Open
Close

Мейоз схема с объяснением. Стадии мейоза

Сопровождающееся уменьшением числа хромосом вдвое. Он состоит из двух последовательно идущих деле­ний, имеющих те же фазы, что и митоз. Однако, как показано в таблице «Сравнение митоза и мейоза» , продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих при митозе.

Эти отличия в основном состоят в следующем.

В мейозе профаза I более продолжительна. В ней происходит конъюгация (соединение гомологичных хромосом) и обмен генетической информацией . В анафазе I центроме­ры , скрепляющие хроматиды, не делятся , а к полюсам отходит одна из гомологмейоза митоза и ичных хромосом. Интерфаза перед вторым делением очень короткая , в ней ДНК не синтезируется . Клетки (галиты ), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом. Диплоидность восстанавливается при слиянии двух клеток - материнской и отцовской. Опло­дотворенную яйцеклетку называют зиготой .

Митоз и его фазы

Митоз, или непрямое деление , наиболее широко рас­пространен в природе. Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.). Митоз состоит из четырех последователь­ных фаз (см. далее таблицу). Благодаря митозу обеспечи­вается равномерное распределение генетической информа­ции родительской клетки между дочерними. Период жизни клетки между двумя митозами называют интерфазой . Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков , удваивается каждая хромосома, образуя две сестринские хроматиды , скрепленные общей центромерой , увеличивается число основных органоидов цитоплазмы.

В профазе спиралируются и вследствие этого утолща­ются хромосомы , состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рас­средоточиваются по всей клетке, центриоли отходят к полюсам и образуют веретено деления . В метафазе проис­ходит дальнейшая спирализация хромосом. В эту фазу они наиболее хорошо видны. Их центромеры располагаются по экватору. К ним прикрепляются нити веретена деления.

В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.

В телофазе цитоплазма делится, хромосомы раскручи­ваются, вновь образуются ядрышки и ядерные мембраны. В животных клетках цитоплазма перешнуровывается, в растительных - в центре материнской клетки образуется перегородка. Так из одной исходной клетки (материнской) образу­ются две новые дочерние.

Таблица - Сравнение митоза и мейоза

Фаза Митоз Мейоз
1 деление 2 деление
Интерфаза

Набор хромосом 2n.

Идет интенсивный синтез белков, АТФ и других органических веществ.

Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой.

Набор хромосом 2n Наблюдаются те же процессы, что и в митозе, но более продолжительна, особенно при обра­зовании яйцеклеток. Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует.
Профаза Непродолжительна, происходит спирализация хро­мосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления. Более длительна. В начале фазы те же процессы, что и в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скру­чиваются. При этом может происходить обмен генетической информацией (перекрест хромосом) - кроссинговер . Затем хромосомы расходятся. Короткая; те же процессы, что и в митозе, но при n хромосом.
Метафаза Происходит дальнейшая спирализация хромосом, их центромеры располагаются по экватору. Происходят процессы, аналогичные тем, что и в митозе.
Анафаза Центромеры, скрепляющие се­стринские хроматиды, делятся, каждая из них становится новой хромосомой и отходит к противоположным полюсам. Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хро­мосом, состоящая из двух хроматид, скрепленных общей центромерой. Происходит то же, что и в митозе, но при n хромосом.
Телофаза Делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки. Длится недолго Гомологичные хро­мосомы попадают в разные клетки с гаплоидным набором хромосом. Цитоплазма делится не всегда. Делится цитоплазма. После двух мейотических делений образуется 4 клетки с гаплоидным набором хромосом.

Таблица сравнения митоза и мейоза.

При половом размножении дочерний организм возникает в результате слияния двух половых клеток (гамет ) и последующего развития из оплодотворенной яйцеклетки -зиготы. Половые клетки родителей обладают гаплоидным набором (n ) хромосом, а в зиготе при объединении двух таких наборов число хромосом становится диплоидным (2n ): каждая пара гомологичных хромосом содержит одну отцовскую и одну материнскую хромосому .Гаплоидные клетки образуются из диплоидных в результате особого клеточного деления - мейоза.Мейоз - разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых желез образуются гаплоидные гаметы (1n). При оплодотворении ядра гаметы сливаются, и восстанавливается диплоидный набор хромосом. Таким образом, мейоз обеспечивает сохранение постоянного для каждого вида набора хромосом и количества ДНК.Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу. В результате мейоза I число хромосом уменьшается вдвое (редукционное деление): при мейозе II гаплоидность клеток сохраняется (эквационное деление). Клетки, вступающие в мейоз, содержат генетическую информацию 2n2хр.

В профазе мейоза I происходит постепеннаяспирализация хроматина с образованием хромосом. Гомологичные хромосомы сближаются, образуя общую структуру, состоящую из двух хромосом (бивалент) и четырех хроматид (тетрада). Соприкосновение двух гомологичных хромосом по всей длине называется конъюгацией. Затем между гомологичными хромосомами появляются силы отталкивания, и хромосомы сначала разделяются в области центромер, оставаясь соединенными в области плеч, и образуют перекресты (хиазмы). Расхождение хроматид постепенно увеличивается, и перекресты смещаются к их концам. В процессе конъюгации между некоторыми хроматидами гомологичных хромосом может происходить обмен участками - кроссинговер, приводящий к перекомбинации генетического материала. К концу профазы растворяются ядерная оболочка и ядрышки, формируется ахроматиновое веретено деления. Содержание генетического материала остается прежним (2n2хр).

В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. Содержание генетического материала не изменяется (2п2хр).

В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна - число хромосом уменьшается вдвое (происходит редукция). Содержание генетического материала становится 1n2хр у каждого полюса.

В телофазе происходит формирование ядер и разделение цитоплазмы - образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома - две хроматиды (1n2хр).

Интеркинез - короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.

В профазе мейоза II происходят тс же процессы, что и в профазе митоза. В метафазе хромосомы располагаются в экваториальной плоскости. Изменений содержания генетического материала не происходит (1n2хр).

В анафазе мейоза II хроматиды каждой хромосомы отходят к противоположным полюсам клетки, и содержание генетического метериала у каждого полюса становится lnlxp.

В телофазе образуются 4 гаплоидные клетки (lnlxp).

Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II - случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости.Отличие мейоза 1 от мейоза 2:

1. Первому делению предшествует интерфаза с редупликацией хромосом, при втором делении редупликации генетического материала нет, то есть отсутствует синтетическая стадия.

2. Профаза первого деления длительная.

3. В первом делении происходит конъюгация хромосом и
кроссинговер.

4. В первом делении к полюсам расходятся гомологичные хромосомы (биваленты, состоящие из пары хроматид), а во втором – хроматиды.

Отличия мейоза от митоза:

1. В митозе одно деление, а в мейозе – два (из-за этого получается 4 клетки).

2. В профазе первого деления мейоза происходит конъюгация (тесное сближение гомологичных хромосом) и кроссинговер (обмен участками гомологичных хромосом), это приводит к перекомбинации (рекомбинации) наследственной информации.

3. В анафазе первого деления мейоза происходит независимое расхождение гомологичных хромосом (к полюсам клетки расходятся двухроматидные хромосомы). Это приводит к рекомбинации и редукции.

4. В интерфазе между двумя делениями мейоза удвоения хромосом не происходит, поскольку они и так двойные.

5. После митоза получается две клетки, а после мейоза – четыре.

6. После митоза получаются соматические клетки (клетки тела), а после мейоза – половые клетки (гаметы – сперматозоиды и яйцеклетки; у растений после мейоза получаются споры).

7. После митоза получаются одинаковые клетки (копии), а после мейоза – разные (происходит рекомбинация наследственной информации).

8. После митоза количество хромосом в дочерних клетках остается таким же, как было в материнской, а после мейоза уменьшается в 2 раза (происходит редукция числа хромосом; если бы её не было, то после каждого оплодотворения число хромосом возрастало бы в два раза; чередование редукции и оплодотворения обеспечивает постоянство числа хромосом).

Биологическое значение мейоза :

1) является основным этапом гаметогенеза;

2) обеспечивает передачу генетической информации от организма к организму при половом размножении;

3) дочерние клетки генетически не идентичны материнской и между собой.

Атак же, биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются. Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Однако это противоречит правилу постоянства числа хромосом. Благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом.

23. Размножение, как основное свойство живого. Бесполое и половое размножение. Формы бесполого и полового размножения. Определение, сущность, биологическое значение.

Размножение - это свойство воспроизведения себе подобных, обеспечивающие непрерывность и преемственность жизни. Различают два способа размножения: бесполый и половой.

Бесполое размножение различные формы размножения организмов, при которых новый организм возникает из соматических клеток одного родителя, потомки являются точной копией его.

Формы бесполого размножения у одноклеточных .

1. Деление надвое (митозом) - из одной материнской клетки образуются две дочерние клетки, имеющие одинаковую наследственную информацию с материнской клеткой (саркодовые).

2. Множественное деление (шизогония) – ряд последовательных делений ядра с последующим делением цитоплазмы и образованием множества одноядерных клеток(споровики).

3. Почкование – формирование дочерней клетки (почки) меньшего размера на материнской клетке. Дочерняя клетка может отпочковываться от материнской клетки(дрожжи).

4. Спорообразование – формирование спор – одноклеточных образований, окруженных плотной оболочкой, служащих для распространения и переживания неблагоприятных условий(плесень мукор).

5. Эндогония – внутреннее почкование, когда ядро делится на 2 части, каждая даёт дочернюю особь (токсоплазма).

Формы бесполого размножения у многоклеточных.

1. Вегетативное размножение – образование новой особи из части родительской, приводящее к появлению генетически однородных групп особей.

а) у грибов происходит путем отделения специализированных или неспециализированных участков таллома; у растений - черенками, клубнями, листьями, луковицами, усами и др.

б) у животных вегетативное размножение осуществляется:

Путем обособления частей тела с последующим восстановлением до целого организма – фрагментация (ресничные и дождевые черви);

Почкованием – образованием на материнском организме почки – выроста, из которого развивается новая особь (гидра).

2. Спорообразование – один из этапов цикла воспроизведения с помощью спор у семенных растений, у высших споровых.

Половое размножение – различные формы размножения организмов, при которых новый организм возникает из специализированных половых клеток или особей, выполняющих эти функции. При половом размножении необходимо, как правило, наличие двух родительских особей. Потомки, как правило, неидентичны.

Формы полового размножения у одноклеточных.

1. Копуляция – процесс слияния двух половых клеток или особей, не различающихся между собой (изогаметы) – у споровиков, жгутиковых.

2. Конъюгация – половой процесс, заключающийся во временном соединении двух особей и обмене частями их ядерного аппарата, а так же небольшим количеством цитоплазмы (у бактерий, инфузорий).

Формы полового размножения у многоклеточных.

1. С оплодотворением .

Оплодотворению предшествует осеменение – процессы, обуславливающие встречу гамет. Оно бывает наружное и внутреннее.Оплодотворение – (сингамия) – слияние мужской половой клетки (сперматозоид, спермий) с женской (яйцо, яйцеклетка), приводящее к образованию зиготы, которая дает начало новому организму. Когда в яйцеклетку проникает один спермий, то такое явление называют моноспермией , если несколько –полиспермией .

2.Без оплодотворения.

Партеногенез – форма полового размножения, при котором женские организмы развиваются из неоплодотворенной яйцеклетки. Различают естественный и искусственный партеногенез.Естественный партеногенез открыт Ш.Бонне, происходит в природе без вмешательства человека. Он в свою очередь подразделяется на:

а)факультативный - любое яйцо может дробиться как без оплодотворения, так и после него.

б)облигатный - развитие яйца возможно только без оплодотворения. Такой вид партеногенеза открыт в 1886г. А.А. Тихомировым. При этой форме партеногенеза развитие организма из неоплодотворенного яйца происходит после его механического или химического раздражения в лабораторных условиях.

Андрогенез – форма размножения организмов, при которой в развитии зародыша участвуют одно или два ядра, привнесенные в яйцо сперматозоидами, а женское ядро - не участвует. (встречается у тутового шелкопряда)

Гиногенез – форма размножения организмов, при которой сперматозоид стимулирует начало дробления яйцеклетки, но ядро его не сливается с ядром яйца и не участвует в последующем развитии зародыша. Иногда гиногенез рассматривают как одну из форм партеногенеза. Встречается гиногенез у покрытосеменных растений, некоторых видов рыб и земноводных, круглых червей.

Биологическая роль полового размножения.

При половом размножении наблюдается перекомбинация наследственных признаков родителей, поэтому появляются разнообразные генотипически и фенотипически потомки. Таким образом, половое размножение дает источник изменчивости, благодаря чему появляется возможность лучшего приспособления организмов к среде обитания, к сохранению различных видов организмов.

Второе деление мейоза по механизму является типичным митозом. Оно происходит быстро:

Профаза II у всех организмов короткая.

Если телофаза I и интерфаза II имели место, то ядрышки и ядерные мембраны разруша­ются, а хроматиды укорачиваются и утолщаются. Центриоли, если они имеются, перемещаются к про­тивоположным полюсам клетки. Во всех случаях, к концу профазы II появляются новые нити веретена деления. Они расположены под прямыми углами к веретену мейоза I.

Метафаза II. Как и в митозе, хромосомы выстраиваются по отдельности на эк­ваторе веретена.

Анафаза II. Аналогична митотической: центромеры делятся (разрушение когезинов) и нити веретена деления растаскивают хроматиды к противоположным полю­сам.

Телофаза II. Происходит так же, как телофаза митоза с той лишь разницей, что образуются четыре гаплоидные дочер­ние клетки. Хромосомы раскручиваются, удлиняются и становятся плохо различимыми. Нити веретена ис­чезают. Вокруг каждого ядра вновь образуется ядерная оболо6нчка, но ядро со­держит теперь половину числа хромосом исходной родительской клетки. При последую­щем цитокинезе из единственной роди­тельской клетки получается четыре дочерних клетки.

Предварительные итоги:

При мейозе в результате двух последовательных клеточных делений, следующих за одним циклом репликации ДНК, из одной диплоидной клетки образуются четыре гаплоидные.

В мейозе доминирует профаза I, которая может занимать 90% всего времени. В этот период каждая хромосома состоит из двух тесно сближенных сестринских хроматид.

Кроссинговер (перекрест) между хромосомами осуществляется на стадии пахитены в профазе I, при плотной конъюгации каждой пары гомологичных хромосом, что приводит к образованию хиазм, сохраняющих единство бивалентов вплоть до анафазы I.

В результате первого деления мейоза в каждую дочернюю клетку попадает по одной хромосоме из каждой пары гомологов, состоящих в это время из соединенных сестринских хроматид.

Затем без репликации ДНК быстро протекает второе деление, при котором каждая сестринская хроматида попадает в отдельную гаплоидную клетку.

Сопоставление митоза и мейоза I (мейоз II практически идентичен митозу)

Стадия Митоз Мейоз I
Профаза Гомологичные хромосомы обособ­лены. Хиазмы не образуются. Кроссинговер не происходит Гомологичные хромосомы конъюгируют. Хиазмы образуются. Кроссинговер имеет место
Метафаза Хромосомы, из двух хроматид каждая, располагаются на экваторе веретена деления Биваленты, образованные парами гомологичных хромосом, располагаются на эква­торе веретена деления
Анафаза Центромеры делятся. Расходятся хроматиды. Расходящиеся хроматиды идентич­ны Центромеры не делятся. Расходятся целые хромосомы (из двух хроматид каждая) Расходящиеся хромосомы и их хроматиды могут быть неидентичными в результате кроссинговера
Телофаза Плоидность дочерних клеток равна плоидности родительских клеток. У диплоидов дочерние клетки содержат обе гомо­логичные хромосомы Плоидность дочерних клеток вдвое меньше плоидности родительских клеток. Дочерние клетки содержат только по одной из каждой пары гомологичных хромосом
Где и когда происходит В гаплоидных, диплоидных и поли­плоидных клетках При образовании соматических кле­ток При образовании спор у некоторых грибов и низших растений. При образовании гамет у высших растений Только в диплоидных и полиплоидных клетках На каком-либо этапе жизненного цикла организмов с половым размножением, например – при гаметогенезе у большинства животных и при спорогенезе у высших растений.

Значение мейоза:

1. Половое размножение. Мейоз происходит у всех организмов, размножающихся по­ловым путем. Во время оплодотворения ядра двух гамет сливаются. Каждая гамета содержит гаплоидный (n) набор хромосом. В результате слияния гамет образуется зигота, содержащая диплоидный (2n) набор хромосом. В отсутст­вие мейоза слияние гамет приводило бы к удвоению числа хромосом у каждого по­следующего поколения, возникающего в результате полового размножения. У всех организмов с половым размножением это­го не происходит благодаря существова­нию особого клеточного деления, при котором диплоидное число хромосом (2n) сокращается до гаплоидного (n).

2. Генетическая изменчивость. Мейоз создает также возможность для возникновения в гаметах новых комбинаций генов, что ве­дет к генетическим изменениям в потом­стве, получаемым в результате слияния га­мет. В процессе мейоза это достигается двумя способами, а именно – независи­мым распределением хромосом при первом мейотическом де­лении и кроссинговером.


А) Независимое распределение хромосом.

Независимое распределение означает, что в анафазе I хромосомы, составляющие данный бивалент, распределяются независимо от хро­мосом других бивалентов. Этот процесс лучше всего объяснить на схеме, приведенной справа (черные и белые полоски соответствуют мате­ринским и отцовским хромосомам).

В метафазе I биваленты располагаются на экваторе веретена случайным образом. На схеме представлена про­стая ситуация, в которой участвуют только два бивалента, а поэтому возможно распо­ложение только двумя способами (при од­ном из них белые хромосомы ориентированы в одну сторону, а при другом – в разные стороны). Чем больше число бивалентов, тем больше число возможных комбинаций, а, следовательно, тем выше изменчивость. Число вариантов образующихся гаплоидных клеток – 2 x . Неза­висимое распределение лежит в основе одного из законов классической генетики – второго закона Менделя.

Б) Кроссинговер.

В результате образования хи­азм между хроматидами гомологичных хромосом в профазе I происходит кроссинговер, веду­щий к образованию новых комбинаций ге­нов в хромосомах гамет.

Это показано на схеме кроссинговера

Итак, коротко о главном:

Митоз – это такое деление клеточного ядра, при котором образуются два дочерних ядра, содер­жащие наборы хромосом, идентичные наборам родительской клетки. Обычно сразу же после деления ядра происходит деление всей клетки с образованием двух дочерних клеток. Митоз с последующим делением клетки приводит к уве­личению числа клеток, обеспечивая процессы роста, регенерации и замещения клеток у эукариот. У одноклеточных эукариот митоз служит механизмом бесполого размножения, приводя­щего к увеличению численности популяции.

Мейоз представляет собой процесс деления клеточного ядра с образованием дочерних ядер, каждое из которых содержит вдвое меньше хро­мосом, чем исходное ядро. Мейоз называют так­же редукционным делением, так как при этом число хромосом в клетке уменьшается от дипло­идного (2n) до гаплоидного (n). Значение мейоза состоит в том, что у видов с половым размноже­нием он обеспечивает сохранение постоянного числа хромосом в ряду поколений. Мейоз про­исходит при образовании гамет у животных и спор у растений. В результате слияния гаплоид­ных гамет при оплодотворении восстанавливает­ся диплоидное число хромосом.


Прочие варианты клеточных делений.

Деление клеток прокариот.

Рассматривая механизмы митоза и мейоза как основные механизмы клеточных делений, не следует забывать, что они возможны лишь у представителей империи Эукариот, иначе громадная империя Прокариот останется вне сферы нашего внимания.

Отсутствие оформленного ядра и тубулярных органоидов (а значит – и веретена деления) делают очевидным тот факт, что механизмы прокариотического деления должны принципиально отличаться от эукариотических.

В клетках прокариот кольцевая молекула ДНК прикреплена к плазмалемме в области одной из мезосом (складок плазматической мембраны). Она прикреплена участ­ком, в котором начинается дву­направленная репликация (он называется ориджином репликации ДНК ). Сразу после начала репликации начинается активный рост плазмалеммы, причем встраивание но­вого мембранного материала идет в ограниченном пространст­ве плазматической мембраны – между точками прикрепления двух частично реплицированных молекул ДНК.

По мере роста мембраны, реплицированные молекулы ДНК постепенно отдаляются друг от друга, мезосома углубляется, а, напротив нее, закладывается еще одна мезосома. Ког­да реплицированные молекулы ДНК окончательно отдаляются друг от друга, мезосомы соединяются, и происходит разде­ление материнской клетки на две дочерние.

Полового размножения у прокариотов нет, поэтому отсутствуют варианты деления с сокращением плоидности, и все разнообразие способов деления сводится к особенностям цитокинеза:

При равновеликом делении цитокинез равномерный, и образующиеся дочерние клетки имеют сходные размеры; это наиболее распространенный способ цитокинеза у прокариотов;

При почковании одна из клеток наследует бо льшую часть цитоплазмы материнской клетки, а вторая выглядит маленькой почкой на поверхности большой (пока не отделится). Такой цитокинез дал название целому семейству прокариотов – Почкующиеся бактерии , хотя к почкованию способны не только они.

Особые варианты деления эукариотических клеток.

Мейоз – осуществляется в клетках организмов, размножающихся половым путем.

Биологический смысл явления определяется новым набором признаков у потомков.

В данной работе рассмотрим сущность этого процесса и для наглядности представим его на рисунке, посмотрим последовательность и продолжительность деления половых клеток, а так же узнаем, в чем сходство и отличие митоза и мейоза.

Что такое мейоз

Процесс, сопровождающийся образованием четырех клеток с одинарным хромосомным набором из одной исходной.

Генетическая информация каждой новообразованной соответствует половине набора соматической клетки.

Фазы мейоза

Мейотичекое деление включает два этапа, состоящие из четырех фаз каждое.

Первое деление

Включает профазу I, метафазу I, анафазу I и телофазу I.

Профаза I

На данном этапе образуются две клетки с половинным набором генетической информации. Профаза первого деления включает несколько стадий. Ей предшествует предмейотическая интерфаза, во время которой идет репликация ДНК.

Затем происходит конденсация, образование длинных тонких нитей с протеиновой осью во время лептотены. Данная нить прикрепляется к мембране ядра с помощью концевых расширений – прикрепительных дисков. Половинки удвоенных хромосом (хроматиды) еще не различимы. При исследовании имеют вид монолитных структур.

Далее наступает стадия зиготены. Гомологи сливаются с образованием бивалентов, число которых соответствует одинарному числу хромосом. Процесс конъюгации (соединения) осуществляется между парными, сходными в генетическом и морфологическом аспекте. Причем взаимодействие начинается с концов, распространяясь вдоль тел хромосом. Комплекс из гомологов, связанных белковым компонентом – бивалент или тетрада.

Спирализация происходит во время стадии толстых нитей – пахитены. Здесь уже удвоение ДНК выполнено полностью, начинается кроссинговер. Это обмен участками гомологов. В результате формируются сцепленные гены с новой генетической информацией. Параллельно протекает транскрипция. Плотные участки ДНК – хромомеры — активируются, что приводит к изменению структуры хромосом по типу «ламповых щеток».

Гомологичные хромосомы конденсируются, укорачиваются, расходятся (исключая точки соединения — хиазмы). Это стадия в биологии диплотена или диктиотена. Хромосомы на данном этапе богаты РНК, которая синтезируется на этих же участках. По свойствам последняя близка к информационной.

Наконец, биваленты расходятся к периферии ядра. Последние укорачиваются, теряют ядрышки, становятся компактными, не связанными с ядерной оболочкой. Это процесс носит название диакинеза (перехода к делению клетки).

Метафаза I

Далее биваленты перемещаются к центральной оси клетки. От каждой центромеры отходят веретена деления, каждая центромера равноудалена от обоих полюсов. Небольшие по амплитуде движения нитей удерживают их в данном положении.

Анафаза I

Хромосомы, построенные из двух хроматид, расходятся. Происходит перекомбинация с уменьшением генетического разнообразия (в связи с отсутствием в наборе генов, расположенных в локусах (участках) гомологов).

Телофаза I

Суть фазы состоит в расхождении хроматид с их центромерами к противоположным участкам клетки. В животной клетке происходит цитоплазматическое деление, в растительной – образование клеточной стенки.

Второе деление

После интерфазы первого деления клетка готова ко второму этапу.

Профаза II

Чем длиннее телофаза, тем короче длительность профазы. Хроматиды выстраиваются вдоль клетки, образуя своими осями прямой угол относительно нитей первого мейотического деления. В эту стадию они укорачиваются и утолщаются, ядрышки подвергаются распаду.

Метафаза II

Центромеры вновь расположены в экваториальной плоскости.

Анафаза II

Хроматиды отделяются друг от друга, перемещаясь к полюсам. Теперь они носят название хромосом.

Телофаза II

Деспирализация, растяжение образованных хромосом, исчезновение веретена деления, удвоение центриолей. Гаплоидное ядро окружается ядерной мембраной. Формируются четыре новые клетки.

Таблица сравнения митоза и мейоза

Кратко и понятно особенности и отличия представлены в таблице.

Характеристики Мейотическое деление Митотическое деление
Число делений осуществляется в два этапа осуществляется в один этап
Метафаза после удвоения хромосомы расположены по центральной оси клетки парами после удвоения хромосомы расположены по центральной оси клетки одиночно
Слияние есть нет
Кроссинговер есть нет
Интерфаза нет удвоения ДНК в интерфазу II перед делением характерно удвоение ДНК
Итог деления гаметы соматические
Локализация в зреющих гаметах в соматических клетках
Путь воспроизведения половой бесполый

Представленные данные – схема отличий, а сходства сводятся к одинаковым фазам, редупликации ДНК и спирализации перед началом клеточного цикла.

Биологическое значение мейоза

Какова же роль мейоза:

  1. Дает новые сочетания генов вследствие кроссинговера.
  2. Поддерживает комбинативную изменчивость. Мейоз – источник новых признаков в популяции.
  3. Удерживает постоянное количество хромосом.

Заключение

Мейоз — сложный биологический процесс, в ходе которого образуются четыре клетки, с новыми признаками, полученными в результате кроссинговера.

С уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом — образованием специализированных половых клеток, или гамет , из недифференцированных стволовых. С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной.

Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса. В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках).

Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма. Этот же механизм лежит в основе стерильности межвидовых гибридов.

Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет. Определенные ограничения на конъюгацию хромосом накладывают и хромосомные мутации (масштабные делеции, дупликации, инверсии или транслокации).

Фазы мейоза.

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

Профаза I — профаза первого деления очень сложная и состоит из 5 стадий:

Фаза лептотены или лептонемы — упаковка хромосом.

- Зиготена или зигонема — конъюгация (соединение) гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами.

- Пахитена или пахинема — кроссинговер (перекрест), обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой.

- Диплотена или диплонема — происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой.

- Диакинез — ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой.


  • Метафаза I — бивалентные хромосомы выстраиваются вдоль экватора клетки.
  • Анафаза I — микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.
  • Телофаза I

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

  • Профаза II — происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления.
  • Метафаза II — унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.
  • Анафаза II — униваленты делятся и хроматиды расходятся к полюсам.
  • Телофаза II — хромосомы деспирализуются и появляется ядерная оболочка.

В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и два так называемых редукционных тельца (абортивные дериваты первого и второго делений).

Кроссинго?вер (другое название в биологии перекрёст ) — явление обмена участками гомологичных хромосом во время конъюгации при мейозе. Помимо мейотического описан также митотический кроссинговер. Поскольку кроссинговер вносит возмущения в картину сцепленного наследования, его удалось использовать для картирования «групп сцепления» (хромосом).

Возможность картирования была основана на предположении о том, что, чем чаще наблюдается кроссинговер между двумя генами, тем дальше друг от друга расположены эти гены в группе сцепления и тем чаще будут наблюдаться отклонения от сцепленного наследования. Первые карты хромосом были построены в 1913 г. для классического экспериментального объекта плодовой мушки Drosophila melanogaster Альфредом Стёртевантом, учеником и сотрудником Томаса Ханта Моргана.