Open
Close

Мировой рынок ниобия. Химические свойства ниобия Марки ниобия

Ниобий (Nb) является редким, мягким, переходным металлом, используемым в производстве стали высокого качества. Ниобий - компанент для получения сплавов, который будучи добавленным к другим материалам заметно улучшает их свойства. У стали, содержащей ниобий, есть много привлекательных свойств, делающих ее очень желательной для использования в автомобильной, строительной промышленности и при строительстве газопроводов. Сталь с добавлением ниобия обладает большей твердостю, легче и более устойчива к коррозии.

Использование ниобия началось в 1925 году, когда металл стал применяться для замены вольфрама в призводстве инструментальных сталей. К 1930-ым годам ниобий использовался, чтобы предотвратить коррозию в нержавеющей стали. Эта область применения ниобия стала одной из основных в процессе развития современных технических материалов, а его использование устойчиво увеличивалось в металлургической области.
Ниобий в форме стандартного феррониобия, на долю которого приходится более чем 90% производства ниобия, является переходным металлом, членом группы Ванадиевых элементов. Он характеризуется высокими точками плавления и кипения. Несмотря на высокую точку плавления в элементной форме (2,468 °C), у ниобия низкая плотность по сравнению с другими коррозионностойкими металлами. Кроме того, ниобий при определенных условиях обладает свойствами сверхпроводимости. По химическим свойствам ниобий очень подобен танталу.
Месторождения ниобия находятся, в основном, в Бразилии и Канаде, которые составляют приблизительно 99% полного производства ниобия в мире, а также в Австралии. Геологическая служба США оценивает мировые запасы ниобия на уровне 4,3 млн тонн по содержанию металла.
В природе ниобий находится в таких минералах, как пирохлор и колумбит, которые содержат ниобий и тантал в переменных пропорциях. Минерал пирохлор добывается прежде всего ради ниобия. Колумбит добывается ради извлечения тантала, а ниобий извлекается как побочный продукт. Roskill оценивает, что приблизительно 97% ниобия находятся в минерале пирохлор.

Запасы на месторождениях ниобия в 2012 году, тыс.тонн *

* данные US Geological Survey

Руды, содержащие пирохлор, добываются с использованием двух основных методов - в изоляции или как комбинация. Открытые разработки - распространенный метод в Бразилии, в то время как подземные горные разработки используются в шахте Niobec в Канаде. Вместе с тем, на шахте Niobec в Канаде планируется использовать два метода массовой разработки недр - открытый и подземный, поскольку у них есть потенциал, чтобы значительно увеличить мощность предприятия и объемы добычи, одновременно понижая эксплуатационные расходы.
После того, как руда добыта, ее дробят на мелкие частицы и обогащают методом флотации и магнитного разделения для того, чтобы удалить железо. В Канаде для того, чтобы удалить апатит, используется азотная кислота, а в Бразилии используется специальный процесс, чтобы удалить барий, фосфор и серу. Результат этой физической обработки - концентрат пирохлора с содержанием Nb2O5 на уровне 55-60%. Большая часть концентрата пирохлора перерабатывается в феррониобий стандартного сорта для использования в областях промышленности, где допускаются примеси. Для областей применения, требующих более высоких уровней чистоты, требуется последующая обработка, чтобы привести ниобий к уровню чистоты ~99%, таким, например, как уровни чистоты окиси ниобия или феррониобия вакуумного сорта.

* данные US Geological Survey

Мировой спрос на ниобий рос в среднем ежегодно на 10% в период с 2000 по 2010 год. Рост стимулировали два ключевых фактора:
1. Стабильный спрос на сталь, особенно среди производителей стали из стран БРИКС. Спрос в этих странах вырос на 14% в 2010 году до 1,414 млн тонн и, согласно оценкам, повысился еще на 4% в 2011 году.
Следует отметить, что автомобильная промышленность, строительство и нефтегазовый сектор, которые являются крупнейшими потребителями феррониобия, имеют тенденцию быть чрезвычайно коррелированными к экономическому росту, и состояние мировой экономики оказывает самое большое влияние на спрос на ниобий.
Сильный рост ВВП стран БРИКС требует больше стали и, соответственно, определяет более высокий спрос на ниобий в производстве стали. Мировой ВВП увеличился на 5,1% в 2010 году, в основном из-за высоких показателей развития экономик стран БРИК, которые выросли на 8,8% в 2010 году, особенно Китай, который вырос на 10,3%. Рост ВВП в странах БРИКС в 2011 и 2012 годах также был высоким: 4-10% на фоне мирового экономического роста ~3-4%. В прошедшее десятилетие страны БРИКС определяли глобальный экономический пейзаж, составляя более чем одну треть роста мирового ВВП и, в пересчете на покупательную способность, экономики данных стран выросли от одной шестой мировой экономики до почти четверти.
Голдман Сакс прогнозирует, что объем экономики стран БРИКС, как совокупность, превысит объем американской экономики уже к 2018 году. К 2020, на страны БРИКС, как ожидают, будет приходится приблизительно 49,0% роста мирового ВВП и эти страны будут составлять одну треть мировой экономики, основанной на покупательной способности.
Положительные глобальные экономические перспективы - подтверждение сильного мирового промышленного спроса, который служит хорошим предзнаменованием для стального сектора. Полный глобальный рост в производстве стали продолжит значительно влиять на спрос на ниобий.
2. Рост количества ниобия, используемого для производства стали.
Когда требования конечных потребителей стали в части обеспечения более высокого качества продуктов растут, сталелитейные заводы должны увеличивать использование ниобия, чтобы произвести сталь, соответствующую более высоким стандартам и техническим требованиям. В 2000 году на 1 тонну стали добавлялось 40 граммов феррониобия. В 2008 году это были уже 63 грамма на тонну. Учитывая, что ниобий представляет очень небольшой процент в стали в плане стоимости, но добавляет существенную ценность, улучшая ее особенности, особенно прочность, долговечность, легкость и гибкость, ожидается, что использование данного металла продолжит увеличиваться во всех сегментах конечного потребления.
Устойчивый рост спроса на ниобий, как ожидают, сохранится в кратко- и долгосрочной перспективе, в то время как возникающие рынки продолжают расти, и приложения на более высокие качественные стали уже разработаны.
С учетом растущего производства стали и увеличивающегося процента содержания в ней ниобия, согласно оценкам, мировое потребление феррониобия увеличилось на ~11% с ~78 100 т в 2010 году до ~86 000 т в 2011 году.
Крупнейшие потребители ниобия - Китай, Северная Америка и Европа. Китай - наиболее быстро растущий рынок в мире для ниобия, составлял 25% полного потребления в 2010 году. Это отражает размер его сталелитейной промышленности и быстрый темп роста производства в последние годы. Китай - ведущий в мире производитель нержавеющей стали, с долей мирового производства, вросшей от 1-2% в 1990-ых годах до 36,7% в 2010 году. Китай - также крупнейший и быстро растущий производитель легированных сталей, включая стали HSLA.

Производство и потребление ниобия в мире, тыс.тонн*

год 2008 2009 2010 2011 2012
Всего производство 67.9 40.6 59.4 65.7 62.9
Всего потребление 58.1 40.6 48.9 61.5 62.9
Баланс рынка 9.8 -- 9.4 -0.4 -0.4

* данные Tantalum-Niobium International Study Center

В начале 2000-ых годов цены на ниобий оставались относительно стабильными в диапазоне от 12,00 US$ до US$13,50 за киллограм. Существенный экономический рост развивающихся рынков, особенно экономических систем БРИК и увеличение использования ниобия в производстве стали дали толчок к росту цен на металл до US$32,63 за кг в 2007 году и к дальнейшему росту цен до US$60,00 за килограмм в 2012 году. Только в 2008 и 2009 годах цены на ниобий на фоне мирового экономического кризиса немного снизились. Однако данное снижение было намного меньшим, нежели у металлов - заменителей.
С потребительской точки зрения устойчивая цена на ниобий - желательная особенность, поскольку это позволяет лучше предсказывать и соответственно планировать стоимость. Кроме того, конечные потребители подчеркивают важность сорсинга ниобия от многократных поставщиков, чтобы минимизировать разрушения системы поставок и избежать сверхуверенности в одном производителе.
Ключевая замена для ниобия - феррованадий, рынок которого в основном пришел в себя после краха, испытанного во время финансового кризиса. Однако, сравнительно более высокая цена феррованадия и значительно более высокая изменчивость способствовали его замене феррониобий, у которого есть более предсказуемая ценовая история.
Учитывая высокую ценность, добавленную от использования ниобия в процессе изготовления стали (то есть дополнительная прочность, долговечность, коррозионностойкость, тепловое сопротивление, уменьшение веса) и относительно небольшой доле в общей стоимости, со стороны покупателей металла спрос довольно неэлатичный. Как пример, считается, что ниобий составляет Кроме того, ниобий - добавка к сплавам высокой ценности, которые используются в технических сферах (компоненты реактивного двигателя, медицинское оборудование, тяжелое машиностроение), где приверженность техническим требованиям и превосходящей работе - потребность. В результате доля использования ниобия в производстве стали повысилась. Эта тенденция, как ожидают, продолжится в будущем.
Учитывая отсутствие активных продаж на свободном рынке и, как следствие, отсутствие конкурентной цены, немногие аналитики-исследователи делают предсказания о будущих ценах на ниобий, а тех, кто делает такие предсказания, ведут себя скорее консервативно. Несмотря на эти факторы, ниобий, как ожидают, будет востребован в ближайшем времени, а цены на металл останутся на высоком уровне. Некоторые аналитики ожидают дальнейший рост цен на ниобий в следующие два - три года, что основано на потребительских взаимодействиях и будущих потребностях.

Строительство, автомобильные и нефтегазовые сектора, как ожидают, продолжат составлять самый большой процент потребления ниобия. На эти сектора оказал негативное воздействие финансовый кризис 2008 года, но в последующие годы они пришли в себя и, как предсказывают, будут расти с устойчивой скоростью.

Существует довольно большое количество элементов, которые при соединении с другими веществами образуют сплавы с особыми эксплуатационными качествами. Примером можно назвать ниобий – элемент, который получил сначала название «колумбий» (по названию реки, где он впервые найден), но после был переименован. Ниобий – металл с довольно необычными свойствами, о которых далее поговорим подробнее.

Получение элемента

При рассмотрении свойств ниобия следует отметить, что содержание этого металла на тонну породы относительно невелико, составляет примерно 18 грамм. Именно поэтому после его открытия было предпринято довольно много попыток получения металла искусственным путем. За счет близкого химического состава это вещество достаточно часто добывается вместе с танталом.

Месторождения ниобия расположены практически по всему миру. Примером назовем рудники в Конго, Руанде, Бразилии и в многих других странах. Однако этот элемент нельзя назвать распространенным, во многих регионах он практически не встречается даже в малой концентрации.

Относительно небольшая концентрация вещества в земной породе усугубляется сложностями, возникающими при его получении из концентрата. Стоит учитывать, что ниобий НБШ получить можно только из породы, которая насыщена танталом. Особенностями производственного процесса назовем нижеприведенные моменты:

  1. Для начала на завод поставляется концентрированная руда, которая проходит несколько этапов очистки. При производстве ниобия проводится разделение получаемой руды на чистые элементы, среди которых и тантал.
  2. Завершающий процесс переработки заключается в рафинировании металла.

Несмотря на возникающие сложности при добыче и переработке рассматриваемой руды, с каждым годом объем производства рассматриваемого сплава существенно возрастает. Это связано с тем, что металл обладает исключительными эксплуатационными качествами и получил большое распространение в самых различных отраслях промышленности.

Оксиды ниобия

Рассматриваемый химический элемент может стать основой различных соединений. Самым распространенным можно назвать пятиокись ниобия. Среди особенностей данного соединения можно отметить нижеприведенные моменты:

  1. Оксид ниобия представлен белым кристаллическим порошком, который имеет кремовый оттенок.
  2. Вещество не растворяется в воде.
  3. Получаемое вещество сохраняет свою структуру при смешивании с большинства кислотами.

К особенностям пентаоксида ниобия также можно отнести следующие свойства:

  1. Повышенная прочность.
  2. Высокая тугоплавкость. Вещество способно выдерживать температуру до 1490 градусов Цельсия.
  3. При нагреве поверхность окисляется.
  4. Реагирует на воздействие хлора, может восстанавливаться водородом.

Гидроксид ниобия в большинстве случаев применяется для получения высоколегированных марок стали, которые обладают довольно привлекательными эксплуатационными качествами.

Физические и химические свойства

Ниобий имеет химические свойства схожие с химическими свойствами тантала. Рассматривая основные характеристики ниобия, нужно уделить внимание нижеприведенным моментам:

  1. Устойчивость к воздействию различных видов коррозии. Сплавы, получаемые при внедрении данного элемента в состав, обладают высокими коррозионностойкими качествами.
  2. Рассматриваемый химический элемент демонстрирует высокий показатель температуры плавления. Как показывает практика, у большинства сплавов температура плавления более 1 400 градусов Цельсия. это усложняет процесс обработки, но делает металлы незаменимы в различных сферах деятельности.
  3. Основные физические свойства также характеризуются легкостью сваривания получаемых сплавов.
  4. При отрицательных температурах структура элемента остается практически неизменной, что позволяет сохранить эксплуатационные свойства металла.
  5. Особое строение атома ниобия определяет сверхпроводящие качества материала.
  6. Атомная масса составляет 92,9, валентность зависит от особенностей состава.

Основным достоинством вещества считается именно тугоплавкость. Именно поэтому он стал применяться в самых различных отраслях промышленности. Плавление вещества проходит при температуре около 2 500 градусов Цельсия. Некоторые сплавы и вовсе плавятся при рекордной температуре 4 500 градусов Цельсия. Плотность вещества достаточно высокая, составляет 8,57 грамма на кубический сантиметр. Стоит учитывать, что металл характеризуется парамагнитностью.

На кристаллическую решетку не оказывают воздействия следующие кислоты:

  1. серная;
  2. соляная;
  3. фосфорная;
  4. хлорная.

Не оказывает воздействие на металл и водные растворы хлора. При определенном воздействии на металл на его поверхности образуется диэлектрическая оксидная пленка. Именно поэтому металл стал использоваться при производстве миниатюрных высокоемкостных конденсаторов, которые также изготавливаются из более дорогостоящего тантала.

Применение ниобия

Изготавливаются самые различные изделия из ниобия, большая часть которых связана с выпуском авиационной техники. Примером можно назвать применение ниобия в изготовлении деталей, которые устанавливаются при сборе ракет или самолетов. Кроме этого, можно выделить следующее применение данного элемента:

  1. Производство элементов, из которых изготавливают радарные установки.
  2. Как ранее было отмечено, для получения более дешевых емкостных электрических конденсаторов может применяться рассматриваемый сплав.
  3. Катоды, аноды из фольги тоже изготавливают при применении рассматриваемого элемента, что связано с высокой жаропрочностью.
  4. Часто можно встретить конструкции мощных генераторных ламп, которые имеют внутри сетку. Для того чтобы эта сетка выдержала воздействие высокой температуры ее изготавливают из рассматриваемого сплава.

Высокие физические и химические качества определяют применение ниобия при производстве труб для транспортировки жидких металлов. Кроме этого, сплавы применяются для получения контейнеров самого различного предназначения.

Сплавы с ниобием

Рассматривая подобные сплавы следует учитывать, что часто этот элемент применяется для производства феррониобия. Этот материал получил широкое применение в литейных отраслях индустрии, а также при изготовлении электронных покрытий. В состав входит:

  1. железо;
  2. ниобий с танталом;
  3. кремний;
  4. алюминий;
  5. углерод;
  6. сера;
  7. фосфор;
  8. титан.

Концентрация основных элементов может варьироваться в достаточно большом диапазоне, от чего и зависят эксплуатационные качества материала.

Альтернативным сплавов феррониобия можно назвать ниобий 5ВМЦ. При его получении в качестве легирующих элементов используется вольфрам, цирконий и молибден. В большинстве случаев этот спав используется для производства полуфабрикатов.

В заключение отметим, что ниобий в некоторых странах применяется при производстве монет. Это связано с достаточно высокой стоимостью материала. При массовом выпуске сплавов, которые в качестве основного элемента имеют в составе ниобий, создаются своеобразные слитки.

Тантал и ниобий получают восстановлением из соединений высокой чистоты: оксидов, комплексных фтористых солей, хлоридов. Промышленные способы получения металлов можно подразделить на четыре группы:

Натриетермическое восстановление из комплексных фторидов;

Восстановление из оксидов углеродом (карботермичес - кий способ);

Восстановление из оксидов алюминия (алюминотерми - ческий способ);

Восстановление из хлоридов водородом;

Электролиз расплавленных сред.

В связи с высокой температурой плавления тантал (~3000 С) и ниобия (~2500 С) их получают в результате восстановления всеми перечисленными способами, кроме тре­тьего, в форме порошков или спекшейся губки. Задача полу­чения компактных ковких тантала и ниобия осложняется тем, что эти металлы активно поглощают газы (водород, азот, кислород), примеси которых придают им хрупкость. Поэтому спекать спрессованные из порошков заготовки или плавить их необходимо в высоком вакууме.

Натриетермический способ производства порошков тантала и ниобия

Натриетермическое восстановление комплексных фторидов K2TaF7 и K2NbF7 - первый промышленный способ получения тантала и ниобия. Его применяют и в настоящее время. Для восстановления фтористых соединений тантала и ниобия при­годны натрий, кальций и магний, имеющие высокое сродство к фтору, как видно из приведенных ниже величин:

Эл<^ент Nb Та Na Mg Са

AG298, кДж/г-атом F. . . . -339 -358 -543 -527 -582

Для восстановления используют натрий, так как фторид натрия растворим в воде и может быть отделен отмывкой от порошков тантала и ниобия, тогда как фториды магния и кальция малорастворимы в воде и кислотах.

Рассмотрим процесс на примере получения тантала. Вос­становление K2TaF7 натрием протекает с большим выделением тепла (даже при масштабах загрузки шихты до 5 кг), доста­точным для самопроизвольного течения процесса. После по­догрева шихты в одном месте до 450-500 С реакция быстро распространяется по всей массе шихты, причем температура достигает 800-900 С. Поскольку натрий плавится при 97 С, а кипит при 883 , очевидно, что в восстановлении участвуют жидкий и парообразный натрий:

K2TaF7 + 5NaW = Та + 5NaF + 2KF; K2TaF7 + 5Na(ra3) = Та + 5NaF + 2KF.

Удельные тепловые эффекты реакций (2.18) и (2.19) рав­ны 1980 и 3120кДж/кг шихты соответственно.

Восстановление ведут в стальном тигле, куда послойно загружают фторотанталат калия и кусочки натрия (~120 % от стехиометрически необходимого количества), которые наре­зают специальными ножницами. Сверху шихту засыпают слоем хлорида натрия, образующего с KF и NaF легкоплавкую смесь. Солевой расплав защищает от окисления частицы по­
рошка тантала. В наиболее простом варианте проведения процесса для возбуждения реакции стенку тигля у дна наг­ревают пламенем паяльной лампы до появления красного пят­на. Реакция быстро протекает по всей массе и заканчивает­ся за 1-2 мин. При таком осуществлении процесса вслед­ствие кратковременной выдержки продуктов при максимальной температуре (800-900 С) получаются тонкодисперсные по­рошки тантала, которые после отмывки солей содержат до 2 % кислорода.

Более крупнозернистый порошок с меньшим содержанием кислорода получают при помещении реакционного тигля в шахтную электропечь с выдержкой его в печи после оконча­ния реакции при 1000 °С.

Получающийся в результате восстановления тантал вкрап­лен в виде мелких частиц во фтористо-хлоридном шлаке, со­держащем избыточный натрий. После остывания содержимое тигля выбивают, дробят на щековой дробилке и загружают небольшими порциями в реактор с водой, где происходит "гашение" натрия и растворение основной массы солей. За­тем порошок последовательно промывают разбавленной неї (для более полной отмывки солей, растворения примеси же­леза и частично титана). Для понижения содержания оксидов тантала порошок иногда дополнительно отмывают холодной разбавленной плавиковой кислотой. Затем порошок промывают дистиллированной водой, фильтруют и сушат при 110-120 С.

Описанным выше способом с соблюдением примерно тех же режимов получают порошки ниобия восстановлением k2NbF7 натрием. Высушенные порошки ниобия имеют состав, %: Ті, Si, Fe 0,02-0,06; О около 0,5; N до 0,1; С 0,1-0,15.

Карботермический способ получения ниобия и тантала из оксидов

Этот способ был первоначально разработан для производ­ства ниобия из Nb2o5.

Ниобий может быть восстановлен из Nb2os углеродом при 1800-1900 °С в вакуумной печи:

Nb2Os + 5С = 2Nb + SCO. (2.20)

Шихта Nb205 + 5С содержит мало ниобия и даже в брикетированном состоянии имеет низкую плотность (~1,8г/см3). Вместе с тем на 1 кг шихты выде­ляется большой объем со (~0,34 м3). Эти обстоятельства делают невыгодным проведение процесса по реакции (2.20), так как производительность вакуумной печи при этом низ­кая. Поэтому процесс проводят в две стадии:

І стадия - получение карбида ниобия

Nb203 + 1С = 2NbC + 5CO; (2.2l)

П стадия - получение ниобия в вакуумных печах

Nb2Os + 5NbC = 7Nb + 5CO. (2.22)

Брикетированная шихта її стадии содержит 84,2 % (по массе) ниобия, плотность брикетов ~3 г/см3, объем образу­ющегося со 0,14 м3 на 1 кг шихты (~ в 2,5 раза меньше, чем в случае шихты Nb2o5 + sc). Это обеспечивает более высокую производительность вакуумной печи.

Существенное преимущество двустадийного процесса со­стоит также в том, что первую стадию можно проводить при атмосферном давлении в графитово-трубчатых печах сопро­тивления (рис. 29).

Для получения карбида ниобия (і стадии процесса) смесь - Nb2o5 с сажей брикетируют и брикеты нагревают в графито - вотрубчатой печи в атмосфере водорода или аргона при 1800-1900 °С (вдоль печи брикеты непрерывно продвигаются

Рис. 29. Схема графитово-трубчатой печи сопротивления:

1 - кожух; 2 - графитовая труба накала; 3 - экранирующая графитовая труба; 4- сажевая теплоизолирующая засыпка; 5 - холодильник; 6 - контактные графи­товые конусы; 7 - охлаждаемая контактная головка; 8 - люк; 9 - шины, подво­дящие ток

Из расчета пребывания их в горячей зоне 1-1,5 ч). Измель­ченный карбид ниобия смешивают в шаровой мельнице с Nb2o5, взятой с небольшим избытком (3-5 %) против необхо­димого по реакции (2.22).

Шихту прессуют в заготовки под давлением 100 МПа, ко­торые нагревают в вакуумных печах с графитовыми нагрева­телями (или вакуумных индукционных печах с графитовой трубой) при 1800-1900 С. Выдержка заканчивается при дос­тижении остаточного давления 1,3-0,13 Па.

Реакции (2.21) и (2.22) являются суммарными. Они про­текают через промежуточные стадии образования низших ок­сидов (Nt>o2 и NbO), а также карбида Nb2c. Основные реак­ции I стадии:

Nb2Os + С = 2Nb02 + СО; (2.23)

Nb02 + С = NbO + СО; (2.24)

2NbO + 3С = Nb2C + 2СО; (2.25)

Nb2C + С = 2NbC. (2.26)

Реакции п стадии:

Nb2Os + 2NbC = 2Nb02 + Nb2C + CO; (2.27)

Nb02 + 2NbC = NbO + Nb2C + CO; (2.28)

NbO + Nb2C = 3Nb + CO. (2.29)

Металлический ниобий получается по завершающей ре­акции II стадии процесса (2.29). Равновесное давление со для реакции (2.29) при 1800 °С > 1,3 Па. Следовательно, проводить процесс необходимо при остаточном давлении меньшем, чем равновесное для данной реакции (0,5- 0,13 Па).

Полученные спекшиеся пористые брикеты ниобия содер­жат, %: С 0,1-0,15; О 0,15-0,30; N 0,04-0,5. Для получе­ния компактного ковкого металла брикеты плавят в элек­тронно-лучевой печи. Другой путь состоит в получении из брикетов порошка (путем гидрирования при 450 С, измель­чения и последующего дегидрирования в вакууме), прессова­нии штабиков и их спекании в вакууме при 2300-2350 С. В процессах вакуумной плавки и спекания в вакууме кислород и углерод удаляются в составе со, а избыточный кислород в составе летучих низших оксидов.

Основные преимущества карботермического способа - вы­сокий прямой выход металла (не ниже 96 %) и применение дешевого восстановителя. Недостаток способа - сложность конструкций высокотемпературных вакуумных печей.

Карботермическим способом можно получать также тантал и сплавы ниобия с танталом.

Алюминатермический способ получения ниобия и тантала из высших оксидов

Разработанный в последние годы алюминометрический спо­соб получения ниобия восстановлением пентоксида ниобия алюминием благодаря малостадийности и простоте аппаратур­ного оформления обладает технико-экономическими преиму­ществами по сравнению с другими способами производства ниобия.

Способ основан на экзотермической реакции:

3Nb2Os + 10А1 = 6Nb + 5А1203; (2.30)

Доу = -925,3 + 0,1362т, кДж/моль Nb2o5.

Высокий удельный тепловой эффект реакции (2640 кДж/кг шихты стехиометрического состава) обеспечивает возмож­ность проведения процесса без внешнего подогрева с вы­плавкой слитка ниобиевоалюминиевого сплава. Успешное про­ведение внепечного алюмотермического восстановления воз­можно в том случае, если температура процесса выше темпе­ратуры плавления А12о3 = 2030 °С) и металлической фазы (сплав Nb +10 % ai плавится при 2050 °С). При избыт­ке алюминия в шихте 30 - 40 % сверх стехиометрического количества температура процесса достигает ~2150-2200 С. Вследствие быстрого протекания восстановления превышение температуры примерно на 100-150 С по сравнению с темпе­ратурами плавления шлаковой и металлической фаз достаточ­но для обеспечения их разделения. При указанном выше из­бытке алюминия в шихте получают сплав ниобия с 8-10 % алюминия при реальном извлечении ниобия 98-98,5 %.

Алюминотермическое восстановление проводят в стальном тигле с набивной футеровкой из прокаленных оксидов магния или алюминия. Для удобства выгрузки продуктов плавки ти­гель делают разъемным. Через стенки вводят контакты для подвода электрического тока (20 В, 15 А) к запалу в виде нихромовой проволоки, помещенной в шихту. Другой возмож­ный вариант - проведение процесса в массивном разъемном медном тигле, у стенок которого образуется гарниссажный защитный слой.

Смесь тщательно высушенного Nb2o5 и алюминиевого поро­шка крупностью ~100 мкм загружают в тигель. Целесообразно для исключения контакта с воздухом помещать тигель в ка­меру, заполненную аргоном.

После включения запала реакция протекает быстро по всей массе шихты. Полученный слиток сплава дробят на кус­ки и подвергают вакуумтермической обработке при 1800-2000 С в печи с графитовым нагревателем при оста­точном давлении ~0,13 Па с целью удаления большей части алюминия (до его содержания 0,2 %). Затем проводят рафи­нировочную плавку в электронно-лучевой печи, получая слитки ниобия высокой чистоты с содержанием примесей, %: А1 < 0,002; С 0,005; Си < 0,0025; Fe < 0,0025; Mg, Mn, Ni, Sn < 0,001; N 0,005; О < 0,010; Si < 0,0025; Ті < < 0,005; V < 0,0025.

Принципиально возможно алюминотермическое получение тантала, однако процесс несколько сложней. Удельный теп­ловой эффект реакции восстановления 895 кДж/кг шихты. Вследствие высокой температуры плавления тантала и его сплавов с алюминием для выплавки слитка в шихту вводят оксид железа (из расчета получения сплава с 7-7,5 % желе­за и 1,5 % алюминия), а также подогревающую добавку - хлорат калия (бертолетову соль). Тигель с шихтой помещают в печь. При 925 С начинается самопроизвольная реакция. Извлечение тантала в сплав около 90 %.

После вакуумтермической обработки и электронно-лучевой плавки слитки тантала имеют высокую чистоту, сравнимую с приведенной выше для ниобия.

Получение тантала и ниобия восстановлением из их хлоридов водородом

Разработаны различные способы восстановления тантала и ниобия из их хлоридов: восстановление магнием, натрием и водородом. Наиболее перспективны некоторые варианты вос­становления водородом, в частности рассмотренный ниже способ восстановления паров хлоридов на нагретых подлож­ках с получением прутка компактного металла.

На рис. 30 приведена схема установки для получения тантала восстановлением паров ТаС15 водородом на тантало­вой ленте, нагретой до 1200-1400 °С. Пары ТаСІ5 в смеси с водородом поступают из испарителя в реактор, в центре ко­торого находится танталовая ленты, нагреваемая прямым пропусканием электрического тока до заданной температуры. Для равномерного распределения паро-газовой смеси по дли­не ленты и обеспечения перпендикулярного к ее поверхности потока вокруг ленты установлен экран из нержавеющей стали с отверстиями. На нагретой поверхности происходит ре­акция:

ТаС15 + 2,5 Н2 = Та + 5 HCl; AG°m к = -512 кДж. (2.31)

Рис. 30. Схема установки для восстановления пентахлорида тантала водородом: 1 - фланец реактора; 2 - изолированный электроподвод; 3 - зажимные контакты; 4 - конденсатор для непрореагировавшего хлорида; 5 - танталовая лента; 6 - экраи с отверстиями,- 7 - корпус реактора; 8 - нагреватель реактора; 9 - обо­греваемый ротаметр; 10 - игольчатый вентиль; 11 - электропечь испарителя; 12 - испаритель пентахлорида тантала; 13 - ротаметр для водорода

Оптимальные условия осаждения тантала: температура ленты 1200-1300 °С, концентрация ТаСІ5 в газовой смеси ~ 0,2моля/моль смеси. Скорость осаждения в этих усло­виях равна 2,5-3,6 г/(см2 ч) (или 1,5-2,1 мм/ч), Таким образом, за 24 ч получают пруток чистого тантала со сред­ним диаметром 24-25 мм, который может быть прокатан в лист, использован для переплавки в электронно-лучевой пе­чи или превращен в высокочистые порошки (путем гидрирова­ния, измельчения и дегидрирования порошка). Степень пре­вращения хлорида (прямое извлечение в покрытие) составля­ют 20-30 %. Непрореагировавший хлорид конденсируют и сно­ва используют. Расход электроэнергии равен 7-15 кВт ч на 1 кг тантала в зависимости от принятого режима.

Водород после отделения паров НСІ поглощением водой может быть возвращен в процесс.

Описанным способом можно получать также прутки ниобия. Оптимальные условия осаждения ниобия: температура ленты 1000-1300 С, концентрация пентахлорида 0,1-0,2 моля/моль газовой смеси. Скорость осаждения металла равна 0,7-1,5 г/(см2-ч), степень превращения хлорида в металл 15-30%, расход электроэнергии 17-22 кВт*ч/кг металла. Процесс для ниобия ослажняется тем, что часть NbCl5 вос­станавливается в объеме реактора на некотором расстоянии от накаленной ленты до нелетучего NbCl3, осаждающегося на стенках реактора.

Электролитический способ получения тантала

Тантал и ниобий нельзя выделить электролизом из водных растворов. Все разработанные процессы основаны на элект­ролизе расплавленных сред.

В промышленной практике метод применяют для получения тантала. Так, на протяжении ряда лет электролитический метод тантала использовала фирма "Фенстил" (США), часть производимого тантала в Японии в настоящее время получают электролизом. Широкие исследования и про­мышленные испытания метода проведены в СССР.

Метод электролитического получения тантала подобен ме­тоду получения алюминия.

Основой электролита служит расплав солей K2TaF7 - KF - - КС1, в котором растворен оксид тантала Та205. Применение электролита, содержащего лишь одну соль - K2TaF7, практи­чески невозможно вследствие непрерывного анодного эффекта при использовании графитового анода. Электролиз возможен в ванне, содержащей K2TaF7, КС1 и NaCl. Недостаток этого электролита - накопление в нем в процессе электролиза фтористых солей, что приводит к снижению критической плотности тока и требует корректировки состава ванны. Этот недостаток устраняется введением в электролит Та205. Результатом электролиза в этом случае является электроли­тическое разложение оксида тантала с выделением на катоде тантала, а на аноде кислорода, реагирующего с графитом анода с образованием С02 и СО. Кроме того, введение в со­левой расплав Та205 улучшает смачивание расплавом графи­тового анода и повышает величину критической плотности тока.

Выбор состава электролита базируется на данных иссле­дований тройной системы K2TaF7-KCl-KF (рис.31). В этой системе установлены две двойные соли K2TaF7 KF (или KjTaFg) и K2TaF7 КС1 (или K3TaF7Cl), две тройные эвтекти­ки Еі и Е2, плавящиеся при 580 и 710 С соответственно, и перитектическая точка Р при 678 °С. При введении Та205 в расплав он взаимодействует с фторотанталатами с образова­нием оксофторотанталата:

3K3TaF8 + Ta2Os + 6KF = 5K3TaOF6. (2.32)

Аналогично протекает реакция с K3TaF7Cl. Образование оксофторидных комплексов тантала обусловливает раствори­мость Та205 в электролите. Предельная растворимость зави­сит от содержания K3TaF8 в расплаве и соответствует сте­хиометрии реакции (2.32).

На основе данных о влиянии состава электролита на по­казатели электролиза (критическую плотность тока, выход по току, извлечение, качество танталового порошка) совет­скими исследователями предложен следующий оптимальный со­став электролита: 12,5 % (по массе) K2TaF7, остальное КС1 и KF в отношении 2:1 (по массе). Концентрация вводимого Ta2Os 2,5-3,5 % (по массе). В данном электролите при тем­пературах 700-800 °С при использовании графитового анода напряжение разложения оксофторидного комплекса 1,4 В, тогда как для KF и КС1 напряжения разложения равны ~3,4 В и ~4,6 В соответственно.

КС I K2TaF,-KCl KJaFf

Рис. 31. Диаграмма плавкости системы K2TaF7-KF-KCl

При электролизе на катоде происходит ступенчатый раз­ряд катионов Та5+:

Та5+ + 2е > Та3+ + Ъе * Та0.

Процессы на аноде можно представить реакциями: TaOF63" - Зе = TaFs + F" + 0; 20 + С = С02; С02 + С = 2СО; TaFj + 3F~ = TaF|~. Ионы TaF|~, реагируя с вводимым в расплав Ta2Os, обра­зуют вновь ионы TaOF|~. При температурах электролиза 700-750 °С в составе газов -95 % С02, 5-7 % СО; 0,2-

Среди испытанных в СССР конструкций электролизеров лучшие результаты были получены в тех, где катодом служит тигель из никеля (или сплава никеля с хромом), в центре

Рис.32. Схема электролизера для получения тантала:

1 - бункер с питателем подачи Та205; 2 - электромагнитный вибратор питателя; 3 - кронштейн с креплением для анода; 4 - полый графитовый анод с отверстия­ми в стенке; 5 - тигель-катод из нихрома; 6 - крышка; 7 - теплоизолирующий стакан; 8 - штурвал для подъема авода; 9 - пробка со стержнем для подвода тока

Которого расположен полый графитовый анод с отверстиями в стенках (рис. 32). Оксид тантала подают периодически ав­томатическим вибропитателем в полый анод. При таком спо­собе питания исключается механическое загрязнение катод­ного осадка нерастворившейся пятиокисью тантала. Газы удаляют через бортовой отсос. При температуре электролиза 700-720 С, непрерывном питании ванны Та205 (т. е. при ми­нимальном числе анодных эффектов), катодной плотности то­ка 30-50 А/дм2 и отношении DjDк = 2*4 прямое извлечение тантала составляет 87-93 %, выход по току 80 %.

Электролиз ведут до заполнения катодным осадком 2/3 полезного объема тигля. По окончании электролиза анод поднимают и электролит вместе с катодным осадком охлажда­ют. Применяют два способа обработки катодного продукта с целью отделения электролита от частиц танталового порош­ка: измельчение с воздушной сепарацией и вакуум-терми - ческую очистку.

Вакуум-термический способ, разработанный в СССР, со­стоит в отделении основной массы солей от тантала выплав­кой (вытапливанием) в атмосфере аргона с последующим уда­лением остатка испарением в вакууме при 900 С. Выплав­ленный и сконденсированный электролит возвращают на электролиз.

Та измельчением с воздушной сепарацией 30-70 мкм, а при использовании вакуум-термической обработки - 100-120 мкм.

Получение ниобия из оксифторидно-хлоридных электроли­тов, подобно танталу, не дало положительных разультатов вследствие того, что при разряде на катоде образуются низшие оксиды, загрязняющие металл. Выход по току низкий.

Для ниобия (а также для тантала) перспективны бескис­лородные электролиты. Пентахлориды ниобия и тантала рас­творяются в расплавленных хлоридах щелочных металлов с образованием комплексных солей A/eNbCl6 и MeTaCl6. При электролитическом разложении этих комплексов на катоде выделяются крупнокристаллические осадки ниобия и тантала, а на графитовом аноде - хлор.

Ниобий

НИО́БИЙ -я; м. [лат. Niobium] Химический элемент (Nb), твёрдый тугоплавкий и ковкий металл серовато-белого цвета (используется при производстве химически стойких и жаростойких сталей).

Нио́бийный; нио́биевый, -ая, -ое.

нио́бий

(лат. Niobium), химический элемент V группы периодической системы. Назван по имени Ниобы - дочери мифологического Тантала (близость свойств Nb и Ta). Светло-серый тугоплавкий металл, плотность 8,57 г/см 3 , t пл 2477°C, температура перехода в сверхпроводящее состояние 9,28 K. Химически очень стоек. Минералы: пирохлор, колумбит, лопарит и др. Компонент химически стойких и жаростойких сталей, из которых изготовляют детали ракет, реактивных двигателей, химическую и нефтеперегонную аппаратуру. Ниобием и его сплавами покрывают тепловыделяющие элементы (ТВЭЛы) ядерных реакторов. Станнид Nb 3 Sn, германид Nb 3 Ge, сплавы ниобия с Sn, Ti и Zr используют для изготовления сверхпроводящих соленоидов (Nb 3 Ge - сверхпроводник с температурой перехода в сверхпроводящее состояние 23,2 K).

НИОБИЙ

НИО́БИЙ (лат. Niobium, от имени Ниобы (см. НИОБА) ), Nb (читается «ниобий»), химический элемент с атомным номером 41, атомная масса 92,9064. Природный ниобий состоит из одного стабильного изотопа 93 Nb. Конфигурация двух внешних электронных слоев 4s 2 p 6 d 4 5s 1 . Cтепени окисления +5, +4, +3, +2 и +1 (валентности V IV, III, II и I). Расположен в группе VВ, в 5 периоде периодической системы элементов.
Радиус атома 0,145 нм, радиус иона Nb 5+ - от 0,062 нм (координационное число 4) до 0,088 нм (8), иона Nb 4+ - от 0,082 до 0,092 нм, иона Nb 3+ - 0,086 нм, иона Nb 2+ - 0,085 нм. Энергии последовательной ионизации - 6,88, 14,32, 25,05, 38,3 и 50,6 эВ. Работа выхода электронов 4,01 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,6.
История открытия
Открыт в 1801 Ч. Хатчетом (см. ХАТЧЕТ Чарлз) . Исследуя черный минерал, присланный из Америки, он выделил оксид нового элемента, который он назвал колумбием, а содержащий его минерал - колумбитом. Через год из того же минерала А. Г. Экеберг (см. ЭКЕБЕРГ Андерс Густав) выделил еще один оксид, который назвал танталом (см. ТАНТАЛ (химический элемент)) . Свойства колумбия и Ta были очень близки, и их очень долго рассматривали как один элемент. В 1844 Г. Розе (см. РОЗЕ (немецкие ученые, братья)) доказал, что это два разных элемента. Он сохранил название тантал, а другой назвал ниобий. Только в 1950 ИЮПАК (Всемирная организация химиков) окончательно присвоила элементу №41 название ниобий. Металлический Nb первым получил в 1866 К. Бломстранд (см. БЛОМСТРАНД Кристиан Вильгельм) .
Нахождение в природе
Содержание в земной коре 2·10 -3 % по массе. В свободном виде ниобий не встречается, в природе сопутствует танталу. Из руд наиболее важны колумбит-танталит (см. КОЛУМБИТ) (Fe,Mn)(Nb,Ta) 2 O 6 , пирохлор (см. ПИРОХЛОР) и лопарит (см. ЛОПАРИТ) .
Получение
Около 95% Nb получают из пирохлоровых, колумбит-танталитовых и лопаритовых руд. Руды обогащают гравитационнымми методами и флотацией (см. ФЛОТАЦИЯ) . Концентраты с содержанием Nb 2 O 5 до 60% перерабатывают до феррониобия (сплава железа и ниобия), чистого Nb 2 O 5 или NbCl 5 . Восстанавливают ниобий из его оксида, фторида или хлорида алюмино- или карботермией. Особо чистый ниобий получают высокотемпературным восстановлением летучего NbCl 5 водородом.
Полученный порошок ниобия брикетируют, спекают в вакууме в электродуговых или электроннолучевых печах.
Физические и химические свойства
Ниобий - блестящий серебристо-серый металл с кубической объемно центрированной кристаллической решеткой типа a-Fe, а = 0,3294 нм. Температура плавления 2477°C, кипения 4760°C, плотность 8,57 кг/дм 3 .
Химически ниобий довольно устойчив. При прокаливании на воздухе окисляется до Nb 2 О 5 . Для этого оксида описано около 10 кристаллических модификаций. При обычном давлении стабильна b-форма Nb 2 О 5 . При сплавлении Nb 2 О 5 с различными оксидами получают ниобаты: Ti 2 Nb 10 О 29 , FeNb 49 О 124 . Ниобаты могут рассматриваться как соли гипотетических ниобиевых кислот. Они делятся на метаниобаты MNbO 3 , ортониобаты M 3 NbO 4 , пирониобаты M 4 Nb 2 O 7 или полиниобаты M 2 O·n Nb 2 O 5 (M - однозарядный катион, а n = 2-12). Известны ниобаты двух- и трехзарядных катионов. Ниобаты реагируют с HF, расплавами гидрофторидов щелочных металлов (KHF 2) и аммония (см. АММОНИЙ (в химии)) . Некоторые ниобаты с высоким отношением M 2 O/Nb 2 O 5 гидролизуются:
6Na 3 NbO 4 + 5H 2 O = Na 8 Nb 6 O 19 + 10NaOH
Ниобий образует NbО 2 , NbО и ряд оксидов, промежуточных между NbО 2,42 и NbО 2,50 и близких по структуре к b-форме Nb 2 О 5 .
С галогенами (см. ГАЛОГЕНЫ) Nb образует пентагалогениды NbHal 5 , тетрагалогениды NbHal 4 и фазы NbHal 2,67 -NbHal 3+x , в которых имеются группировки Nb 3 или Nb 2 . Пентагалогениды ниобия легко гидролизуются водой. Температуры плавления пентахлорида, пентабромида и пентаиодида ниобия - 205, 267,5 и 310°C. Выше 200-250°C эти пентагалогениды летучи.
В присутствии паров воды и кислорода NbCl 5 и NbBr 5 образуют оксигалогениды NbOCl 3 (NbOBr 3) - рыхлые ватообразные вещества.
При взаимодействии Nb и графита образуются карбиды Nb 2 C и NbC, твердые жаропрочные соединения. В системе Nb - N существуют несколько фаз переменного состава и нитриды Nb 2 N и NbN. Сходным образом ведет себя Nb в системах с фосфором и мышьяком. При взаимодействии Nb с серой получены сульфиды: NbS, NbS 2 и NbS 3 . Синтезированы двойные фториды Nb и K (Na) - K 2 .
Применение
50% производимого ниобия используется для микролегирования сталей, 20-30% - для получения нержавеющих и жаропрочных сплавов. Интерметаллиды ниобия (Nb 3 Sn и Nb 3 Ge) применяют при изготовлении соленоидов сверхпроводящих устройств. Нитрид ниобия NbN используют при изготовлении мишеней передающих телевизионных трубок. Оксиды ниобия - компоненты огнеупорных материалов, керметов, стекол с высокими коэффициентами преломления. Двойные фториды - при выделении ниобия из природного сырья, при производстве металлического ниобия. Ниобаты используются в акусто- и оптоэлектронике, как лазерные материалы.
Физиологическое действие
Соединения ниобия ядовиты. ПДК ниобия в воде 0,01 мг/л.

Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "ниобий" в других словарях:

    - (ново лат. niobium). Один из редких металлов, встречающийся в танталите. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. НИОБИЙ металл, встречается в виде окислов в редких минералах практического значения не имеет … Словарь иностранных слов русского языка

    - (Niobium), Nb, химический элемент V группы периодической системы, атомный номер 41, атомная масса 92,9064; металл, tпл 2477 шC. Ниобий используют для легирования сталей, получения жаропрочных, твердых и других сплавов. Ниобий открыт английским… … Современная энциклопедия

    Ниобий - (Niobium), Nb, химический элемент V группы периодической системы, атомный номер 41, атомная масса 92,9064; металл, tпл 2477 °C. Ниобий используют для легирования сталей, получения жаропрочных, твердых и других сплавов. Ниобий открыт английским… … Иллюстрированный энциклопедический словарь

    - (символ Nb), блестящий серо белый переходный химический элемент, металл. Открыт в 1801 г. Встречается, как правило, в пирохлорных рудах. Будучи мягким и ковким металлом, ниобий применяется в производстве специальных нержавеющий сталей и сплавов… … Научно-технический энциклопедический словарь

    Nb (лат. Niobium; от им. Ниобы дочери Тантала в др. греч. мифологии * a. niobium; н. Niob, Niobium; ф. niobium; и. niobio), хим. элемент V группы периодич. системы Менделеева, ат. н. 41, ат. м. 92,9064. Имеет один природный изотоп 93Nb.… … Геологическая энциклопедия

    НИОБИЙ, один из открытых химиками металлов. Толковый словарь Даля. В.И. Даль. 1863 1866 … Толковый словарь Даля

    НИОБИЙ - хим. элемент, символ Nb (лат. Niobium), ат. н. 41, ат. м. 92,90; светло серый металл, плотность 8570 кг/м3, t = 2500 °С; обладает высокой хим. стойкостью. В природе встречается в минералах совместно с танталом, разделение с которым вызывает… … Большая политехническая энциклопедия

    - (лат. Niobium) Nb, химический элемент V группы периодической системы, атомный номер 41, атомная масса 92,9064. Назван от имени Ниобы дочери мифологического Тантала (близость свойств Nb и Ta). Светло серый тугоплавкий металл, плотность 8,57… … Большой Энциклопедический словарь

    - (Niobium), Nb, хим … Физическая энциклопедия

    Сущ., кол во синонимов: 2 металл (86) элемент (159) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    - (Niobium франц. и англ., Niob нем.; хим.), Nb =:94. в Vгруппе периодической системы элементов имеются два редких металла, Н. итантал, которые относятся к ванадию подобно тому, как молибден ивольфрам к хрому; последние три металла члены… … Энциклопедия Брокгауза и Ефрона

Через год шведский химик Экеберг выделил из колумбита окисел еще одного нового элемента, названного танталом . Сходство соединений Колумбия и тантала было так велико, что в течение 40 лет большинство химиков считало: тантал и колумбий - один и тот же элемент.

В 1844 г. немецкий химик Генрих Розе исследовал образцы колумбита, найденные в Баварии. Он вновь обнаружил окислы двух металлов. Один из них был окислом известного уже тантала. Окислы были похожи, и, подчеркивая их сходство, Розе назвал элемент, образующий второй окисел, ниобием по имени Ниобы, дочери мифологического мученика Тантала.

Впрочем, Розе, как и Хатчет, не сумел получить этот элемент в свободном состоянии.

Металлический ниобий был впервые получен лишь в 1866 г . шведским ученым Бломстрандом при восстановлении хлорида ниобия водородом . В конце XIX в. были; найдены еще два способа получения этого элемента. Сначала Муассан получил его в электропечи, восстанавливая окись ниобия углеродом , а затем Гольдшмидт сумел восстановить тот же элемент алюминием .

А называть элемент № 41 в разных странах продолжали по-разному: в Англии и США - колумбием, в остальных странах - ниобием. Конец разноголосице положил Международный союз теоретической и прикладной химии (ИЮПАК) в 1950 г. Было решено повсеместно узаконить название элемента «ниобий», а за основным минералом ниобия так и закрепилось наименование «колумбит». Его формула (Fe, Mn) (Nb,

Элементный ниобий - чрезвычайно тугоплавкий (2468°C) и высококипящий (4927°C) металл, очень стойкий во многих агрессивных средах. Все кислоты, за исключением плавиковой, не действуют на него. Кислоты-окислители «пассивируют» ниобий, покрывая его защитной окисной пленкой (Nb 2 O 5). Но при высоких температурах химическая активность ниобия повышается. Если при 150-200°C окисляется лишь небольшой поверхностный слой металла, то при 900-1200°C толщина окисной пленки значительно увеличивается.

Ниобий активно реагирует со многими неметаллами. С ним образуют соединения галогены, азот , водород, углерод, сера . При этом ниобий может проявлять разные валентности - от двух до пяти. Но главная валентность этого элемента 5+ . Пятивалентный ниобий может входить в состав соли и как катион, и как один из элементов аниона, что свидетельствует об амфотерном характере элемента № 41.

Соли ниобиевых кислот называют ниобатами. Их получают в результате обменных реакций после сплавления пятиокиси ниобия с содой:

Nb 2 O 5 + 3Na 2 CO 3 → 2Na 3 NbO 4 + 3CO 2 .

Довольно хорошо изучены соли нескольких ниобиевых кислот, в первую очередь метаниобиевой HNbO 3 , а также диниобаты и пентаниобаты (K 4 Nb 2 O 7 , K 7 Nb 5 O 16 -rnH 2 O). А соли, в которых элемент № 41 выступает как катион, обычно получают прямым взаимодействием простых веществ, например 2Nb + 5Cl 2 → 2NbCl 5 .

Ярко окрашенные игольчатые кристаллы пентагалогенидов ниобия (NbCl 5 - желтого цвета, NbBr 5 - пурпурно-красного) легко растворяются в органических растворителях - хлороформе, эфире, спирте. Но при растворении в воде эти соединения полностью разлагаются, гидролизуются с образованием ниобатов:

NbCl 5 + 4H 2 O → 5HCl + H 3 NbO 4 .

Гидролиз можно предотвратить, если в водный раствор добавить какую-либо сильную кислоту. В таких растворах пентагалогениды ниобия растворяются, не гидролизуясь.

Ниобий образует двойные соли и комплексные соединения, наиболее легко - фтористые. Фторниобаты - так называются эти двойные соли. Они получаются, если в раствор ниобиевой и плавиковой кислот добавить фторид какого-либо металла.

Состав комплексного соединения зависит от соотношения реагирующих в растворе компонентов. Рентгенометрический анализ одного из этих соединений показал строение, отвечающее формуле K 2 NbF 7 . Могут образоваться и оксосоединения ниобия, например оксофторниобат калия K 2 NbOF 5 *H 2 O.

Химическая характеристика элемента не исчерпывается, конечно, этими сведениями. Сегодня самые важные из соединений элемента № 41 - это его соединения с другими металлами.

Ниобий и сверхпроводимость

Удивительное явление сверхпроводимости, когда при понижении температуры проводника в нем происходит скачкообразное исчезновение электрического сопротивления, впервые наблюдал голландский физик Г. Камерлинг-Оннес в 1911 г. Первым сверхпроводником оказалась , но не ей, а ниобию и некоторым интерметаллическим соединениям ниобия суждено было стать первыми технически важными сверхпроводящими материалами.

Практически важны две характеристики сверхпроводников: величина критической температуры, при которой происходит переход в состояние сверхпроводимости, и критического магнитного поля (еще Камерлинг-Оннес наблюдал утрату сверхпроводником сверхпроводимости при воздействии на него достаточно сильного магнитного поля).

Сейчас известно уже больше 2000 сверхпроводящих металлов, материалов и соединений, но подавляющее их большинство не пришло и видимо никогда не придет в технику либо из-за чрезвычайно низких величин критических параметров, о которых сказано выше, либо из-за неприемлемых технологических характеристик. Среди сверхпроводников, имеющих практическое значение, особенно популярны ниобий-титановые сплавы. Из них изготовлено большинство работающих в наши дни сверхпроводящих магнитов. Они пластичны, из них можно делать технические устройства и проводники сложных форм.

Как материал ленточных сверхпроводников ценен сплав ниобия с оловом Nb 3 Sn, станнид ниобия, открытый еще в 1954 г. Сверхпроводящий токонесущий элемент - шина со 150 000 жил - из станнида ниобия изготовлен в нашей стране. Подобные многожильные сверхпроводящие проводники намереваются использовать в новых термоядерных установках «Токомак-15».

Интерес для практики представляет еще одно интерметаллическое соединение ниобия - Nb 3 Ge. У тонкой пленки такого состава рекордно высокая критическая температура - 24,3 К. Правда, у литого Nb 3 Ge критическая температура - всего 6 К, да и технология приготовления сверхпроводящих элементов из этого материала достаточно сложна.

Довольно высокими значениями критической температуры обладают тройные сплавы: ниобий - германий - алюминий, а также некоторые интерметаллические соединения ванадия . И все же именно с ниобием и его соединениями связаны наибольшие надежды специалистов по сверхпроводникам.

Ниобий металл

Металлический ниобий можно получить восстановлением его соединений, например хлорида ниобия или фторниобата калия , при высокой температуре:

K 2 NbF 7 + 5Na → Nb + 2KF + 5NaF.

Но прежде чем достигнуть этой в сущности последней стадии производства, ниобиевая руда проходит множество этапов переработки. Первый из них - обогащение руды, получение концентратов. Концентрат сплавляют с различными плавнями: едким натром или содой. Полученный сплав выщелачивают. Но растворяется он не полностью. Нерастворимый осадок и есть ниобий. Правда, он здесь еще в составе гидроокиси, не разделен со своим аналогом по подгруппе - танталом - и не очищен от некоторых примесей.

До 1866 г. не было известно ни одного пригодного для производственных условий способа разделения тантала и ниобия. Первым метод разделения этих чрезвычайно похожих элементов предложил Жан Шарль Галиссар де Мариньяк. Метод основан на разной растворимости комплексных соединений этих металлов и называется фторидным. Комплексный фторид тантала нерастворим в воде, а аналогичное соединение ниобия растворимо.

Фторидный метод сложен и не позволяет полностью разделить ниобий и тантал. Поэтому в наши дни он почти не применяется. На смену ему пришли методы избирательной экстракции, ионного обмена, ректификации галогенидов и др. Этими методами получают окисел и хлорид пятивалентного ниобия.

После разделения ниобия и тантала идет основная операция - восстановление. Пятиокись ниобия Nb 2 O 5 восстанавливают алюминием, натрием, сажей или карбидом ниобия, полученным при взаимодействии Nb 2 O 5 с углеродом; пентахлорид ниобия восстанавливают металлическим натрием или амальгамой натрия. Так получают порошкообразный ниобий, который нужно затем превратить в монолит, сделать пластичным, компактным, пригодным для обработки. Как и другие тугоплавкие металлы, ниобий - монолит получают методами порошковой металлургии, суть которой в следующем.

Из полученного металлического порошка под большим давлением (1 т/см 2) прессуют так называемые штабики прямоугольного или квадратного сечения. В вакууме при 2300°C эти штабики спекают, соединяют в пруты, которые плавят в вакуумных дуговых печах, причем пруты в этих печах выполняют роль электрода. Такой процесс называется плавкой с расходуемым электродом.

Монокристаллический пластичный ниобий получают методом бестигельной зонной электроннолучевой плавки. Суть его в том, что на порошкообразный ниобий (операции прессования и спекания исключены!) направляют мощный пучок электронов, который плавит порошок. Капли металла стекают на ниобиевый слиток, который постепенно растет и выводится из рабочей камеры.

Как видите, путь ниобия от руды до металла в любом случае довольно долог, а способы производства сложны.

Рассказ о применении ниобия логичнее всего начать с металлургии, так как именно в металлургии он нашел наиболее широкое применение. И в цветной металлургии, и в черной.

Сталь, легированная ниобием, обладает хорошей коррозионной стойкостью. «Ну и что? - скажет иной искушенный читатель. - Хром тоже повышает коррозионную стойкость стали , и он намного дешевле ниобия». Этот читатель прав и неправ одновременно. Неправ потому, что забыл об одном.

В хромоникелевой стали, как и во всякой другой, всегда есть углерод. Но углерод соединяется с хромом , образуя карбид, который делает сталь более хрупкой. Ниобий имеет большее сродство к углероду, чем хром. Поэтому при добавлении в сталь ниобия обязательно образуется карбид ниобия. Легированная ниобием сталь приобретает высокие антикоррозионные свойства и не теряет своей пластичности. Нужный эффект достигается, когда в тонну стали добавлено всего 200 г металлического ниобия. А хромомарганцевой стали ниобий придает высокую износоустойчивость.

Ниобием легируют и многие цветные металлы. Так, алюминий, легко растворяющийся в щелочах, не реагирует с ними, если в него добавлено всего 0,05% ниобия. А медь , известную своей мягкостью, и многие ее сплавы ниобий словно закаляет. Он увеличивает прочность таких металлов, как титан , молибден , цирконий , и одновременно повышает их жаростойкость и жаропрочность.

Сейчас свойства и возможности ниобия по достоинству оценены авиацией, машиностроением, радиотехникой, химической промышленностью, ядерной энергетикой. Все они стали потребителями ниобия.

Уникальное свойство - отсутствие заметного взаимодействия ниобия с ураном при температуре до 1100°C и, кроме того, хорошая теплопроводность, небольшое эффективное сечение поглощения тепловых нейтронов сделали ниобий серьезным конкурентом признанных в атомной промышленности металлов - алюминия, бериллия и циркония. К тому же искусственная (наведенная) радиоактивность ниобия невелика. Поэтому из него можно делать контейнеры для хранения радиоактивных отходов или установки по их использованию.

Химическая промышленность потребляет сравнительно немного ниобия, но это объясняется только его дефицитностью. Из ниобийсодержащих сплавов и реже из листового ниобия иногда делают аппаратуру для производства высокочистых кислот. Способность ниобия влиять на скорость некоторых химических реакций используется, например, при синтезе спирта из бутадиена.

Потребителями элемента № 41 стали также ракетная и космическая техника. Не секрет, что на околоземных орбитах уже вращаются какие-то количества этого элемента. Из ниобийсодержащих сплавов и чистого ниобия сделаны некоторые детали ракет и бортовой аппаратуры искусственных спутников Земли.

МИНЕРАЛЫ НИОБИЯ. Колумбит (Fe, Mn)(Nb, Ta) 2 O 6 был первым минералом ниобия, известным человечеству. И этот же минерал - самый богатый элементом № 41. На долю окислов ниобия и тантала приходится до 80% веса колумбита. Гораздо меньше ниобия в пирохлоре (Ca, Na) 2 (Nb, Ta, Ti) 2 O 6 (O, ОН, F) и допарите (Na, Ce, Ca) 2 (Nb, Ti) 2 O 6 . А всего известно больше 100 минералов, в состав которых входит ниобий. Значительные месторождения таких минералов есть в разных странах: США, Канаде, Норвегии, Финляндии, но крупнейшим поставщиком концентратов ниобия на мировой рынок стало африканское государство Нигерия. В России есть большие запасы лопарита, они найдены на Кольском полуострове.

РОЗОВЫЙ КАРБИД. Монокарбид ниобия NbC - пластичное вещество с характерным розоватым блеском. Это важное соединение довольно легко образуется при взаимодействии металлического ниобия с углеводородами. Сочетание хорошей ковкости и высокой термостойкости с приятными «внешними данными» сделало монокарбид ниобия ценным материалом для изготовления покрытии. Слои этого вещества толщиной всего 0,5 мм надежно защищает от коррозии при высоких температурах многие материалы, в частности графит , который другими покрытиями фактически незащитим. NbC используется и как конструкционный материал в ракетостроении и производстве турбин.

НЕРВЫ, СШИТЫЕ НИОБИЕМ. Высокая коррозионная стойкость ниобия позволила использовать его в медицине. Ниобиевые нити не вызывают раздражения живой ткани и хорошо сращиваются с ней. Восстановительная хирургия успешно использует такие нити для сшивания порванных сухожилии, кровеносных сосудов и даже нервов.

НАРУЖНОСТЬ HE ОБМАНЧИВА. Ниобий не только обладает комплексом нужных технике свойств, но и выглядит достаточно красиво. Этот белый блестящий металл ювелиры пытались использовать для изготовления корпусов ручных часов. Сплавы ниобия с вольфрамом или рением иногда заменяют благородные металлы: золото , платину , иридий . Последнее особенно важно, так как сплав ниобия с рением не только внешне похож на металлический иридий, но почти так же износостоек. Это позволило некоторым странам обходиться без дорогого иридия в производстве напаек для перьев авторучек.

НИОБИЙ И СВАРКА. В конце 20-х годов нашего века электро- и газосварка стали вытеснять клепку и другие способы соединения узлов и деталей. Сварка повысила качество изделий, ускорила и удешевила процессы их сборки. Особенно перспективной сварка казалась при монтаже крупных установок, работающих в коррозионно-активных средах или под большим давлением. Но тут выяснилось, что при сварке нержавеющей стали сварной шов имеет намного меньшую прочность, чем сама сталь. Чтобы улучшить свойства шва, в «нержавейку» стали вводить различные добавки. Лучшей из них оказался ниобий.

ЗАНИЖЕННЫЕ ЦИФРЫ. Ниобий не случайно считается редким элементом: он действительно встречается не часто и в небольших количествах, причем всегда в виде минералов и никогда в самородном состоянии. Любопытная деталь: в разных справочных изданиях кларк (содержание в земной коре) ниобия разный. Это объясняется главным образом тем, что в последние годы в странах Африки найдены новые месторождения минералов, содержащих ниобий. В «Справочнике химика», т. I (М., «Химия», 1963) приведены цифры: 3,2-10 -5 %, 1*10 -3 % и 2,4*10 -3 %. Но и последние цифры занижены: африканские месторождения, открытые в последние годы, сюда не вошли. Тем не менее подсчитано, что из минералов уже известных месторождений можно выплавить примерно 1,5 млн. т металлического ниобия.