки к шпинделю делительной головки осуществляется по двум кинематическим цепям.

При дифференциальном делении освобождается стопор 8, крепящий лимб к корпусу делительной головки, отключается червячная пара 2, 3 и при вращении рукоятки с лимбом передача к шпинделю осуществляется по цепи:

Где i см – передаточное отношение сменных зубчатых колёс.

При простом делении сменные зубчатые колёса отключены, лимб неподвижен, стержень фиксатора утоплен в рукоятке, при вращении которой движение к шпинделю передаётся по цепи:

Характеристикой делительной головки N называется величина обратная передаточному отношению червячной пары (обычно N = 40).

3.1. Настройка делительной головки на простое деление

При настройке делительной головки на простое деление сменные зубчатые колёса удаляются и уравнение кинематической цепи настройки имеет следующий вид:

,
где Z 0 – число делений, которые необходимо выполнить;

а – число отверстий на соответствующей расчёту концентрической окружности делительного диска 4;
в – число отверстий, на которые перемещается рукоятка А;
Z чк – число зубьев червячного колеса;
К – число заходов червяка.

Из уравнения следует:

,

Где Z чк = 40; К = 1; Z 1 = Z 2 , отсюда:

К делительной головке (УДГД–160) прилагается делительный диск, имеющий по семь концентрических окружностей с отверстиями на каждой стороне.

Число отверстий делительного диска:

На одной стороне – 16, 19, 23, 30, 33, 39 и 49;

На другой стороне – 17, 21, 29, 31, 37, 41 и 54.

Максимальный диаметр обрабатываемой детали – 160 мм.

Пример настройки

Настроить делительную головку для обработки зубчатого колеса Z 0 =34:

.

Следовательно, для осуществления данного деления необходимо произвести один полный оборот рукоятки и на окружности с числом отверстий 17 повернуть рукоятку на угол, соответствующий 3+1 отверстиям, и зафиксировать её в этом положении.

Для установки рукоятки с фиксатором на требуемую окружность делительного диска (рис. 5) нужно отпустить зажимную гайку, повернуть рукоятку так, чтобы стержень фиксатора попал в отверстие окружности, и вновь закрепить гайку.

Для отсчётов делений пользуются раздвижным сектором, состоящего из двух линеек 1 и 5, зажимного винта 3 для крепления их под требуемым углом и пружинной шайбы, удерживающей сектор от произвольного поворота.

После определения необходимой окружности на делительном диске и расчётного числа отверстий, на которое следует переставить фиксатор, сектор устанавливают так, чтобы число отверстий между линейками было на единицу больше числа, полученного при подсчёте (позиции 2 и 4), и поворачивают его сразу после перестановки фиксатора. Сектор должен находиться в данном положении до следующего деления, причём подводить его к отверстию следует плавно и осторожно так, чтобы фиксатор, снятый с предохранителя, вошёл в отверстие под действием пружины.

Если рукоятка переведена дальше требуемого отверстия, её отводят назад на четверть или полуоборота и вновь доводят до соответствующего отверстия. Для точности деления рукоятку с фиксатором следует вращать всегда в одном направлении.

Число оборотов рукоятки при простом делении приведено в прил. 1, при дифференциальном делении – в прил. 2.

3.2. Контроль размеров зуба

Нарезав первый зуб, необходимо измерить его толщину штангенциркулем или штангензубомером и высоту зуба – глубомером.

Толщина зуба S = m·a,

Где m – модуль зубчатого колеса в мм;

A– поправочный коэффициент (табл. 2).

Таблица 2. Зависимость величины поправочного коэффициента от числа зубьев

Данный материал основан на лекциях кафедры Технологии материалов (МТМ)

(рис. 92) является наиболее распространенным способом обработки, осуществляется на зубофрезерных станках и обеспечивает 8…10 степени точности.

Суппорт, с фрезой, имеет поступательное движение вдоль оси заготовки сверху вниз (S прод) и вращательное движение вокруг своей оси (V фр). Заготовка устанавливается на столе станка и имеет вращательное движение (круговая подача, S круг), а также перемещение вместе со столом для установки фрезы на глубину зуба. За один оборот фрезы заготовка поворачивается на число зубьев равное числу заходов червячной фрезы (i=1…3).

Рис. 92. Схема нарезания зубчатого колеса червячной фрезой

Однозаходные червячные фрезы применяются для чистовой обработки прямозубых и косозубых цилиндрических колес, полного нарезания колес мелких модулей, чернового фрезерования под последующее шевингование, а также для фрезерования прямозубых зубчатых колес с малым числом зубьев и большой глубиной резания.

Многозаходные червячные фрезы применяются для повышения производительности при черновом зубофрезеровании, т.к. они снижают точность обработки.

При выборе числа заходов фрезы руководствуются следующим правилом:

для четного числа зубьев заготовки выбирается фреза с нечетным числом заходов и наоборот,

т.е. число заходов фрезы и число зубьев зубчатого венца не должны быть кратными. Это вызвано необходимостью исключения копирования ошибки фрезы на зубчатый венец.

После фрезерования зубьевмногозаходней фрезой, в зависимости от требуемой точности и наличия термообработки, рекомендуется чистовое зубофрезерование однозаходней фрезой, зубошевингование или зубошлифование .

При фрезеровании многозаходными червячными фрезами производительность возрастает не пропорционально числу заходов фрезы.

В то время, как угловая скорость заготовки увеличивается пропорционально числу заходов фрезы, то продольная подача двух- и трехзаходных фрез уменьшается, по сравнению с фрезерованием однозаходней фрезой, на 30…40%.

При нарезании цилиндрических зубчатых колес с прямым зубом данным способом, фреза закрепляется в суппорте станка, который повернут на угол a, равный углу подъема винтовой линии фрезы.

Рис. 157. Установка червячной фрезы при зубонарезании цилиндрических зубчатых колес с косым зубом:

1 – правозаходная фреза; 2 – заготовка правозаходного зубчатого колеса; 3 – заготовка левозаходного колеса

При нарезании косозубых зубчатых колес угол наклона фрезы () зависит от угла наклона зубьев у нарезаемого колеса (рис. 157):

Если направление винтовых линий на колесе и фрезе совпадают, то угол () равен

= α – β , где

β.- угол наклона винтовой линии зубчатого колеса на делительной окружности;

Если направление винтовых линий разное, то

= α + β.

При зубофрезеровании зубчатых колес с углом наклона зуба более применяют червячные фрезы с заборным конусом. Коническая часть фрезы, длина которой определяется опытным путем, используется для черновой обработки, цилиндрическая часть, длиной приблизительно 1,5 шага, для окончательного формирования профиля зуба.

Основное время при нарезании прямозубых зубьев цилиндрических зубчатых колес червячной модульной фрезой определяется по формуле

l о – длина зуба, мм;

m – число одновременно нарезаемых зубчатых колес, шт;

l вр – длина врезания фрезы, мм;

l пер – длина перебега фрезы (2…3 мм);

z з.к – число зубьев зубчатого колеса;

i – число ходов (проходов);

S пр.фр – продольная подача фрезы на один оборот зубчатого колеса, мм/об;

n фр – частота вращения фрезы, об/мин;

q – число заходов червячной фрезы.

Число ходов (проходов) оказывает определенное влияние на производительность процесса обработки и устанавливается в зависимости от модуля зубчатого колеса.

При модуле меньше 2,5 зубчатое колесо нарезается за один ход (проход), при модуле больше 2,5 – за 2…3 хода (прохода).

Величина врезания фрезы при зубообработке определяется по формуле

l вр = (1,1…1,2) , где

t – глубина прорезаемой впадины между зубьями, мм.

При применении червячных фрез длина врезания (l вр) может быть значительной величиной, особенно при использовании фрез больших диаметров.

Сокращение величины врезания можно обеспечить заменой обычного, осевого, врезания фрезы радиальным (рис. 158).

Рис. 158. Врезание червячной фрезы: а – осевое; б - радиальное

Однако при радиальной подаче резко возрастает нагрузка на зубья червячной фрезы и поэтому радиальная подача врезания принимается значительно меньше осевой, а именно

S рад ( ) S пр.фр ,

а, следовательно, если удвоенная высота зуба больше чем длина осевого врезания, то применять радиальную подачу нецелесообразно.

Для повышения точности процесса зубообработки, уменьшения шероховатости обработанной поверхности зубьев и увеличения стойкости червячной фрезы применяют диагональное зубофрезерование.

Суть процесса заключается в том, что червячную фрезу в процессе резания перемещают вдоль её оси из расчета 0,2 мкм за один её оборот.

Осевое перемещение фрезы может осуществляться:

После нарезания определенного числа зубчатых колес;

После каждого цикла зубофрезерования во время смены заготовки;

Непрерывно в процессе работы фрезы.

Для этой цели современные зубофрезерные станки имеют специальные устройства.

Период стойкости червячной фрезы на 10…30% можно повысить за счет применения попутного фрезерования .

Целесообразность применения попутного или встречного фрезерования при зубообработке определяют опытным путем. Например, при обработке заготовок из чугуна попутное фрезерование преимуществ не имеет, а при фрезеровании заготовок из “вязких” материалов позволяет уменьшить шероховатость поверхности. Для обработки зубчатых колес с модулем более 12 предпочтительнее встречное фрезерование.

Для зубофрезерования применяются фрезы:

С нешлифованным профилем, обеспечивают 9 степень точности

Со шлифованным профилем, обеспечивают 8 степень точности

Затылованные, переточка осуществляется по передней поверхности и

Острозаточенные червячные фрезы, отличающиеся от предыдущих большим числом зубьев и переточкой по задней поверхности.

Режимы зубообработки:

V фр = 25…40 (150…200) м/мин;

S пр.фр = 1…2 мм/об.з.к (при черновой обработке);

S пр.фр = 0,6…1,3 мм/об.з.к (при чистовой обработке).

Минутная подача фрезы при зубофрезеровании определяется по формуле

S мин = , мм/мин

S зуб.фр - подача на зуб фрезы, мм/зуб;

z фр - число зубьев фрезы.

Относительная производительность различных методов зубообработки по сравнению с зубофрезерованием однозаходными червячными фрезами из быстрорежущей стали стандартной конструкции приведена в табл. 11.

Основная группа (рис. 3)

Для данной группы составляем следующие уравнения:

Z 4 + Z 5 = Z 6 + Z 7 ; (1)

Z 8 + Z 9 = Z 6 + Z 7 ; (2)

Для решения этой неопределенной системы уравнений и для получения наименьших размеров колес задаемся числом зубьев наименьшего колеса группы Z 4 = Z min = 18 22 .

Принимаем Z 4 =21.

Из уравнения (3) получаем: Z 5 = 2,52 · Z 4 = 2,52·21 = 52,9 53

Из уравнений (1) и (4) получаем:

21+53 = Z 6 +2· Z 6 и Z 6 = 74/3 = 24,67 25

Из уравнения (4) имеем: Z 7 =2· Z 6 =2·24,67 = 49,33 49

Однако определенные значения Z 6 и Z 7 вызовут большое отклонение в передаточном отношении i 3 (25/49= 0,51 вместо требуемого 0,50). Поэтому сумму зубьев этих колес примем равной Z 6 + Z 7 = 75 . Тогда

Z 6 = 75/3 = 25 и Z 7 = 2· Z 6 =2·25 = 50 .

Сумму зубьев колес Z 8 и Z 9 принимаем также равной 75. Из уравнений (2) и (5) получаем

Z 8 +1,58· Z 8 = 75 и Z 8 =75/2,58=29,1 29 .

Из уравнения (5) получаем Z 9 =1,58· Z 8 =1,58·29,1=45,9 46 .

Проверка: Z 4 + Z 5 = Z 6 + Z 7 = Z 8 + Z 9

21+53=74 25+50=29+46=75.

Передачу Z 4 - Z 5 корригируем с положительными коэффициентами коррекции, что особенно целесообразно для колеса Z 4 = 21.

Числа зубьев других переборных групп рассчитываем аналогично. Группы можно именовать в кинематическом порядке (основная, 1-ая переборная и т. д.) или в конструктивном порядке (1-ая, 2-ая, 3-я и т. д.).

Для получения достаточно точных требуемых передаточных отношений передач можно использовать подбор величины или корригирование передач.

Для получения точных общих передаточных отношений привода целесообразно так округлять полученные значения чисел зубьев колес, чтобы в одной группе передач фактические передаточные отношения были равны или больше требуемых, во второй группе – равны или меньше требуемых и т. д.

7. Определение фактических чисел оборотов шпинделя

Выбирая включенные передачи по графику чисел оборотов, получаем следующие фактические числа оборотов шпинделя:

8. Определение отклонения фактических чисел оборотов от стандартных

[ Δn ] = ± 10 (φ -1)% = 10(1,26-1)% = ± 2.6% .

Отклонения равны:

Все отклонения фактических чисел оборотов меньше допустимых отклонений.

В дальнейших расчетах будем принимать во внимание только стандартные заданные числа оборотов шпинделя.

9. Составление кинематической схемы привода

При составлении кинематической схемы необходимо учитывать следующее:

1) число валов должно соответствовать графику чисел оборотов;

2) расположение валов должно соответствовать конструкции станка, в частности конструктивной форме корпуса привода, валы могут располагаться горизонтально или вертикально в соответствии с расположением шпинделя в станке;

3) передвижные зубчатые колеса собирают в блоки различной конструкции. Блоки обычно состоят из двух или трех колес. Вместо блока из четырех колес применяют для уменьшения осевых габаритов группы два двойных блока. Меньшие осевые размеры имеют группы колес, подвижные блоки которых имеют узкое исполнение, то есть блоки, составленные из рядом расположенных колес;

4) расположение групп колес должно быть таким, чтобы общая длина валов и длина участков валов, передающих крутящий момент, в особенности тяжело нагруженных (у шпинделя) была возможно малой;

5) в металлорежущих станках обычно наиболее нагруженные передачи группы (с малым ведущим колесом) располагают у подшипника вала. Для обеспечения распределения передаваемой нагрузки по всей длине зубьев колес, валы долины быть достаточно жесткими, а зубчатые венцы иметь ширину не более, чем это требуется по расчету на прочность.

На рис. 4 приведен 1-й вариант кинематической схемы привода. Этот вариант характеризуется тем, что все блоки колес являются ведущими, их размеры и вес поэтому относительно небольшие. Группы колес не имеют общих связанных колес. Но конструкция валов III и IV при выполнении привода по этой схеме будет сложной, так как на этих валах будут располагаться подвижные блоки колес и неподвижно закрепленные колеса, что требует применения разных посадок. Блоки колес по этому варианту имею узкое исполнение, что уменьшает осевые габариты групп и величины перемещений блоков.

Рис. 4. Кинематическая схема (вариант 1)

На рис. 5 приведен 2-ой вариант кинематической схемы. Этот вариант характеризуется тем, что на валу III расположены только неподвижные колеса, а на валу IV расположены только подвижные блоки колес. Учитывая, что колеса 9 и 14 имеют одно и то же число зубьев и могут иметь один модуль, они объединены в одно связанное колесо. Таким образом число колес в приводе уменьшается на одно колесо. Конструкции валов III и IV проще конструкций этих же валов при использовании 1-го варианта схемы. Однако конструкция блока колес 4-6-8 стала более сложной, а блок колес 11-13-15 будет иметь больший вес, чем вес блошка колес 10-12-14 (см. 1-й вариант). Несмотря на применение связанного колеса осевые размеры групп передач, расположенных между валами III и IV, несколько увеличились. Из-за применения одного и того же модуля в группах могут возрасти и диаметральные размеры основной группы.

Рис. 5. Кинематическая схема (вариант 2)

Практически варианты конструктивно равноценны. Оба варианта используются в различных металлорежущих станках.

Для дальнейшего рассмотрения остановимся на 1-ом варианте, как более простом.