Open
Close

Различие прокариотической и эукариотической клетки таблица. Сравнительная характеристика прокариот и эукариот

Прокариоты – древнейшие организмы, образующие самостоятельное царство. К прокариотам относятся бактерии, сине-зеленые «водоросли» и ряд других мелких групп.

Клетки прокариот не обладают, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов – линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли). Также к ним можно условно отнести постоянные внутриклеточные симбионты эукариотических клеток – митохондрии и пластиды.

Эукариоты (эвкариоты) (от греч. eu– хорошо, полностью иkaryon– ядро) – организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочечных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикрепленных изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты – митохондрии, а у водорослей и растений – также и пластиды.

2. Клетки эукариот. Строение и функции

К эукариотам относятся растения, животные, грибы.

Клеточной стенки у клеток животных нет. Она представлена голым протопластом. Пограничный слой клетки животных – гликокаликс – это верхний слой цитоплазматической мембраны, «усиленный» молекулами полисахаридов, которые входят в состав межклеточного вещества.

Митохондрии имеют складчатые кристы.

В клетках животных есть клеточный центр, состоящий из двух центриолей. Это говорит о том, что любая клетка животных потенциально способна к делению.

Включение в животной клетке представлено в виде зерен и капель (белки, жиры, углевод гликоген), конечных продуктов обмена, кристаллов солей, пигментов.

В клетках животных могут быть сократительные, пищеварительные, выделительные вакуоли небольших размеров.

В клетках нет пластид, включений в виде крахмальных зерен, крупных вакуолей, заполненных соком.

3. Сопоставление прокариотической и эукариотической клеток

Наиболее важным отличием эукариот от прокариот долгое время считалось наличие оформленного ядра и мембранных органоидов. Однако к 1970 – 1980-м гг. стало ясно, что это лишь следствие более глубинных различий в организации цитоскелета. Некоторое время считалось, что цитоскелет свойственен только эукариотам, но в середине 1990-х гг. белки, гомологичные основным белкам цитоскелета эукариот, были обнаружены и у бактерий. (Таблица 16).

Именно наличие специфическим образом устроенного цитоскелета позволяет эукариотам создать систему подвижных внутренних мембранных органоидов. Кроме того, цитоскелет позволяет осуществлять эндо- и экзоцитоз (как предполагается, именно благодаря эндоцитозу в эукариотных клетках появились внутриклеточные симбионты, в том числе митохондрии и пластиды). Другая важнейшая функция цитоскелета эукариот – обеспечение деления ядра (митоз и мейоз) и тела (цитотомия) эукариотной клетки (деление прокариотических клеткок организовано проще). Различия в строении цитоскелета объясняют и другие отличия про- и эукариот. Например, постоянство и простоту форм прокариотических клеток и значительное разнообразие формы и способность к её изменению у эукариотических, а также относительно большие размеры последних.

Так, размеры прокариотических клеток составляют в среднем 0,5 – 5 мкм, размеры эукариотических – в среднем от 10 до 50 мкм. Кроме того, только среди эукариот попадаются поистине гигантские клетки, такие как массивные яйцеклетки акул или страусов (в птичьем яйце весь желток – это одна огромная яйцеклетка), нейроны крупных млекопитающих, отростки которых, укрепленные цитоскелетом, могут достигать десятков сантиметров в длину.

По своей структуре организмы могут одноклеточными и многоклеточными. Прокариоты преимущественно одноклеточны, за исключением некоторых цианобактерий и актиномицетов. Среди эукариот одноклеточное строение имеют простейшие, ряд грибов, некоторые водоросли. Все остальные формы многоклеточны. Считается, что одноклеточными были первые живые организмы Земли.

Одной из важных классификаций в биологии клеток является их деление на прокариоты и эукариоты.

Говоря об эволюции микробиологии, стоит отметить существенный вклад ученого Пастера, который был его основоположником. Именно благодаря этому человеку начали развиваться области иммунологии и биотехнологии.

Он дал основное определение главным понятиям, относящимся к клетке, обосновал принципы и работу механизма по актуальности роли микроорганизмов во всех сферах жизнедеятельности организмов. Его деятельность продолжил Кох.

Попытаемся разобраться, какие организмы относятся к каждому из этих двух основных классов клеток. Какое строение имеют клетки и в чем их отличие? Какова классификация каждого из этих видов.

Чем же они полезны для человека и биосферы, и каково их значение в целом? На все эти вопросы ответы читатель найдет ниже.

Что такое прокариоты и эукариоты

Известно, что все живые организмы по своей природе делятся на клеточные и неклеточные (вирусы). Причем первые тоже подразделяются на 2 категории: прокариоты (надцарство «Доядерные») и эукариоты (надцарство «Ядерные»).

К прокариотам относятся:

К эукариотам:

  • грибы;
  • растения;
  • животные.

Чем же они отличаются? Рассмотрим ниже.

Признаки эукариотической клетки

Считается, что ядерные клеточные организмы появились около 1,5 миллиардов лет назад. Хотя в прошлые времена ученые слабо понимали суть явлений на клеточном уровне, но в своих трудах у них часто стали появляться приблизительные рисунки этой единицы организма.

Подписи в каждом утверждают об одной отличительной особенности клеток данного типа – наличие ядра, покрытого двойным слоем мембраны.

Именно в ядре хранится основной генетический материал этих организмов. Кроме того в нем есть несколько ядрышек с большей частью объема всех типов РНК.

Также в такой клетке есть другие образования – органеллы, которые находятся в ее цитоплазме. К ним относят:

  • митохондрии – напоминают своей структурой белки, также содержат ДНК;
  • лизосомы – являются пузырьками, помогающими общему метаболизму этой клетки;
  • хлоропласты.

Эти соединения также разделены мембранами, основная роль которых является связь различных элементов единицы организма с внешней средой. Чтобы все элементы состава хорошо функционировали, для полного «скелета» в этой клетке есть нити и микротрубочки.

Процесс дыхания более распространен среди живых организмов, образованных этими клетками.

Строение клеток прокариотов

В отличие от предыдущего надцарства, у простейших отсутствует ядро в клетке.

В ней вместо ядра находится одна хромосома в цитоплазме, передающая генетический материал.

Размножаются просто – делением клетки. В клеточной жидкости очень мало различных видов структур. Они также покрыты мембраной. В их состав входят рибосомы.

Рассмотрим основных представителей этого надцарства.

Бактерии и циано-бактерии

Под первыми понимают одноклеточные микроорганизмы. С помощью жгутиков они очень подвижны.

Обитают во всех сферах жизни. От внешней среды они защищены муреином и особой оболочкой.

Второй вид представлен простейшими клетками с маленькими рибосомами и одной наследственной хромосомой.

Водоросли

Обитают в основном в водной среде и на почве. У них автотрофное питание. Их плавучесть обуславливают вакуоли. Кроме того, для них, как и для представителей царства растений, характерен фотосинтез .

Примеры представлены зелеными водорослями. Размножаются также простым делением. При очень неблагоприятных условиях для движения могут использовать споры.

Сходства и различия прокариот и эукариот

Сравнительная таблица «Характеристика надцарств» показывает признаки, по которым нетрудно выявить основные отличия.

Признаки Надцарство Прокариоты Надцарство Эукариоты
Размер D = 0,5 – 5 мкм D = 40 мкм
Наследственность ДНК в цитоплазме ДНК в ядре
Структура Мало образований, мембран практически нет. Есть внешние и внутренние мембраны, различные структуры, позволяющие проводить реакции пищеварения, дыхания и размножения.
Оболочка В состав входят полисахариды, аминокислоты и муреин. Основой оболочки растений является целлюлоза, а у грибов – хитин.
Фотосинтез Нет хлоропластов, но он протекает в мембранах. Протекает в специальных образованиях – пластидах.
Обмен азота У некоторых он есть. Он не происходит.

Заключение

Итак, без представителей этих двух надцарств невозможно представить жизнь на земле. Какова же их роль в природе? Все просто: простейшие являются организмами, без которых невозможны практически все биохимические процессы в биосистеме. Кроме того, многие участвуют в процессе фотосинтеза, служат источником питания и дыхания растений.

Эукариоты не только являются для других питанием, но и являются основной регулирующей силой популяции разных видов, т. е одним из механизмов естественного отбора.

Признаки Эукариоты Прокариоты
Ядерная оболочка Присутствует Отсутствует
ДНК Находится в фор­ме линейных хро­мосом, где ДНК связана с белками гисто-нами, причем на долю белков при­ходится до 65 % массы хромосомы Обычно одна кольцевая хромосо­ма, всегда связанная с плазмати­ческой мембраной. Суперспирали-зованная «голая» (без белков) ДНК собрана в петли (около 120), от­ходящие от центральной области, в которой они связаны небольшим количеством белковых молекул
Комплекс Гольджи Присутствует Отсутствует
ЭПС Присутствует Отсутствует
Лизосомы Присутствуют Отсутствуют
**Жгутики Покрыты мем­браной, в середи­не две централь­ные микротру­бочки, по перифе­рии - девять двойных микро­трубочек, в осно­вании - базальные тельца Принципиально отличны от жгу­тиков эукариот. В основании базальное тельце с 2 или 4 дисками и крючок. Сам жгутик - микро­трубочка из белка флагеллина
Рибосомы Состоят из двух субъединиц, ко­эффициент седи­ментации 80, со­держат молекулы белка и четыре молекулы рРНК Состоят из двух субъединиц, коэффициент седиментации 70, содержат молекулы белка и три молекулы рРНК
Клеточный центр Присутствует Отсутствует
**Цито-скелет Присутствует Отсутствует
Признаки Эукариоты Прокариоты
Митохонд­рии Присутствуют Отсутствуют
Пластиды у автотрофов Присутствуют Отсутствуют
Способ по­глощения нищи За счет осмоса; путем фагоцито­за и пиноцитоза. Захват пищи ртом у многокле­точных живот­ных За счет осмоса
Пищевари-гсльные вакуоли Присутствуют Отсутствуют

Задание 2.21. Заполните таблицу

Таблица 15

Сравнительная характеристика клеток эукариот

Признаки Царство Животные Царство Растения Царство Грибы
Клеточная стенка Отсутствует, на поверхности мембраны нахо­дится гликока-ликс Образована целлюлозой (клетчаткой) Образована хитином
Резервное питательное вещество Гликоген Крахмал Гликоген
Наличие пластид Как правило, отсутствуют Присутствуют Отсутст­вуют
Пишите митохондрий Присутствуют Присутствуют Присут­ствуют
Центриоли в клеточном центре Присутствуют Отсутствуют у высших расте­ний Отсутст­вуют
Способ поглащения пищи Захват пищи За счет осмоса За счет осмоса

ДЗ№14

Задание 2.22. Тест «Ядро. Эукариоты, прокариоты»

1. Оболочка ядра образована:

1. Мембраной, имеющей 3. Одной мембраной, поры
поры. отсутствуют.

2. Двумя мембранами, 4. Двумя мембранами, поры
имеет поры. отсутствуют.

2. Ядрышки в ядре обеспечивают:

1. Синтез белков. 3. Образование субъединиц

2. Удвоение ДНК. рибосом.

4. Образование центриолей клеточного центра.

3. Наследственную информацию клетки хранят:
1.ДНК. З.Липиды.

2. Белки хромосом. 4. Углеводы.

*4. К прокариотам относятся:

1. Вирусы. 4. Синезеленые.

2. Грибы. 5. Животные.

3. Растения. 6. Бактерии.
*5. К эукариотам относятся:

1. Вирусы. 4. Синезеленые.

2. Грибы. 5. Животные.

3. Растения. 6. Бактерии.

*6. Симбионтами эукариотической клетки считаются:

1. Рибосомы. 3. Митохондрии.

2. Комплекс Гольджи. 4. Пластиды.
*7. У прокариот отсутствуют:

1. Митохондрии. 5. Комплекс Гольджи.

2. Пластиды. 6. ЭПС.

3. Ядро. 7. Лизосомы.

4. Рибосомы. 8. Клеточный центр.

8. Вещество, характерное для клеточной стенки грибов:

1. Целлюлоза (клетчатка). 3. Муреин.

2. Хитин. 4. Такого вещества нет.

9. Запасное питательное вещество, характерное для грибов:

1. Крахмал. 3. Гликоген.

2. Глюкоза. 4. Такого вещества нет.

10. В клеточном центре не имеют центриолей:

1. Низшие растения. 3. Многоклеточные животные.

2. Высшие растения. 4. Простейшие.

Задание 2.23. Определите правильность суждений,

относящихся к теме «Органоиды клетки.

Прокариоты, эукариоты»

1. Лизосомы образуются в комплексе Гольджи.

2. Рибосомы отвечают за синтез белка.

3. Кмембранам шероховатой ЭПС прикреплены рибосомы.

4. Комплекс Гольджи отвечает за выведение продуктов биосинтеза из клетки.

5. Митохондрии присутствуют в растительных и животных клетках.

6. Хромопласты имеют зеленую окраску.

7. Лейкопласты могут превращаться вхлоропласты.

8. Длярастительных клеток характерна центральная вакуоль.

9. В ядрышках синтезируются субъединицы рибосом.

10. Ядро - одномембранный органоид.

11. В ядре происходит синтез рибосомальных белков.
**12. Высшиерастения не имеют центриолей.

13. В клетках грибов встречаются хлоропласты.

14. У растений нет митохондрий.

** 15. У водорослей в клеточном центре есть центриоли.

16. Грибы относятся к эукариотам.

17. Грибы относятся к царству Растения.

18. В состав клеточной стенки грибов входит хитин.

19. Основное запасное вещество грибов - крахмал.

20. В клетках грибов хлоропласты отсутствуют.

21. Прокариоты имеют кольцевую ДНК.

22. Прокариоты имеют одну линейную хромосому.
**23. Бактерии имеют 70S рибосомы.

**24. Бактерии имеют 80S рибосомы.

ЗАЧЕТ 2

Задание 2.24. Вопросы к зачету по теме «Структура и функции клетки»

I. Когда и кем были созданы первые два положения клеточной и теории?

2. Кто доказал, что новые клетки образуются путем деления материнской клетки?

3. Кто показал, что клетка является единицей развития?

4. Чем образована плазмалемма?

5. Из каких слоев состоят оболочки животной и растительной клеток?

6. Перечислите функции клеточной оболочки.

7. Назовите виды транспорта через клеточную мембрану.

8. Что такое фагоцитоз и пиноцитоз?

9. В каком участке клетки образуются субъединицы рибосом?

10. Каковы функции рибосом?

11. ** 11. Каков коэффициент седиментации прокариотических ри­босом и эукариотических?

12. Какие виды эндоплазматической сети вам известны и каковы их функции?

13. Какие функции выполняет комплекс Гольджи?

14. Какие функции выполняют лизосомы?

15. Какие органоиды клетки называют органоидами дыхания?

16. Как происходят взаимопревращения пластид?

17. Как называется внутренняя среда у митохондрий и пластид?

18. Чем образованы центриоли клеточного центра?

19. Какие эукариоты не имеют центриолей?

20. Каковы функции клеточного центра?

21. Перечислите органоиды движения клетки.

22. Перечислите одномембранные органоиды клетки.

23. Перечислите двумембранные органоиды клетки.

24. Перечислите немембранные органоиды клетки.

25. В каких клеточных органоидах имеется ДНК?

26. Каковы функции ядра?

27.Какие органоиды отсутствуют в растительной клетке высших растений?

28. Какое вещество характерно для стенок растительных клеток?

29.Какие органоиды отсутствуют в клетках многоклеточных животных?

30. Какие органоиды эукариотической клетки возникли в резульгате симбиоза?

31. Какие клеточные органоиды способны к самоудвоению?

32. Приведите классификацию эукариот.

33. Какое вещество характерно для стенок клеток грибов?

34. Какое запасное вещество характерно для клеток грибов?

35.Приведите классификацию прокариот

36. Какие органоиды отсутствуют у прокариот?

37. Какое вещество характерно для стенок бактериальных клеток?

38. Как происходит размножение прокариот?

39. В какой форме находится генетический материал у эукариотческой клетки?

40.В какой форме находится генетический материал у прокариотической клетки?

ДЗ№15

Задание 3.1. Заполните таблицу

Таблица 16 Различия в обмене веществ между гетеротрофами и автотрофами

Задание 3.2. Определите правильность суждений, относящихся к теме «Обмен веществ и энергии»

1. Гетеротрофные организмы используют для синтеза органичес­ких соединений неорганический источник углерода - СО 2 .

2. Гетеротрофные организмы, которые в качестве источника энергии используют энергию химических связей органических ве­ществ, относятся к хемогетеротрофам.

3. Первые гетеротрофные организмы Земли были анаэробными организмами.

4. В настоящее время все гетеротрофы используют кислород для дыхания, для окисления органических веществ.

5. Автотрофные организмы способны использовать углеродуглекислого газа для синтеза органических соединений.

6. Хемоавтотрофные организмы в качестве основного источника энергии используют энергию химических связей молекул органичес­их веществ.

7. Фотоавтотрофные организмы в качестве источника энер­гии используют энергию света, в качестве источника углерода – СО 2

8. Наиболее древние фотосинтезирующие организмы Земли (зеленые и пурпурные бактерии) при фотосинтезе выделяют О 2 .

9. Синезеленые (цианобактерии) при фотосинтезе впервые ста­ли выделять кислород в атмосферу.

10. В результате симбиоза бактерий-окислителей с анаэробной клеткой бактерии преобразовались в митохондрии.

11. В результате симбиоза синезеленых с древней эукариотической клеткой появились растения, при этом синезеленые транс­формировались в хлоропласты.

12. Ассимиляция - совокупность реакций обмена веществ в клетке.

13. Диссимиляция - совокупность реакций распада и окисления, протекающих в клетке.

14. Реакции пластического обмена идут с потреблением энергии.

15. Реакции энергетического обмена идут с выделением энергии.

Задание 3.3. Заполните таблицу

Таблица 17 Реакции ассимиляции и диссимиляции

ДЗ№16

Таблица 18 Фотосинтез

Фазы фотосин­теза Процессы, происходящие в данной фазе Результаты процессов
Световая фаза За счет световой энергии происходит окисление хлорофилла. Восстановле­ние его происходит за счет электро­нов, отбираемых у водорода воды. Создается разность потенциалов между внутренней и наружной сто­ронами мембраны тилакоида, и с по­мощью АТФ-синтетазы образуется АТФ, при этом происходит восстанов­ление НАДФ+ доНАДФ Н 2 Происходит фо­толиз воды, при котором выделя­ется О 2 , энергия света превраща­ется в энергию химических связей АТФ иНАДФН 2
Темновая фаза Происходит фиксация СО?. В реак­циях цикла Кальвинапревращается СОг в глюкозу за счет АТФ и вос­становительной силы НАДФ Н^ образованных в световую фазу Образование моносахаридов

Задание 3.8. Тест «Фотосинтез»

*1. Максимально используются в световую фазу фотосинтеза:

1. Красные лучи. 3. Зеленые лучи.

2. Желтые лучи. 4. Синие лучи.

2. Фотосинтетические пигменты располагаются:

3. В строме. пласта.

3. Протоны в световую фазу фотосинтеза накапливаются:

1. В мембранах тилакоидов. 4. В межмембранном

2. В полости тилакоидов. пространстве хлоро-

3. В строме. пласта.

4. Реакции темновой фазы фотосинтеза происходят:

1. В мембранах тилакоидов. 4. В межмембранном

2. В полости тилакоидов. пространстве хлоро-

3. В строме. пласта.
*5. В световую фазу фотосинтеза происходит:

1. Образование АТФ. 3. Выделение О 2

2. Образование НАДФ ■ Н. 4. Образование углеводов.

6. В темновую фазу фотосинтеза происходит:

1. Образование АТФ. 3. Выделение О г

2. Образование НАДФ Н 2 . 4. Образование углеводов.

7. При фотосинтезе происходит выделение О 2 , который образу­ется при разложении:

1.СО 2 . З.СО 2 иН 2 О.

2. (Я 2 О.) 4. С 6 Н, 2 О 6 .

8. Реакции цикла Кальвина происходят:

1. В мембранах тилакоидов. 3. В полостях тилакоидов.

2. В строме. 4. И в тилакоидах, и в строме.
*9. Синтезировать органические вещества, используя неоргани­ческий источник углерода, способны:


10. Синтезировать органические вещества, используя только орга­нический источник углерода, способны:

1. Хемоавтотрофы. 3. Фотоавтотрофы.

2. Хемогетеротрофы. 4. Все вышеперечисленные.

ДЗ№17

Тема: Энергетический обмен

Задание 3.9. Тест «Гликолиз»

*1. На подготовительном этапе энергетического обмена проис­ходит:

1. Гидролиз белков до 2. Гидролиз жиров

аминокислот до глицерина и жирных кислот.

3. Гидролиз углеводов 4. Гидролиз нуклеиновых

до моносахаридов. кислот до нукяеотидов.

2. Обеспечивают гликолиз:

1. Ферменты пищеваритель- 3. Ферменты цикла Кребса.
ного тракта и лизосом.

2. Ферменты цитоплазмы. 4. Ферменты дыхательной цепи.

3. В результате бескислородного окисления в клетках у животных при недостатке О 2 образуется:

1.ПВК. 3. Этиловый спирт.

4. В результате бескислородного окисления в клетках у растений при недостатке О 2 образуется:

1. ПВК. 3. Этиловый спирт

2. Молочная кислота. 4. Ацетил-КоА.

5. Энергия, образующаяся при гликолизе одного моля глюкозы, равна:

1.200кДж. 3. бООкДж.

2. 400 кДж. 4. 800 кДж.

6. Три моля глюкозы подверглось гликолизу в животных клетках при недостатке кислорода. При этом углекислого газа выделилось:

1. 3 моль. 4. Углекислый газ в животных

2. 6 моль. клетках при гликолизе
3.12 моль. не выделяется.

**7. К биологическому окислению относятся:

1. Окисление вещества А в реакции: А + О 2 -» AO 2

2. Дегидрирование вещества А в реакции: АН 2 + В -> А + ВН,.

3. Потеря электронов (например, Fe 2+ в реакции: Fe 2+ -^Fe 3+ + e).

4. Приобретение электронов (например, Fe 3+ в реакции: Fe 2+ ->
-> Fe 3+ + e~).

*8. Реакции подготовительного этапа энергетического обмена происходят:

1. В пищеварительном 3. В цитоплазме.
тракте. 4. В лизосомах.

2. В митохондриях.

9. Энергия, которая выделяется в реакциях подготовительного этапа энергетического обмена:

2. Запасается в форме АТФ.

3. Большая часть рассеивается в форме тепла, меньшая - запасает­ся в форме АТФ.

4. Меньшая часть рассеивается в форме тепла, большая - запасает­ся в форме АТФ.

10. Энергия, которая выделяется в реакциях гликолиза:

1. Рассеивается в форме тепла.

2. Запасается в форме АТФ.

3. 120 кДж рассеивается в форме тепла, 80 кДж запасается в форме АТФ.

4. 80 кДж рассеивается в форме тепла, 120 кДж запасается в форме АТФ.

Задание 3.11. Тест «Кислородное окисление»

1. Реакции кислородного окисления происходят:

1. В цитоплазме клетки. 3. Во всех органоидах и цитоплазме.

2. В ядре клетки. 4. В митохондриях.

2. В результате гликолиза образуется и поступает в митохонд­рию:

1. Глюкоза. 3. Пировиноградная кислота.

2. Молочная кислота. 4. Ацетил-КоА.

3. В цикл Кребса включается:

1.ПВК. 3. Этиловый спирт.

2. Молочная кислота. 4. Ацетильная группа.

*4. В реакциях цикла Кребса происходит:

1. Дегидрирование ацетильной группы.

3. Образуется одна молекула АТФ при разрушении каждой ацетильной группы.

4. В результате работы АТФ-синтетазы образуется 34 моля АТФ.

5. Реакции цикла Кребса происходят:

1. В матриксе митохондрий.

2. В цитоплазме клеток.

3. На внутренней мембране митохондрий на ферментах дыхательной цепи.

4. В межмембранном пространстве митохондрий.

6. При полном разрушении в митохондрии одной молекулы ПВК образуется:

1.12 пар атомов водорода. 3. 6 пар атомов водорода.

7. При полном разрушении одной молекулы глюкозы в дыхательную цепь транспортируется:

1. 12 пар атомов водорода. 3. 6 пар атомов водорода.

2. 10 пар атомов водорода. 4. 5 пар атомов водорода.

8. Протонный резервуар митохондрий находится:

1. В межмембранном пространстве.

2. В матриксе.

3.На внутренней стороне внутренней мембраны

4. В матриксе и на внутренней стороне внутренней мембраны.

9. АТФ-синтетазой при восстановлении 12 пар атомов водорода образуется:

1. 38 молекулы АТФ. 3. 34.молекулы АТФ.

2. 36 молекулы АТФ. 4. 42 молекулы АТФ.

10. При полном окислении одного моля глюкозы образуется:

1. 38 моля АТФ. 3. 34 моля АТФ.

2. 36 молей АТФ. 4. 42 моля АТФ.

ДЗ№18

Задание 3.15. Тест «Код ДНК. Транскрипция»

1. Триплетность генетического кода проявляется в том, что:

1.Одну аминокислоту кодируют не один, не два, а три нуклеотида.

2. Вырожденность генетического кода проявляется в том, что:

3.Одну аминокислоту могут кодировать до 6 кодонов.

4.Рамка считывания всегда равна трем нуклеотидам, один нуклеотид не может входить в состав двух кодонов.

5.У всех организмов Земли генетический код одинаков.

3. Однозначность генетического кода проявляется в том, что:

1. Одну аминокислоту кодируют не один, не два, а три нуклеотида.

2.Один кодон всегда кодирует одну аминокислоту.

3.Одну аминокислоту могут кодировать до 6 кодонов.

4.Рамка считывания всегда равна трем нуклеотидам, один нуклеотид не может входить в состав двух кодонов.

5.У всех организмов Земли генетический код одинаков.

4. Универсальность генетического кода проявляется в том, что:

2. Один кодон всегда кодирует одну аминокислоту.

5. Неперекрываемость генетического кода проявляется в том, что:

1. Одну аминокислоту кодируют не один, не два, а три нуклео­тида.

2. Один кодон всегда кодирует одну аминокислоту.

3. Одну аминокислоту могут кодировать до 6 кодонов.

4. Рамка считывания всегда равна трем нуклеотидам, один нуклеотид не может входить в состав двух кодонов.

5. У всех организмов Земли генетический код одинаков.

6.Транскрипция - это:
1. Удвоение ДНК.

2. Синтез иРНК на ДНК.

3. Синтез полипептидной цепочки на иРНК.

4. Синтез иРНК, затем синтез на ней полипептидной цепочки.
*7. ДНК содержится:

1. В ядре. 5. В комплексе Гольджи.

2. В митохондриях.

3. В пластидах..

4. В лизосомах. 8.

*8. В ДНК может быть зашифрована структура:

1. Полипептидов. 5. рРНК.

2. Полисахаридов. 6. Олигосахаридов.

3. Жиров. 7. Моносахаридов.

4. тРНК. 8. Жирных кислот.

9. Кодовые триплеты ДНК кодируют :

1.10 аминокислот. 3. 26 аминокислот.

2.20 аминокислот. 4. 170 аминокислот.

10. Все многообразие аминокислот, входящих в состав белков, кодируют:

1. 20 кодовых триплетов. 3. 61 кодовый триплет.

2. 64 кодовых триплета. 4. 26 кодовых триплетов.

11. Матрицей при транскрипции являются:

1. Кодирующая цепь ДНК. 3. иРНК.

2. Обе цепи. 4. Цепь ДНК, комплементарная

кодогенной.

*12. Для транскрипции необходимы:
1. АТФ. 5.ТТФ.

2. УТФ. 6. Кодирующая цепь ДНК.

3. ГТФ. 7. Рибосомы.

4. ЦТФ. 8. РНК-полимераза.

13. Участок молекулы ДНК, с которого происходит транскрипция,
содержит 30 000 нуклеотидов. Для транскрипции потребуется:

1. 30 000 нуклеотидов. 3. 60 000 нуклеотидов.

2. 15 000 нуклеотидов. 4. 90 000 нуклеотидов.

14. РНК-полимераза при транскрипции движется:

15. РНК-полимераза способна собирать полинуклеотид:

1. От 5"-конца к З"-концу. 3. Начиная с любого конца.

2.От З"-конца к 5"-концу. 4. В зависимости от фермента.

ДЗ№19

Задание 3.18. Заполните таблицу

Таблица 20 Биосинтез белка

Что происхо­дит на данном этапе Что необходимо
Транскрип­ция: образо­вание иРНК /. Кодирующая цепь ДНК /. Кодирует последовательность аминокислот
2. Фермент РНК-полимераза 2. Образует иРНК
3. АТФ, УТФ, ГТФ, ЦТФ 3. Материал и энергия для синтеза и РНК
Трансляция: синтез па иРНК молипептид-иой цепочки 1. иРНК 1. Переносит информацию о стро­ении белка из ядра в цитоплазму
2. Рибосомы 2. Органоиды, отвечающие за син­тез полипептидов
Что происходит на данном этапе Что необходимо Функции структур, веществ и органоидов, принимающих участие в процессе
Трансляция: синтез на иРНК полипептидной цепочки 3. тРНК 3. Молекулы, транспортирую­щие аминокислоты в рибосомы
4. Аминокислоты 4. Строительный материал
5. Ферменты ами-ноацил-тРНК-синтетазы 5. Присоединяют аминокислоты к соответствующей тРНК за счет энергии АТФ
6. Энергия в фор­ме AT Ф, ГТФ 6. Энергия для присоединения аминокислот к 3 "-концу тРНК, для сканирования, образования пептидных связей, движения рибосомы

Задание 3.19. Тест «Трансляция»

*1. К реакциям матричного синтеза относятся:

1. Репликация ДНК. 3. Трансляция.

2. Транскрипция. 4. Образование нуклеотидов.

2. Если информационная РНК состоит из 156 нуклеотидов (вме­сте с терминальным триплетом), то на ней закодировано:

1. 156 аминокислот. 3. 52 аминокислоты.

2. 155 аминокислот. 4. 51 аминокислота.
**3. Сколько известно различных видов тРНК?

1. 20 различных видов, столько же, сколько и аминокислот.

2.Один вид, который транспортирует все 20 видов аминокислот.

3.61 вид тРНК, столько же, сколько кодовых триплетов.

4.Более 30, так как с одним кодоном могут соединяться не­колько антикодоновразных тРНК, последний нуклеотид в антикодоне не всегда важен.

4. Аминокислота соединяется со своей тРНК:

1.С помощью фермента аминоацил-тРНК-синтетазы без затра­ты АТФ.

2.С помощью фермента аминоацил-тРНК-синтетазы с затратой АТФ.

3.С помощью фермента РНК-полимеразы без затраты АТФ.

4. С помощью фермента РНК-полимеразы с затратой АТФ.
**5. Как происходит инициация трансляции?

1. Рибосома присоединяется к 5"-концу иРНК, в П-участок заходит метиониновая тРНК с метионином.

2. Малая субъединица рибосомы присоединяется к иРНК и ска­нирует ее до инициирующего кодона, затем присоединяется большая субъединица рибосомы и в П-участок заходит метиониновая тРНК с метионином.

3. (Малая субъединица рибосомы присоединяется к иРНК, в П-участок заходит тРНК с метионином, инициаторный комплекс сканирует иРНК до инициирующего кодона, затем присоединяется большая субъединица рибосомы.)

6. Каждая следующая тРНК со своей аминокислотой попадают:

1. В любой, или А-, или Р-участок рибосомы.

2. Только в А-участокрибосомы.

3. Только в Р-участок рибосомы.

4. В зависимости от вида тРНК, некоторые - в А-участок, другие - в Р-участок.

7. В функциональном центре рибосомы имеется:

1.3 нуклеотида. 3.9 нуклеотидов.

2. 6 нуклеотидов. 4. 12 нуклеотидов.

*8. Для трансляции необходимы:

1.Кодирующая цепь ДНК.

2.ДНК-полимераза.

3.РНК-полимераза.

4.Аминоацил-тРНК-синтетазы.

5.Нуклеотиды.

9. Синтез полипептидной цепи на матрице иРНК - это:

1. Репликация. 3. Транскрипция.

2.Трансляция. 4. Процессинг.

10. Рибосома по иРНК может двигаться:

1. От 5"- к 3"-концу. 3. В обоих направлениях.

2. От 3"- к 5"-концу. 4. В зависимости от син-

тезируемого белка.

ЗАЧЕТ 3

Задание 3.2O. Вопросы к зачету по теме «Обмен веществ»

1. Что такое ассимиляция?

2. Что такое диссимиляция?

3. Какие организмы называются автотрофами?

4. На какие группы делятся автотрофы?

5. Какие организмы называются гетеротрофами?

6. Какие три этапа энергетического обмена вам известны?

7. Каковы продукты гидролиза белков, жиров, углеводов, нукле­
иновых кислот на подготовительном этапе?

8. Что происходит с энергией, выделяющейся на подготовитель­
ном этапе энергообмена?

9. Где расположены ферменты бескислородного этапа энергооб­
мена?

10. Какие продукты и сколько энергии образуется при гликолизе?
11. Как называются реакции, связанные с дегидрированием и декарбоксилированием, которые протекают в матриксе митохондрий?
12. Сколько молекул АТФ образуется при дегидрировании и декарбоксилировании ацетильной группы в цикле Кребса?

13. Сколько пар атомов водорода транспортируется на дыхатель­ную цепь при полном дегидрировании 2 молекул ПВК?

14. Какие ферменты перекачивают протоны в протонный резервуар митохондрий?

15. . Напишите общую формулу энергетического обмена.

16. Что может быть закодировано в ДНК?

17. Что означает триплетность генетического кода?

18. Что означает однозначность генетического кода? Сколько триплетов кодируют 20 видов аминокислот?

19. В чем заключается вырожденность генетического кода?

20. Что означает универсальность генетического кода?

21. Что означает неперекрываемость генетического кода?

22. Что такое транскрипция?

23. Что необходимо для транскрипции?

24. Участок ДНК содержит 300 000 нуклеотидов. Сколько нуклеотидов нужно для репликации и для транскрипции?

25. В каком направлении движется РНК-полимераза по кодиру­ющей цепи?

26. иРНК вместе с терминальным триплетом состоит из 156 нуклеотидов. Сколько аминокислот закодировано в этой иРНК?

27. Что такое трансляция?

28. Что необходимо для трансляции?

29. Сколько нуклеотидов в ФЦР рибосомы?

30. В какой участок ФЦР поступает тРНК с новой аминокисло­той?

31. Напишите общую формулу фотосинтеза.

33. Где происходят световые реакции фотосинтеза?

34. Что происходит в световую фазу фотосинтеза?

35. Где находятся протонные резервуары в хлоропласте?

36. Где происходят темновые реакции фотосинтеза?

37. Что происходит в темновую фазу фотосинтеза?

**38. Какая (какие) фотосистема (фотосистемы) есть у фотосинтезирующих серобактерий?

**39. Какая (какие) фотосистема (фотосистемы) есть у синезеле-ных?

40. Кто открыл процесс хемосинтеза?


Похожая информация.


1. Вспомните примеры многоядерных клеток.

Ответ. Многоядерная клетка, тип клетки, имеющей много ядер. Ядра образуются в том случае, когда в клетке неоднократно делится только ядро, а клетка в целом и ее оболочка остаются прежними. Из таких клеток состоят, например, волокна поперечно-полосатой мускулатуры; они образуют ткань, известную под названием синцитий (соклетие). Многоядерные клетки имеются также у некоторых водорослей и грибов.

2. Какую форму могут иметь бактерии?

Ответ. По особенностям морфологии выделяют следующие группы бактерий: кокки (более или менее сферические), бациллы (палочки или цилиндры с закругленными концами), спириллы (жесткие спирали) и спирохеты (тонкие и гибкие волосовидные формы). Некоторые авторы склонны объединять две последние группы в одну – спириллы.

Вопросы после §18

1. Какую форму имеет ДНК у бактерий?

Ответ. Единственная кольцевая молекула ДНК, находящаяся в клетках прокариот и условно называемая бактериальной хромосомой, находится в центре клетки, однако эта молекула ДНК не окружена мембраной и располагается непосредственно в цитоплазме в виде туго скрученных спиралей

2. Могут ли бактерии размножаться половым путём?

Ответ. Половое размножение у прокариот наблюдается гораздо реже, чем бесполое, однако оно очень важно, так как при обмене генетической информацией бактерии передают друг другу устойчивость к неблагоприятным воздействиям (например, к лекарствам). При половом процессе бактерии могут обмениваться как участками бактериальной хромосомы, так и особыми маленькими кольцевыми двуцепочечными молекулами ДНК – плазмидами. Обмен может происходить через цитоплазматический мостик между двумя бактериями или с помощью вирусов, усваивающих участки ДНК одной бактерии и переносящих их в другие бактериальные клетки, которые они заражают.

3. Когда у бактерий образуются споры и какова их функция?

Ответ. В неблагоприятных условиях (холод, жара, засуха и т. д.) многие бактерии способны образовывать споры. При спорообразовании вокруг бактериальной хромосомы образуется особая плотная оболочка, а остальное содержимое клетки отмирает. Спора может десятилетиями находиться в неактивном состоянии, а в благоприятных условиях из неё снова прорастает активная бактерия. Недавно немецкие исследователи сообщили, что им удалось «оживить» споры бактерий, которые образовались 180 млн лет назад при высыхании древних морей!

4. Что такое мезосомы и какие функции они выполняют?

Ответ. Клеточная мембрана прокариот образует многочисленные впячивания внутрь клетки – мезосомы. На них располагаются ферменты, обеспечивающие реакции обмена веществ в прокариотической клетке.

Рассмотрите таблицу 3. Выделите основные отличия прокариотических и эукариотических клеток.

Ответ. Эукариоты представляют собой надцарство живых организмов. В переводе с греческого языка «эукариот» обозначает «владеющий ядром» . Соответственно эти организмы в своем составе имеют ядро, в котором закодирована вся генетическая информация. К ним относятся грибы, растения и животные.

Прокариоты – это живые организмы, в клетках которых ядро отсутствует. Характерными представителями прокариот являются бактерии и цианобактерии.

Эукариоты и прокариоты сильно отличаются по размеру друг от друга. Так средний диаметр эукариотической клетки - до 40 мкм и более, а прокариотической – 0,3-5,0 мкм мм.

Прокариоты имеют кольцевую ДНК, которая располагается в нуклеоиде. Эта клеточная область отделена от остальной цитоплазмы при помощи мембраны. ДНК никак не связана с РНК и белками, отсутствуют хромосомы.

ДНК эукариотических клеток линейная, располагается в ядре, в котором имеются хромосомы.

Прокариоты размножаются в основном простым делением пополам, в то время как эукариоты делятся при помощи митоза, мейоза или сочетанием этих двух способов.

У эукариотических клеток имеются органеллы, характеризующиеся наличием собственного генетического аппарата: митохондрии и пластиды. Они окружены мембраной и имеют способность к размножению посредством деления.

В прокариотических клетках также встречаются органеллы, но в меньшем количестве и не ограниченные мембраной.

Жгутики эукариот имеют достаточно сложное строение. Некоторые прокариоты также имеют жгутики, они разнообразны и имеют простое строение.