Open
Close

Общая фармакология. Фармакокинетика

Фармакокинетика - раздел клинической фармакологии, предметом которого является изучение процессов всасывания, распределения, связывания с белками, биотрансформации и выведения лекарственных веществ. Ее развитие стало возможным благодаря разработке и внедрению в практику высокочувствительных методов определения содержания лекарственных веществ в биологических средах - газожидкостной хроматографии, радиоиммунных, ферментно-химических и других методов, а также благодаря разработке методов математического моделирования фармакокинетических процессов. На основании данных о фармакокинетике того или иного препарата определяют дозы, оптимальный путь введения, режим применения препарата и продолжительность лечения. Регулярный контроль содержания лекарственных средств в биологических жидкостях позволяет своевременно корригировать лечение.

Фармакокинетические исследования необходимы при разработке новых препаратов, их лекарственных форм, а также при экспериментальных и клинических испытаниях ЛС.

Процессы, происходящие с лекарственными препаратами в организме, могут быть описаны с помощью ряда параметров.

Одним из основных показателей, определяющих фармакологический эффект, считают концентрацию ЛС на уровне рецептора, однако в условиях целостного организма установить её невозможно. В эксперименте было доказано, что в большинстве случаев между концентрацией препарата в крови и его содержанием в области рецептора существует корреляция.

В связи с этим для определения фармакокинетических параметров изучают содержание ЛС в крови. Для того чтобы получить соответствующее представление о поступлении препарата в кровь и выведении его из организма, отслеживают изменения концентрации ЛС в плазме крови на протяжении длительного времени. Содержание препаратов в плазме крови определяют методами жидкостной или газожидкостной хроматографии, с помощью радиоиммунного или иммуноферментного анализа и другими способами.

На основании полученных данных строят график. На оси абсцисс отмечают время от начала исследования, а на оси ординат - концентрацию ЛС в плазме крови (в соответствующих единицах).

Такой график носит название фармакокинетической кривой (рис. 1).

Время после введения

Концентрация лекарственного вещества (С) - это ее количество в определенном объеме крови в конкретный момент времени после введения в организм.

Константы скорости элиминации (К el), абсорбции (К а) и экскреции (К ex) – характеризуют соответственно скорость исчезновения препарата из организма путем биотрансформации и выведения, скорость поступления его из места введения в кровь и скорость выведения с мочой, калом, слюной и др.


Период полувыведения (Т 1/2) - время, необходимое для уменьшения вдвое концентрации препарата в крови, зависит от константы скорости элиминации (Т 1/2 = 0,693/К el).

где Т 1/2 – период полувыведения; 0,693 – коэффициент, который является логарифмом от 2; V d - объем распределения; Сl - общий клиренс.

Константа элиминации (Кel) - процент уменьшения концентрации ЛВ в крови за единицу времени. Чем больше Кel, тем быстрее ЛВ выводится из крови. Константа элиминации зависит от периода полувыведения:

Период полуабсорбции (Т 1/2а) - время, необходимое для всасывания половины дозы препарата из места введения в системный кровоток; пропорционален скорости абсорбции (Т 1/2а = 0,693/К а ).

Константа абсорбции (К а) - характеризует скорость всасывания ЛВ в организме человека или животного. Константа абсорбции зависит от периода полувыведения:

Распределение препарата в организме характеризуют период полураспределения, кажущаяся начальная и стационарная (равновесная) концентрации, объем распределения.

Период полураспределения (Т 1/2,a) - время, необходимое для достижения концентрации препарата в крови, равной 50% от равновесной, т.е. при наличии равновесия между кровью и тканями.

Кажущаяся начальная концентрация (С 0) - концентрация препарата, которая была бы достигнута в плазме крови при внутривенном его введении и мгновенном распределении по органам и тканям.

Равновесная концентрация (С ss) - концентрация препарата, которая установится в плазме (сыворотке) крови при поступлении препарата в организм с постоянной скоростью. При прерывистом введении (приеме) препарата через одинаковые промежутки времени в одинаковых дозах выделяют максимальную (С ssmax) и минимальную (С ssmin) равновесные концентрации.

Объем распределения препарата (Vd - volume of distribution) характеризует степень его захвата тканями из плазмы (сыворотки) крови. V d (V d = D/C 0) - условный объем жидкости, в котором нужно растворить всю попавшую в организм дозу препарата (D), чтобы получилась концентрация, равная кажущейся начальной концентрации в сыворотке крови (С 0).

Общий клиренс препарата (Cl t) характеризует скорость “очищения” организма от лекарственного препарата.

Где Сl – общий клиренс; D – доза введенного препарата; AUC – площадь под фармакокинетической кривой.Выделяют почечный (Cl r) и внепочечный (Cl er) клиренсы, которые отражают выведение лекарственного вещества соответственно с мочой и другими путями (прежде всего с желчью). Общий клиренс является суммой почечного и внепочечного клиренса.

Площадь под кривой “концентрация - время” (AUC - area under the curve)- площадь фигуры, ограниченной фармакокинетической кривой и осями координат (AUC = C 0 /K el). Величина (AUC) связана с другими фармакокинетическими параметрами - объемом распределения, общим клиренсом. При линейности кинетики препарата в организме величина AUC пропорциональна общему количеству (дозе) препарата, попавшего в системный кровоток. Часто определяют площадь под частью кривой (от нуля до некоторого времени t); этот параметр обозначают AUC t , например, площадь под кривой от 0 до 8 ч - AUC 8 .

Абсолютная биодоступность (f) - часть дозы препарата (в %), которая достигла системного кровотока после внесосудистого введения, равна отношению AUC после введения исследуемым методом (внутрь, в мышцу и др.) к AUC после внутривенного введения. Относительную биодоступность определяют для сравнения биодоступности двух лекарственных форм для внесосудистого введения. Она равна отношению (AUC’/AUC)(D/D’) после введения двух сравниваемых форм. Общая биодоступность - часть принятой внутрь дозы препарата, которая достигла системного кровотока в неизмененном виде и в виде метаболитов, образовавшихся в процессе всасывания в результате так называемого пресистемного метаболизма, или “эффекта первичного прохождения”.

Биоэквивалентность (сравнительная биодоступность) - это соотношение количества ЛВ, поступающего в кровь при введении его в различных лекарственных формах (или ЛС разных фирм). Если лекарственные препараты демонстрируют схожую биодоступность, они расцениваются как биоэквивалентны.

ВСАСЫВАНИЕ - процесс поступления лекарственного вещества из места введения в кровь. Существуют четыре механизма всасывания ЛС при энтеральном введении (рис. 2):

Ø пассивная диффузия;

Ø активный транспорт;

Ø фильтрация через поры;

Ø пиноцитоз

Прохождение большинства лекарственных препаратов через слизистую оболочку пищеварительного тракта определяется их растворимостью в липидах и ионизацией. При приеме лекарственных веществ внутрь скорость их абсорбции отличается в различных отделах ЖКТ.

Q - молекула лекарственного вещества

После прохождения через стенку желудка и/или кишечника лекарственный препарат поступает в печень. Некоторые лекарственные вещества под влиянием ферментов печени подвергаются значительным изменениям (“эффект первичного прохождения”). Именно поэтому, а не вследствие плохой абсорбции, для достижения достаточного эффекта дозы некоторых препаратов (пропранолола, аминазина, опиатов) при приеме их внутрь должны быть значительно больше, чем при внутривенном введении. Биотрансформацию вещества при первичном прохождении через печень в процессе всасывания называют пресистемным метаболизмом. Интенсивность пресистемного метаболизма зависит от скорости тока крови в печени.

На процесс всасывания лекарств в желудке и кишечнике оказывает влияние рН, который в желудке равен 1-3, в двенадцатиперстной кишке - 5-6, а в тонкой и толстой кишках - около 8. Кислоты легче всасываются в желудке, а основания - в тонкой или толстой кишке.

Под действием кислой среды желудка некоторые лекарственные средства, в частности бензилпенициллин, могут разрушаться.

На лекарственные препараты оказывают также действие ферменты желудочно-кишечного тракта, которые способны инактивировать белки и полипептиды (АКТГ, вазопрессин, инсулин и т.д.), а также некоторые другие вещества (прогестерон, тестостерон, альдостерон). Соли желчных кислот в свою очередь могут ускорить всасывание лекарственных средств или замедлить его при образовании нерастворимых соединений.

На всасывание лекарственных веществ влияют также моторика желудочно-кишечного тракта, объем и состав пищи, количество принимаемой жидкости, интервал времени между едой и приемом препаратов. Так, молоко нарушает всасывание тетрациклинов, ампициллина и амоксициллина. Следует учитывать и стимулирующее действие пищи на секрецию желудочного сока и соляной кислоты.

Для переноса веществ в ЖКТ особое значение имеют большая площадь поверхности кишечника и влияние постоянного кровотока в слизистой оболочке на градиенты концентрации между просветом кишечника и кровью. Путем диффузии и осмоса через слизистую оболочку кишечника переносятся, в частности, вода, С1 ¯, а также такие вещества, как аскорбиновая кислота, пиридоксин и рибофлавин. Поскольку клеточные мембраны содержат большое количество липидов, для диффузии через мембрану вещества должны быть в некоторой степени жирорастворимыми. Согласно теории неионной диффузии, указанным путем переносятся главным образом недиссоциированные соли слабых кислот или слабых оснований. Это необходимо учитывать при назначении лекарств, большая часть которых всасывается путем диффузии. Для переноса какого-либо вещества в соответствии с уравнением Гендерсона-Гассельбаха особое значение имеет рКа этого вещества и рН в просвете кишечника:

[А¯], [ВН + ] – молярные концентрации ионизированных,

[НА], [В] – неионизированных форм кислоты НА и основы В;

рН – кислотно-основной показатель среды;

рКа – логарифм константы диссоциации соединения, количественно равный значению рН, при котором анализируемое соединение диссоциирует наполовину.

Из уравнения видно, что с увеличением значения рН среды диссоциация кислот увеличивается, а оснований - уменьшается.

Таким образом, факторы, влияющие на процессы всасывания ЛВ, разнообразны: растворимость вещества в липидах, степень ионизации молекулы (чем меньше ионизированная молекула, тем лучше она всасывается), перистальтика кишечника, характер и количество пищевой массы, особенности регионарного кровотока, состояние соединительной ткани, агрегантное состояние веществ, сочетание лекарственных средств.

Подробности

Общая фармакология. Фармакокинетика

Фармакокинетика – раздел фармакологии, посвященный изучению кинетических закономерностей распределения лекарственных веществ. Изучает высвобождение лекартсвенных веществ, всасывание, распределение, депонирование, превращения и выделение лекарственных веществ.

Пути введения лекарственных средств

От пути введения зависят скорость развития эффекта, его выраженность и продолжительность. В отдельных случаях путь введения определяет характер действия веществ.

Различают:

1) энтеральные пути введения (через пищеварительный тракт)

При этих путях введения вещества хорошо всасываются, в основном, путем пассивной диффузии через мембрану. Поэтому ххорошо всасываются липофильные неполярные соединения и плохо – гидрофильные полярные.

Под язык (сублингвально)

Всасывание происходит очень быстро, вещества попадают в кровь, минуя печень. Однако, всассывающая поверхность невелика, и таким путем можно вводить только высокоактивные вещества, назначаемые в малах дозах.

Пример: таблетки нитроглицерина, содержащие 0,0005 г нитроглицерина. Действие наступает через 1-2 мин.

Через рот (per os)

Лекарственные вещества просто проглатывают. Всасывание происходит частично из желудка, но по большей части – из тонкого кишечника (этому способствуют значительная всасывающая поверхность кишечника и ее интенсивное кровоснабжение). Основных механизмом всасывания в кишечнике является пассивная диффузия. Всасывание из тонкой кишки происходит относительно медленно. Оно зависит от моторики кишечника, рН среды, количества и качества содержимого кишечника.

Из тонкого кишечника вещество через систему воротной вены печени попадает в печень и только затем – в общий кровоток.

Абсорбция веществ регулируется также специальным мембранным транспортером – Р-гликопротеином. Он способствует выведению веществ в просвет кишечника и препятствует их абсорбции. Известны ингибиторы этого вещества – циклоспорин А, хинидин, верапамил, итракназол и т.д.

Следует помнить, что некоторые лекарственные вещества нецелесообразно назначать внутрь, так как они разрушаются в ЖКТ под действием желудочного сока и ферментов. В таком случае (или же если препарат оказывает раздражающее действие на слизистую желудка), его назначают в капсулах или драже, которые растворяются только в тонком кишечнике.

Ректально (per rectum)

Значительная часть вещества (около 50%)поступает в кровоток, минуя печень. Кроме того, при этом пути введения вещество не подвергается воздействию ферментов ЖКТ. Всасывание происходит путем простой диффузии. Ректально вещества назначают в виде суппозиториев или клизм.

Лекарственные вещества, имеющие структуру белков, жиров и полисахаридов, в толстой кишке не всасываются.

Также применяют подобный путь введения и для местного воздействия.

2) парентеральные пути введения

Введение веществ, минуя пищеварительный тракт.

Подкожный

Вещества могут всасываться путем пассивной диффузии и фильтрации через межклеточные промежутки. Таким орбазом, под кожу можно вводить и липофильные неполярные, и гидрофильные полярные вещества.

Обычно подкожно вводят растворы лекарственных веществ. Иногда – масляные растворы или взвеси.

Внутримышечное

Вещества всасываются так же, как и при подкожном введении, но более быстро, так как васкуляризация скелетных мышц более выражена по сравнению с подкожно-жировой клетчаткой.

В мышцы нельзя вводить гипертонические растворы, раздражающие вещества.

В то же время, в мышцы вводят масляные растворы, взвеси, для того, чтобы создать депо препарата, при котором лекарственное вещество может длительно всасываться в кровь.

Внутривенно

Лекарственное вещество сразу попадает в кровь, поэтому его действие развивается очень быстро – за 1-2 минуты. Чтобы не создавать слишком высокой концентрации вещества в крови, его обычно разводят в 10-20 мл изотонического раствора натрия хлорида и вводят медленно, в течение нескольких минут.

В вену нельзя вводить масляные растворы, взвеси в связи опасностью закупорки сосудов!

Внутриартериально

Позволяет создать в области, которая кровоснабжается данной артерией, высокую концентрацию вещества. Таким путем иногда вводят противоопухолевые препараты. Для уменьшения общетоксического действия может быть искусственно затруднен отток крови путем наложения жгута.

Интрастернальный

Обычно используют при технической невозможности внутривенного введения. Лекарство вводят в губчатое вещество грудины. Метод используется для детей и людей пожилого возраста.

Внутрибрюшинный

Редко используется, как правило, на операциях. Действие наступает очень быстро, так как большинство лекарств хорошо всасывается через листки брюшины.

Ингаляционно

Введение лекарственных препаратов путем вдыхания. Так вводят газообразные вещества, пары летучих жидкостей, аэрозоли.

Легкие хорошо кровоснабжаются, поэтому всасывание происходит очень быстро.

Трансдермально

При необходимости длительного действия высоколипофильных лекарственных веществ, которые легко проникают через неповрежденную кожу.

Интраназально

Для введения в полость носа в виде капель или спрея в расчете на местное или резорбтивное действие.

Проникновение лекарственных веществ через мембрану. Липофильные неполярные вещества. Гидрофильные полярные вещества.

Основные способы проникновения – пассивная диффузия, активный транспорт, облегченная диффузия, пиноцитоз.

Плазматическая мембрана состоит, в основном, из липидов, а это значит, что проникать путем пассивной диффузии через мембрану могут только липофильные неполярные вещества. Наоборот, гидрофильные полярные вещества (ГПВ) таким путем через мембрану практически не проникают.

Многие лекарственные вещества являются слабыми электролитами. В растворе часть таких веществ находится в неионизированной форме, т.е. в неполярной, а часть – в виде ионов, несущих электрические заряды.

Путем пассивной диффузии через мембрану проникает неионизированная часть слабого электролита

Для оценки ионизации используют величину pK a – отрицательный логарифм константы ионизации. Численно pK a равен pH, при котором ионизирована половина молекул соединения.

Для определения степени ионизации используют формулу Хендерсона-Хассельбаха:

pH = pKa+-для оснований

Ионизация оснований происходит путем их протонирования

Степень ионизации определяется так

pH = pK а +-для кислот

Ионизация кислот происходит путем их протонирования.

НА = Н + + А -

Для ацетилсалициловой кислоты рКа = 3.5. При рН = 4.5:

Следовательно, при рН = 4.5 ацетилсалициловая кислота будет почти полностью диссоциирована.

Механизмы всасывания веществ

Лекарственные вещества могут проникать в клетку путем:

Пассивной диффузии

В мембране есть аквапорины, через которые поступает вода в клетку и могут проходить путем пассивной диффузии по градиенту концентрации растворенные в воде гидрофильные полярные вещества с очень малыми размерами молекул (эти аквапорины очень узкие). Однако, такой тип поступления лекарственных веществ в клетке очень редок, так как размер большинства молекул лекарственных веществ превышает размер диаметр аквапоринов.

Также путем простой диффузии проникают липофильные неполярные вещества.

Активного транспорта

Транспорт лекарственного гидрофильного полярного вещества через мембрану против градиента концентрации с помощью специального переносчика. Такой транспорт избирателен, насыщаем и требует затрат энергии.

Лекарственное вещество, имеющее аффинитет к транспортному белку, соединяется с местами связывания этого переносчика с одной стороны мембраны, затем происходит конформационное изменение переносчика, и, наконец, вещество высвобождается с другой стороны мембраны.

Облегченной диффузии

Транспорт гидрофильного полярного вещества через мембрану специальной транспортной системой по градиенту концентрации, без затрат энергии.

Пиноцитоза

Впячивания клеточной мембраны, окружающие молекулы вещества и образующие везикулы, которые проходят через цитоплазму клетки и высвобождают вещество с другой стороны клетки.

Фильтрации

Через поры мембран.

Также имеет значение фильтрация лекарственных веществ через межклеточные промежутки.

Фильтрация ГПВ через межклеточные промежутки имеет важное значение при всасывании, распределении и выведении и зависит от:

а) величины межклеточных промежутков

б) величины молекул веществ

1) через промежутки между клетками эндотелия в капиллярах почечных клубочков путем фильтрации легко проходят большинство лекарственных веществ, находящихся в плазме крови, если они не связаны с белками плазмы.

2) в капиллярах и венулах подкожно-жировой клетчатки, скелетных мышц промежутки между клетками эндотелия достаточны для прохождения большинства лекарственных веществ. Поэтому при введении под кожу или в мышцы хорошо всасываются и проникают в кровь и липофильные неполярные вещества (путем пассивной диффузии в липидной фазе), и гидрофильные полярные (путем фильтрации и пассивной диффузии в водной фазе через промежутки между клетками эндотелия).

3) при введении ГПВ в кровь вещества быстро проникают в большинство тканей через промежутки между эндотелиоцитами капилляров. Исключения вещества, для которых существуют системы активного транспорта (противопаркинсонический препарат левадопа) и ткани, отделенные от крови гистогематическими барьерами. Гидрофильные полярные вещества могут проникнуть через такие барьеры только в некоторых местах, в которых барьер мало выражен (в area postrema продолговатого мозга проникают ГПВ в триггер-зону рвотного центра).

Липофильные неполярные вещества легко проникают в центральную нервную системы через гемато-энцефалический барьер путем пассивной диффузии.

4) В эпителии ЖКТ межклеточные промежутки малы, поэтому ГПВ достаточно плохо всасываются в нем. Так, гидрофильное полярное вещество неостигмин под кожу назначают в дозе 0,0005 г, а для получения сходноого эффекта при назначении внутрь требуется доза 0,015 г.

Липофильные неполярные вещества легко всасываются в ЖКТ путем пассивной диффузии.

Биодоступность. Пресистемная элиминация.

В связи с тем, что системное действие вещества развиваеся только при попадании его в кровоток, откуда оно поступает в ткани, предложен термин «биодоступность».

В печени многие вещества подвергаются биотрансформации. Частично вещество может выделяться в кишечник с желчью. Именно поэтому в кровь может попасть лишь часть вводимого вещества, остальная часть подвергается элиминации при первом прохождении через печень.

Элиминация – биотрансформация + экскреция

Кроме того, лекарства могут не полностью всасываться в кишечнике, подвергаться метаболизму в стенке кишечника, частично выводиться из него. Все это, вместе с элиминацией при первом прохождении через печень называют пресистемной элиминацией .

Биодоступность – количество неизмененного вещества, попавшего в общий кровоток, в процентном отношении к введенному количеству.

Как правило, в справочниках указано значения биодоступности при их назначении внутрь. Например, биодоступность пропранолола – 30%. Это означает, что при введении внутрь в дозе 0.01 (10 мг) только 0,003 (3 мг) неизмененного пропранолола попадает в кровь.

Для определения биодоступности лекарство вводят в вену (при в/в способе введения биодоступность вещества составляет 100%). Через определенные интервалы времени определяются концентрации вещества в плазме крови, затем строят кривую изменения концентрации вещества во времени. Затем ту же дозу вещества назначают внутрь, определяют концентрацию вещества в крови и также строят кривую. Измеряют площади под кривыми – AUC. Биодоступность – F – определяют как отношение AUC при назначении внутрь к AUC при внутревенном введении и обозначают в процентах.

Биоэквивалентность

При одинаковой биодоступности двух веществ скорость их поступления в общий кровоток может быть различной! Соответственно различными будут:

Время достижения пиковой концентрации

Максимальная концентрация в плазме крови

Величина фармакологического эффекта

Именно поэтому вводят понятие биоэквивалентность.

Биоэквивалентность – означает сходные биодоступность, пик действия, характер и величину фармакологического эффекта.

Распределение лекарственных веществ.

При попадании в кровоток липофильные вещества, как правило, распределяются в организме относительно равномерно, а гидрофильные полярные – неравномерно.

Существенное влияние на характер распределения веществ оказывают биологические барьеры, которые встречаются у них на пути: стенки капилляров, клеточные и плазматические мембраны, гемато-энцефалический и плацентарный барьеры (уместно посмотреть раздел «Фильтрафия через межклеточные промежутки»).

Эндотелий капилляров мозга не имеет пор, там практически отсутствует пиноцитоз. Также роль играют астроглии, которые увеличивают барьерную силу.

Гематоофтальмический барьер

Препятствует проникновению гидрофильных полярных веществ из крови в ткань глаза.

Плацентарный

Препятствует проникновению гидрофильных полярных веществ из организма матери в организм плода.

Для характеристики распределения лекарственного вещества в системе однокамерной фармакокинетической модели (организм условно представляется как единое пространство, заполненное жидкостью. При введении лекарственное вещество мгновенно и равномерно распределяется) используют такой показатель как кажущийся объем распределения - V d

Кажущийся объем распределения отражает предположительный объем жидкости, в котором распределяется вещество.

Если для лекарственного вещества V d = 3 л (объем плазмы крови), то это означает, что вещество находится в плазме крови, не проникает в форменные элементы крови и невыходит за пределы кровеносного русла. Возможно, это высокомолекулярное вещество (V d для гепарина = 4 л).

V d = 15 л означает, что вещество находится в плазме крови (3 л), в межклеточной жидкости (12 л) и не проникает в клетки тканей. Вероятно, это гидрофильное полярное вещество.

V d = 400 – 600 – 1000л означает, что ещество депонировано в периферических тканях и его концентрация в крови низкая. Например, для имипрамина – трициклический антидепрессант - V d = 23л/кг, то есть примерно 1600 л. Это означает, что концентрация имипрамина в крови очень низкая и при отравлении имипрамином гемодиализ неэффективен.

Депонирование

При распределении лекарственного вещества в организме часть может задерживаться (депонироваться) в различных тканях. Из депо вещество высвобождается в кровь и оказывает фармакологическое действие.

1) Липофильные вещества могут депонироваться в жировой ткани. Средство для наркоза тиопентал-натрий вызывает наркоз продолжительнотью 15-20 минут, так как 90% тиопентала-натрия депонируется в жировой ткани. После прекращения наркоза наступает посленаркозный сон 2-3 часа в связи с высвобождением тиопентала-натрия.

2) Тетрациклины на длительное время депонируются в костной ткани. Поэтому не назначают детям до 8 лет, так как может нарушить развитие костей.

3) Депонирование, связанное с плазмой крови. В соединении с белками плазмы вещества не проявляют фармакологической активности.

Биотрансформация

В неизменном виде выделются лишь высокогидрофильные ионизированные соединения, средства для ингаляционного наркоза.

Биотрансформация большинства веществ происходит в печени, где обычно создаются высокие концентрации веществ. Кроме того, может происходить биотрансформация в легких, почках, стенке кишечника, коже и т.д.

Различают два основных вида биотрансформации:

1) метаболическая трансформация

Превращение веществ за счет окисления, восстановления и гидролиза. Окисление происходит, в основном, за счет микросомальных оксидаз смешанного действия при участии НАДФ, кислорода и цитохрома Р-450. Восстановление происходит под влиянием системы нитро- и азоредуктаз и т.п. Гидролизируют, обычно, эстерзы, карбоксилэстеразы, амидазы, фосфатазы и т.д.

Метаболиты, как правило, менее активны, чем исходные вещества, но иногда активнее них. Например: эналаприл метаболизируется в энаприлат, который оказывает выраженное гипотензивное действие. Однако, он плохо всасывается в ЖКТ, потому стараются вводить в/в.

Метаболиты могут быть токсичнее исходных веществ. Метаболит парацетамола – N-ацетил-пара-бензохинонимин при передозировке вызывает некроз печени.

2) конъюгация

Биосинтетический процесс, сопровождающийся присоединением к лекарственному веществу или его метаболитам ряда химических группировок или молекул эндогенных соединений.

Процессы идут либо один за другим, либо протекают отдельно!

Различают также :

-специфическую биотрансформацию

Отдельный фермент воздействует на одно или несколько соединений, проявляя при этом высокую субстратную активность. Пример: метиловый спирт окисляется алкогольдегидрогеназой с образованием формальдегидом и муравьиной кислоты. Этиловый спирт также окисляется аклогольдегидрогеназой, но аффинитет этанола к ферменту значительно выше, чем у метанола. Поэтому этанол может замедлять биотрансформацию метанола и уменьшать его токсичность.

-неспецифическую биотрансформацию

Под влиянием микросомальных ферментов печени (в основном, оксидазы смешанных функций), локализованных в гладкоповерхностных участках эндоплазматического ретикулума клеток печени.

В результате биотрансформации липофильные незаряженные вещества обычно превращаются в гидрофильные заряженные, поэтому легко выводятся из организма.

Выведение (экскреция)

Лекарственные вещества, метаболиты и конъюгаты, в основном выводятся с мочой и желчью.

-с мочой

В почках низкомолекулярные соединения, растворенные в плазме (не связанные с белками), фильтруются через мембраны капилляров клубочков и капсул.

Также активную роль играет активная секреция веществ в проксимальном канальце с участием транспортных систем. Этим путем выделяются органические кислоты, салицилаты, пенициллины.

Вещества могут замедлять выведение друг друга.

Липофильные незаряженные вещества подвергаются реабсорбции путем пассивной диффузии. Гидрофильные полярные не реабсорбируются и выводятся с мочой.

Большое значение имеет рН. Для ускоренного выведения кислых соединений реакцию мочи стоит изменять в щелочную сторону, а для выведения оснований – в кислую.

- с желчью

Так выводятся тетрациклины, пенициллины, колхицин и др. Эти препараты значительно выделяются с желчью, затем частично выводятся с экскрементами, либо реабсорбируются (кишечно -печеночная рециркуляция ).

- с секретами разных желез

Особое внимание стоит обратить на то, что в период лактации молочными железами выделяются многие вещества, которые получает кормящая мать.

Элиминация

Биотрансформация + экскреция

Для количественной характеристики процесса используется ряд параметров: константа скорости элиминации (К elim), период полуэлиминации (t 1/2), общий клиренс (Cl T).

Константа скорости элиминации - К elim – отражает скорость удаления вещества из организма.

Период полуэлиминации - t 1/2 – отражает время, необходимое для снижения концентрации вещества в плазме на 50%

Пример: в вену введено вещество А в дозе 10 мг. Константа скорости элиминации = 0,1 / ч. Через час в плазме останется 9 мг, через два часа – 8,1 мг.

Клиренс - Cl T – количество плазмы крови, очищаемое от вещества в единицу времени.

Различают почечный, печеночный и общий клиренс.

При постоянной концентрайии вещества в плазме крови почечный клиренс – Cl r определяется так:

Cl = (V u х C u)/ C p [мл/мин]

Где C u и C p - концентрация вещества в моче и плазме крови, соответственно.

V u - скорость мочеотделения.

Общий клиренс Cl T определяется по формуле: Cl T = V d х K el

Общий клиренс показывает, какая часть объема распределения освобождается от вещества в единицу времени.

Фармакокинетика

Фармакокинетика (от греч. Pharmakon - лекарство, яд, зелья, kinetikos - то, что касается движения) - раздел фармакологии, изучающий поступления (пути введения), всасывания (адсорбции), раздел, преобразование (биотрансформацию) лекарственных средств в организме, выведения (выведение, элиминацию) их из организма, а также эффективность и переносимость препаратов в зависимости от этих процессов.

Для определения фармакокинетических параметров регистрируют количество медикамента в крови, принимая во внимание, что в большинстве случаев существует зависимость между концентрацией вещества в крови и ее количеством в области рецептора. На основе полученных данных строят график - фармакокинетической кривой, где на оси ординат отмечают концентрацию вещества в плазме крови, а на оси абсцисс - срок исследования.

Основные понятия и термины фармакокинетики

Камера - условное понятие в фармакокинетике, под которым понимают пространство, имеющее определенный объем и концентрацию лекарств в этом пространстве. Понятие "камера" не отражает какой анатомический пространство. Это единица формализованной фармакокинетического системы, принятой в мире для математического моделирования процессов, происходящих в организме при взаимодействии лекарств с организмом.

Выделяют центральную камеру, за которую принимают кровь и органы, имеющие сильное кровоснабжение: сердце, почки, легкие, эндокринные органы, печень, кишечник. К периферической камеры относят органы, имеющие менее интенсивное кровоснабжение кожа, подкожная клетчатка, мышцы, жировая ткань и др.

Условно простейшая модель взаимодействия лекарственного вещества с организмом рассматривается как однокамерная или многокамерная модель и характеризуется концентрацией лекарств (СД) и объемом распределения (Vd).

Концентрация лекарства (С k) - количество препарата в определенном объеме крови в конкретный момент после введения лекарств в организм. Концентрацию лекарств в организме определяют спектрофотометрическим, хроматографическим, ферментным, радиоиммунным и другими методами и выражают в мг / л, мкг / мл, мм / л или в%.

Динамика концентрации лекарств в организме зависит от пути введения, дозы, физико-химических, квантово-химических свойств, длительности действия препарата и др. Самая фармакокинетическая модель - однокамерная модель, где организм представляется в виде гомогенной единой камеры. Однокамерные модели применяют для определения концентрации лекарства в крови, плазме и сыворотке, а также в моче.

Фармакокинетические процессы в наибольшей степени соответствуют процессам в организме в случаях двух- и трехкамерной модели.

Объем распределения (Vd) (воображаемый гипотетический объем распределения препарата) - условный объем жидкости, необходимый для равномерного распределения (раствора) введенной дозы лекарств к концентрации, определяется в крови в момент исследования (литров на килограмм массы тела - л / кг).

Объем распределения лекарств в определенной степени характеризует степень проникновения лекарств из плазмы крови и внеклеточной жидкости в ткани и создание депо лекарственного препарата в органах. Например, для антибиотиков группы аминогликозидов, которые мало растворимые в липидах, объем распределения близок к объему внеклеточной жидкости, а для хорошо растворимых в липидах тетрациклинов - значительно выше. Если препарат активно проникает в органы и ткани, это свидетельствует о высоком значении объема распределения. Объем распределения зависит от путей введения, дозы, физико-химических свойств лекарств (растворимость в липидах и воде, степень ионизации и полярности, молекулярная масса), а также возраста, пола, количества жидкости в организме, патологического состояния организма (заболеваний печени, почек, сердечно-сосудистой системы, кишечника).

Однокамерная модель может быть использована для определения концентрации лекарственных средств в таких средах организма, как цельная кровь (или сыворотка, плазма) и моча. Следует отметить, что моча может быть применена для исследования веществ, способных быстро распределяться между различными средами (жидкостями и тканями) организма. Суть данной модели в том, что она предусматривает однотипную динамику изменений концентрации веществ в плазме и тканях, а также быстрее установления равновесия между процессами поступления и выведения их из организма.

На самом деле, для большинства препаратов характерно медленное всасывание и выведение из тканей. К тому же, согласно принятой концепции по однокамерной модели, скорость элиминации лекарственных средств постоянна. Но скорость элиминации многих веществ напрямую зависит от их концентрации в крови. Так полученные сведения при исследованиях с применением однокамерной модели для большинства веществ являются некорректными.

Площадь под кинетической кривой "концентрация - время" (area under curve, AUC). AUC при линейной кинетической кривой (линейной зависимости) пропорциональна количеству лекарств, находящихся в системном кровотоке.

Биодоступность (F) определяется относительным количеством лекарств, выделяется из лекарственной формы, инактивируется в печени при первом прохождении, поступает в общий круг кровообращения и взаимодействует с тканевыми рецепторами. Биодоступность выражают в%.

Биодоступность зависит от химического строения вещества, технологии изготовления лекарственной формы и от степени абсорбции лекарств в кровь из пищеварительной при эн теральному введении, биотрансформации при первом пассаже через печень, скорости рассасывания при парентеральном введении препарата. Биодоступность лекарств при введении непосредственно в кровь принимают за 100% и при других путях введения - выражают в %.

Биоэквивалентность (сравнительная биодоступность) - отношение количества лекарств, поступающего в кровь при применении в той или иной лекарственной форме или в лекарственных препаратах, которые выпускают различные фирмы. Изучение биоэквивалентности позволяет сравнивать препараты в клинической практике, что очень важно для определения эффективности медикаментов различных производителей.

Биофаза - участок непосредственного взаимодействия лекарств с рецептором или тканевой структурой, включая клеточную оболочку и внешнюю, митохондриальную, эндоплазматическая, лизосомальную, рибосом.

Общий клиренс - условный объем плазмы или крови, освобождается ("очищается") от лекарственного средства за единицу времени; выражают в объемных единицах (л / мин., мл / мин.). Почечный клиренс (С12) отражает элиминацию препарата из организма.

Период полувыведения - Т1 / 2 (период полувыведения) - фармакокинетический показатель срока, за который количество медикамента в теоретической камере или его концентрация в исследуемой ткани, а именно в крови, уменьшается на 50 %. Считается, что за один период полувыведения выводится 50% введенного медикамента, за два периода - 75%, за три - 90%.

Константа элиминации (Кel) - процент уменьшения концентрации лекарства в крови за единицу времени. Чем больше Кel, тем быстрее лекарственное средство выводится из крови.

Фармакокинетический процесс лекарственных средств можно представить в виде следующих взаимосвязанных этапов.

1. Пути введения (поступления) препаратов в организм.

2. Высвобождение лекарств из лекарственной формы.

3. Абсорбция лекарственного средства - проникновение через биологические мембраны в сосудистое русло и в ткани к специфическому клеточного рецептора.

4. Распределение лекарственного средства в биологических жидкостях, органах и тканях.

5. Метаболизм (преобразования) лекарственных средств - это биохимические процессы преобразования (метаболизма) лекарственных средств с изменением их фармакологических свойств и образованием метаболитов, которые могут выводиться из организма.

6. Вывод (экскреция, элиминация) лекарственного средства или его метаболитов из организма.

  • 4. Рецепт, его структура, правила выписывания. Формы рецептурных бланков. Особые отметки на рецептурном бланке.
  • 5. Основные лекарственные формы, их характеристика. Зависимость биодоступности от лекарственной формы.
  • 8.2.1. Твердые лекарственные формы
  • Мягкие лекарственные формы
  • Жидкие лекарственные формы
  • Газообразные лекарственные формы
  • 6.Мягкие лекарственный формы
  • 7.Твердые лекарственные формы
  • 10. Фармакокинетика и фармакодинамика – определение, разделы. Основные показатели фармакокинетики.
  • 11. Основные пути введения лекарственных средств в организм, их сравнительная характеристика. Зависимость биодоступности скорости развития, выраженности и продолжительности эффекта от путей введения.
  • Энтеральное введение: преимущества и недостатки
  • Виды парентерального введения препаратов
  • Парентеральное введение: плюсы и минусы
  • Ингаляции
  • Плюсы и минусы ингаляционного введения
  • Ректальный, вагинальный и уретральный пути введения
  • 12. Желудочно-кишечный тракт как путь введения лекарственных веществ. Основные механизмы всасывания лекарственных веществ. Факторы, влияющие на всасывание лекарственных средств из жкт.
  • Механизмы всасывания лекарственных веществ в организме.
  • 13. Биодоступность лекарственных средств. Определение. Факторы, влияющие на биодоступность. Примеры.
  • Понятие абсолютной биологической доступности
  • Понятие относительной биологической доступности
  • 15. Биотрансформация лекарственных средств в организме, ее основные пути, их характеристика. Факторы, влияющие на биотрансформацию.
  • 16. Пути выведения лекарственных веществ из организма. Значение учета их. Элиминация. Период полувыведения. Клиренс. Факторы, влияющие на выведение лекарственных веществ.
  • 17. Виды доз. Широта терапевтического действия, её значение. Терапевтический индекс. Понятие о лекарстве и яде.
  • 19. Фармакодинамика. Типовые механизмы действия лекарственных веществ. Примеры.
  • 20. Роль рефлекторных механизмов в действии лекарственных веществ. Препараты рефлекторного типа действия. Примеры.
  • 21. Побочное действие лекарственных веществ. Побочные эффекты аллергической и неаллергической природы. Примеры.
  • 23. Изменение действия лекарственных веществ при их повторном введении. Понятие о привыкании, сенсибилизации, кумуляции.
  • 24. Зависимость фармакологических эффектов от физико-химических свойств и химической структуры лекарственного вещества.
  • 25. Зависимость эффекта от количества введенного вещества, его концентрации и путей введения, длительности действия. Понятие о лекарственном веществе и яде.
  • 26. Основные виды лекарственной терапии: этиотропная, патогенетическая, симптоматическая, заместительная, профилактическая. Примеры.
  • 27. Значение индивидуальных особенностей организма (пола, возраста) и его состояния для проявления действия лекарственных веществ.
  • 28. Особенности применения лекарственных средств при беременности.
  • 29. Особенности применения лекарственных средств в педиатрии и в гериатрии. Способы расчета доз для детей.
  • 30. Понятие о лекарственном взаимодействии. Виды лекарственных взаимодействий: фармацевтическое, фармакокинетическое, фармакодинамическое. Примеры. Лекарственная несовместимость.
  • 31. Комбинированное действие лекарственных веществ. Виды синергизма. Использование в клинике. Понятие о синергоантагонизме.
  • 32. Принципы оказания неотложной помощи при аллергических реакциях. Анафилактический шок
  • 33. Основные принципы терапии острых отравлений. Понятие об антидотной терапии.
  • 34. Основные принципы терапии острых отравлений. Способы удаления всосавшегося и невсосавшегося яда.
  • 10. Фармакокинетика и фармакодинамика – определение, разделы. Основные показатели фармакокинетики.

    Фармакокинетика - это раздел фармакологии о всасывании, распределении в организме, депонировании, метаболизме и выведении веществ.

    Положения Фармакокинетики

    I. Пути введения лекарственных веществ – энтеральные (пероральный, сублингвальный, ректальный), парентеральные без нарушения целостности кожных покровов (ингаляционный, вагинальный) и все виды инъекций (подкожные, внутримышечные, внутривенные, внутриартериальные, внутриполостные, с введением в спинно-мозговой канал и др.). II. Всасывание лекарственных средств при разных путях введения в основном происходит за счет пассивной диффузии через мембраны клеток, путем фильтрации через поры мембран и пиноцитоза). Факторы, влияющие на всасывание: растворимость вещества в воде и липидах, полярность молекулы, величина молекулы, рН среды, лекарственная форма; биодоступность (количество неизмененного вещества в плазме крови относительно исходной дозы препарата), учитывающая потери вещества при всасывании из желудочно-кишечного тракта и при первом прохождении через печеночный барьер (биодоступность при внутривенном введении принимают за 100 %). Распределение лекарственных веществ в организме в большинстве случаев оказывается неравномерным и зависит от состояния биологических барьеров – стенки капилляров, клеточных мембран, плацентарного и гематоэнцефалического барьеров. Трудности преодоления последнего обусловлены его структурными особенностями: эндотелий капилляров мозга не имеет пор, в них отсутствует пиноцитоз, они покрыты глиальными элементами, выполняющими функцию дополнительной липидной мембраны (в ткань мозга легко проникают липофильные молекулы). Распределение лекарственных веществ зависит также от сродства последних к разным тканям и от интенсивности тканевого кровоснабжения; обратимое связывание лекарственных веществ с плазменными (преимущественно альбумином) и тканевыми белками, нуклеопротеидами и фосфолипидами способствует их депонированию. III. Биотрансформация (превращение) лекарственных веществ в организме (метаболическая трансформация, конъюгация или метаболическая трансформация) – превращение лекарственных веществ путем окисления (с помощью микросомальных ферментов печени при участии НАДФ, О 2 и цитохрома Р-450), конъюгация – присоединение к лекарственному веществу или его метаболиту химических группировок и молекул эндогенных соединений (глюкуроновой и серной кислот, аминокислот, глютатиона, ацетильных и метильных групп); результат биотрансформации – образование более полярных и водорастворимых соединений, легко удаляющихся из организма. В процессе биотрансформации активность вещества обычно утрачивается, что лимитирует время его действия, а при заболеваниях печени или блокаде метаболизирующих ферментов продолжительность действия увеличивается (понятие об индукторах и ингибиторах микросомальных ферментов). IV. Выведение лекарственных веществ из организма в основном осуществляется с мочой и желчью: с мочой выводятся вещества путем фильтрации и активной кальциевой секреции; скорость их выведения зависит от скорости реабсорбции в канальцах за счет простой диффузии. Для процессов реабсорбции важное значение имеет рН мочи (в щелочной среде быстрее выводятся слабые кислоты, в кислой – слабые основания); скорость выведения почками характеризует почечный клиренс (показатель очищения определенного объема плазмы крови в единицу времени). При выделении с желчью лекарственные вещества покидают организм с экскрементами и могут подвергаться в кишечнике повторному всасыванию (кишечнопеченочная циркуляция). В удалении лекарственных веществ принимают участие и другие железы, включая молочные в период лактации (возможность попадания в организм грудного ребенка лекарств); одним из принятых фармакокинетических параметров является период полувыведения вещества (период полужизни Т1/2), отражающий время, в течение которого содержание вещества в плазме снижается на 50 %.

    Основные показатели фармакокинетики

    лекарственных препаратов

    – Константа скорости абсорбции(Ка), характеризующая скорость их поступле­ния в организм.

    – Константа скорости элиминации (Кel), характеризующая скорость их био­трансформации в организме.

    – Константа скорости экскреции(Кex), характеризующая скорость их выведе­ния из организма (через легкие, кожу, пищеварительный и мочевой тракт).

    – Период полуабсорбции (Т 1/2 , a) как время, необходимое для всасывания их поло­винной дозы из места введения в кровь (Т 1/2 , a = 0,693/Ка).

    – Период полураспределения (Т 1/2 , a) как время, за которое их концентрация в крови достигает 50 % от равновесной между кровью и тканями.

    – Период полувыведения(Т 1/2) как время, за которое их концентрация в крови уменьшается наполовину (Т 1/2 = 0,693/Кel).

    – Кажущаяся начальная концентрация (С 0), которая была бы достигнута в плаз­ме крови при их внутривенном введении и мгновенном распределении в орга­нах и тканях.

    – Равновесная концентрация (Сss), устанавливаемая в плазме (сыворотке) крови при их поступлении в организм с постоянной скоростью (при прерывистом введении (приеме) через одинаковые промежутки времени в одинаковых до­зах выделяют максимальную (Сss max) и минимальную (Сss min) равновесные концентрации).

    – Объем распределения (Vd) как условный объем жидкости, в котором необхо­димо растворить поступившую в организм их дозу (D) для получения концен­трации, равная кажущейся начальной (С0).

    – Общий (Clt), почечный (Clr) и внепочечный (Cler) клиренсы, характеризую­щие скорость освобождения от них организма и, соответственно, выведение их с мочой и другими путями (прежде всего с желчью) (Clt = Clr + Cler).

    – Площадь под кривой «концентрация-время» (AUC), связанная с их другими фа­рмакокинетическими характеристиками (объемом распределения, общим клиренсом), при их линейной кинетике в организме величина AUC пропор­циональна дозе, попавшей в системный кровоток.

    – Абсолютная биодоступность (f) как часть дозы, достигшая системного крово­тока после внесосудистого введения (%).

    Показателем элиминации лекарственного препарата является клиренс (мл/мин). Выделяют общий, почечный и печеночный клиренс. Общий клиренс есть сумма по­чечного и печеночного клиренсов и определяется как объем плазмы крови, который очищается от лекарственного препарата за единицу времени. Клиренс используется для расчета дозы лекарственного препарата, необходимой для поддержания его рав­новесной концентрации (поддерживающей дозы) в крови. Равновесная концентрация устанавливается, когда количество абсорбирующегося и количество вводимого пре­парата равны друг другу.

    В изучении фармакокинетики лекарственных препаратов важное место занимает математическое моделирование.

    Существует много математических методов и моделей, от простейших одномер­ных до разного уровня сложности многомерных.

    Использование математического моделирования позволяет в деталях с выведе­нием характерных констант исследовать фармакокинетику лекарственных препа­ратов, как по времени, так и пространству (по органам и тканям).

    Фармакодинамика - раздел, изучающий биологические эффекты веществ, их локализацию и механизм действия.

    Основные Положения Фармакодинамики

    I. Виды фармакологического действия лекарств (местное, резорбтивное, прямое и косвенное, рефлекторное, обратимое, необратимое, преимущественное, избирательное, специфическое действие). Во всех случаях лекарственное вещество взаимодействует с определенными биохимическими субстратами; активные группировки макромолекулярных субстратов, взаимодействующих с веществами, получили название рецепторов, а рецепторы, взаимодействие с которыми обеспечивает основное действие вещества, называются специфическими. Сродство вещества к рецептору, приводящее к образованию с ним комплекса, обозначается термином «аффинитет»; способность вещества при взаимодействии с рецептором вызывать тот или иной эффект называется внутренней активностью; вещество, при взаимодействии с рецептором вызывающее биологический эффект, называется агонистом (они и есть внутренне активные); агонизм может быть полным (вещество вызывает максимальный эффект) и частичным (парциальным). Вещества, при взаимодействии с рецептором не вызывающие эффекта, но устраняющие эффект агониста, называются антагонистами. II. Типовые механизмы действия лекарственных веществ (миметическое, литическое, аллостерическое, изменение проницаемости мембран, освобождение метаболита от связи с белками и др.). III. Фармакологические эффекты – прямые и косвенные. IV. Виды фармакотерапевтического действия (этиотропное, патогенетическое, симптоматическое, главное и побочное).

    Механизмы действия лекарственных средств.

    Подавляющее большинство лекарственных средств оказывает лечебное действие путем изменения деятельности физиологических систем клеток, которые вырабатывались у организма в процессе эволюции. Под влиянием лекарственного вещества в организме, как правило, не возникает новый тип деятельности клеток, лишь изменяется скорость протекания различных естественных процессов. Торможение или возбуждение физиологических процессов приводит к снижению или усилению соответствующих функций тканей организма.

    Лекарственные средства могут действовать на специфические рецепторы, ферменты, мембраны клеток или прямо взаимодействовать с веществами клеток. Подробно механизмы действия лекарственных веществ изучаются в курсе общей или экспериментальной фармакологии. Ниже мы приводим лишь некоторые примеры основных механизмов действия лекарственных средств.

    Действие на специфические рецепторы . Рецепторы - макромолекулярные структуры, избирательно чувствительные к определенным химическим соединениям. Взаимодействие химических веществ с рецептором приводит к возникновению биохимических и физиологических изменений в организме, которые выражаются в том или ином клиническом эффекте.

    Препараты, прямо возбуждающие или повышающие функциональную активность рецепторов, называют агонистами, а вещества, препятствующие действию специфических агонистов, - антагонистами. Антагонизм может быть конкурентным и неконкурентным. В первом случае лекарственное вещество конкурирует с естественным регулятором (медиатором) за места связывания в специфических рецепторах. Блокада рецептора, вызванная конкурентным антагонистом, может быть устранена большими дозами вещества-агониста или естественного медиатора.

    Разнообразные рецепторы разделяют по чувствительности к естественным медиаторам и их антагонистам. Например, чувствительные к ацетилхолину рецепторы называют холинэргическими, чувствительные к адреналину - адренергическими. По чувствительности к мускарину и никотину холинергические рецепторы подразделяются на мускариночувствительные (м-холинорецепторы) и никотиночувствительные (н-холинорецепторы). Н-холинорецепторы неоднородны. Установлено, что их отличие заключается в чувствительности к различным веществам. Выделяют н-холинорецепторы, находящиеся в ганглиях автономной нервной системы, и н-холинорецепторы поперечнополосатой мускулатуры. Известны различные подтипы адренергических рецепторов, обозначаемые греческими буквами α 1 ,α 2 , β 1, β 2 .

    Выделяют также H 1 - и Н 2 -гистаминовые, допаминовые, серотониновые, опиоидные и другие рецепторы.

    Влияние на активность ферментов. Некоторые лекарственные средства повышают или угнетают активность специфических ферментов. Например, физостигмин и неостигмин снижают активность холинэстеразы, разрушающей ацетилхолин, и дают эффекты, характерные для возбуждения парасимпатической нервной системы. Ингибиторы моноаминоксидазы (ипразид, ниаламид), препятствующие разрушению адреналина, усиливают активность симпатической нервной системы. Фенобарбитал и зиксорин, повышая активность глюкуронилтрансферазы печени, снижают уровень билирубина в крови.

    Физико-химическое действие на мембраны клеток . Деятельность клеток нервной и мышечной систем зависит от потоков ионов, определяющих трансмембранный электрический потенциал. Некоторые лекарственные средства изменяют транспорт ионов.

    Так действуют антиаритмические, противосудорожные препараты, средства для общего наркоза.

    Прямое химическое взаимодействие. Лекарственные средства могут непосредственно взаимодействовать с небольшими молекулами или ионами внутри клеток. Например, этилендиаминтетрауксусная кислота (ЭДТА) прочно связывает ионы свинца. Принцип прямого химического взаимодействия лежит в основе применения многих антидотов при отравлениях химическими веществами. Другим примером может служить нейтрализация соляной кислоты антацидными средствами.

    Связь "доза-эффект"

    Является важным фармакодинамическим показателем. Обычно этот показатель представляет собой не простое арифметическое отношение и может графически выражаться по-разному: линейно, изогнутой вверх либо вниз кривой, сигмоидальной линией.

    Каждое лекарство обладает рядом желательных и нежелательных свойств. Чаще всего при увеличении дозы лекарства до определенного предела желаемый эффект возрастает, но при этом могут возникать нежелательные эффекты. Лекарство может иметь не одну, а несколько кривых отношения "доза-эффект" для его различных сторон действия. Отношение доз лекарства, при которых вызывается нежелательный или желаемый эффект, используют для характеристики границы безопасности или терапевтического индекса препарата. Терапевтический индекс препарата можно рассчитывать по соотношению его концентраций в плазме крови, вызывающих нежелательные (побочные) эффекты, и концентраций, оказывающих терапевтическое действие, что более точно может характеризовать соотношение эффективности и риска применения данного лекарства.

    Введение

    Одним из важнейших доклинических испытаний новых лекарственных веществ является изучение их фармакокинетических свойств. Данные исследования позволяют изучить процессы всасывания, распределения, метаболизма и выведения лекарственных веществ. Знание процессов распределения позволяет выявить органы и ткани, в которые они проникают наиболее интенсивно и/или в которых удерживаются наиболее длительно, что может способствовать более детальному изучению механизмов действия лекарственных веществ .

    Целью данного исследования явилось изучение распределения в организме и тканевой биодоступности нового производного ГАМК – цитрокарда, обладающего кардио- и церебропротекторными свойствами . Доклиническое исследование фармакологических свойств и лекарственной безопасности препарата проведено на кафедре фармакологии и биофармации ФУВ и в лаборатории фармакологии сердечно-сосудистых средств ВолгГМУ.

    Методы исследования

    Эксперименты выполнены на 150 белых беспородных крысах – самцах массой 180-220 г, которые содержались в условиях вивария на стандартной диете с соблюдением всех правил и Международных рекомендаций Европейской конвенции по защите позвоночных животных, используемых при экспериментальных исследованиях (1997 г.).

    Для количественного определения соединений нами был разработан метод ВЭЖХ для определения фенибута и его производных. Использовался жидкостной хроматограф Shimadzu (Япония) с диодноматричным детектором и колонкой С18 4,6´100 мм, 5μm. Для приготовления мобильной фазы использовали ацетонитрил (УФ 210) (Россия) и буферную систему, состоящую из однозамещённого фосфата калия 50 mМоль, pH 2.7 (Россия) и натриевой соли гептансульфоновой кислоты (0,12%). Соотношение водной и органической фазы 88:12% v/v. Субстанцию цитрокарда фиксировали при длине волны 205 нм. Чувствительность метода составляет 1 mг/мл. Экстракцию цитрокарда, а также одновременное осаждение белков из биологических проб производили из плазмы крыс 10% ТХУ в соотношении 1:0,5 .

    Распределение соединений в организме крыс изучали в органах потенциального действия: сердце и мозг; в тканях с сильной васкуляризацией – лёгких и селезёнке; с умеренной васкуляризацией – мышце (musculus quadriceps femoris) и слабой васкуляризацией – сальнике, а также в органах, обеспечивающих элиминацию – печени и почках. Из органов готовили 20% гомогенаты в дистиллированной воде.

    Цитрокард вводили крысам внутривенно и перорально в терапевтической дозе 50 мг/кг. Забор проб крови и органов при внутривенном введении производили через 5, 10, 20, 40 минут и через 1, 2, 4, 8 и 12 часов, а при пероральном введении – через 15, 30 минут и через 1, 2, 4, 8 и 12 часов после введения.

    Для оценки интенсивности проникновения препарата в ткани использовался показатель тканевой доступности (ft), определяемый отношением значения AUC (площади под фармакокинетической кривой) в ткани к соответствующей величине AUC в крови. Также оценивали кажущийся коэффициент распределения (Kd) препарата между кровью и тканью, определяемый отношением соответствующих концентраций в один и тот же момент времени на конечных (моноэкспоненциальных) участках кривых.

    Расчёты производили немодельным методом, статистическую обработку осуществляли в программе Excel.

    Результаты исследования

    В результате проведённого исследования были получены усреднённые фармакокинетические профили зависимости концентрации соединения в плазме крови крыс от времени. Как видно из представленных данных, максимальная концентрация цитрокарда (134,01 мкг/мл) наблюдается на пятой минуте после введения. Затем происходит быстрое снижение концентрации и через 12 часов исследования содержание соединения в плазме становится ниже порога определения. Снижение носит биэкспоненциальный характер, предполагая быструю первую фазу распределения, сменяющуюся более медленной фазой элиминации. За два часа исследования концентрация цитрокарда снижается почти в 10 раз (на второй час определяется 14,8 мкг/мл плазмы крови). Это свидетельствует о том, что цитрокард подвергается интенсивной элиминации в организме крыс.

    Основные фармакокинетические параметры (табл. 1) показывают низкие значения периода полувыведения (Т1/2 = 1,85 часа) и среднего времени удерживания в организме одной молекулы препарата (MRT = 2,36 часа). Среднее по скорости снижение концентрации цитрокарда в плазме крови обуславливает малую величину площади под фармакокинетической кривой (AUC = 134,018 мкг*час/мл). Величина стационарного объёма распределения (Vss) равна 0,88 л/кг, показатель незначительно превышает объём экстрацеллюлярной жидкости в организме крысы, что свидетельствует о низкой способности препарата распределяться и накапливаться в тканях. С этим, по-видимому, связано низкое значение показателя системного клиренса (Сl = 0,37 л/час*кг), несмотря на выраженность процессов элиминации соединения.

    При пероральном введении цитрокард обнаруживается в органах и тканях через 15 минут после введения, достигая максимума через 2 часа и через 12 часов уровень концентрации опускается до порога определения данного лекарственного вещества. Фармакокинетические параметры представлены в табл. 1.

    Таблица 1. Фармакокинетические параметры соединения цитрокард в плазме крови крыс при внутривенном и пероральном введении в дозе 50 мг/кг

    При пероральном введении цитрокарда картина распределения становится иная. Значительно увеличивается период полувыведения и объём распределения изучаемого вещества.

    В сердце, органе потенциального действия при внутривенном введения, соединение обнаруживается в максимальной концентрации (24,69 мкг/г) через 5 минут после введения, в течение 20 минут показатель удерживается на этом же уровне, а затем незначительно снижается к 40 минутам, определяясь до 8 часа. Фармакокинетический профиль цитрокарда в сердце совпадает с таковым в плазме крови. Тканевая доступность составляет 0,671; коэффициент распределения – 1 (табл. 2). При пероральном введении тканевая биодоступность возрастает на 30% и составляет 0,978, коэффициент распределения остаётся на том же уровне как и при внутривенном введении (табл. 3).

    Препарат в невысоких концентрациях проникает через гематоэнцефалический барьер в головной мозг. Максимальное количество (6,31 мкг/г) цитрокарда в мозге определяется на пятой минуте и сохраняется выше порога определения в течение 4 часов. Тканевая доступность составляет 0,089; коэффициент распределения – 0,134. При пероральном введении уровень цитрокарда в мозге находится ниже порога определения табл. 2 и 3).

    В селезёнке и лёгких отмечается сходная тенденция при обоих путях введения. Тканевая доступность составляет 0,75 для лёгких и 1,09 для селезёнки; коэффициент распределения – 1,097 и 1,493, соответственно при внутривенном введении (табл. 2). Тканевая биодоступность при пероральном сведении у этих органов одинаковая (1,35 и 1,37), коэффициент распределения составляет 0,759 для селезёнки и 0,885 для лёгких (табл. 3).

    В мышечной ткани цитрокард определяется на уровне органов с высокой степенью васкуляризации при обоих путях введения. Максимальная концентрация (58,1 мкг/г) наблюдается на 10 минуте, тканевая доступность составляет 1,143 коэффициент распределения – 1,755 при внутривенном введении (табл. 2) и при пероральном введении тканевая доступность – 0,943, коэффициент распределения – 0,677 (табл. 3).

    В сальнике цитрокард обнаруживается в достаточно высоких концентрациях при внутривенном введении (52,7 мкг/г) и в очень невысоких при пероральном введении (6 мкг/г). Тканевая доступность равна 0,43 при внутривенном введении и 0,86 при пероральном; коэффициент распределения – 0,664 и 0,621, соответственно (табл. 2 и 3).

    Тканевая доступность цитрокарда для печени и почек составляет 1,341 и 4,053, коэффициент распределения – 1,041 и 4,486, соответственно (табл. 2). Данные значения фактически не отличаются от таковых при пероральном введении (табл. 3), что свидетельствует о наличии высоких концентраций препарата в органах элиминации. Снижение количества вещества в печени и почках происходит аналогично таковому в плазме крови.

    Таблица 2. Фармакокинетические параметры распределения соединения цитрокард в органах и тканях при внутривенном введении крысам в дозе 50 мг/кг

    Таблица 3. Фармакокинетические параметры распределения соединения цитрокард в органах и тканях при пероральном введении крысам в дозе 50 мг/кг

    Таким образом , распределение цитрокарда по органам и тканям осуществляется по следующей схеме: наибольшее содержание отмечается в почках, как при пероральном, так и при внутривенном введении. Это подтверждается и высокими значениями почечного клиренса, который составляет при внутривенном введении 80%, а при пероральном введении 60% от тотального клиренса. Цитрокард хорошо распределяется и в органы с высокой степенью васкуляризации, где его тканевая доступность выше единицы. Содержание цитрокарда в сердце сопоставимо с его содержанием в крови, при этом тканевая биодоступность для сердца выше приблизительно в 1,5 раза при пероральном введении, по сравнению с внутривенным. Содержание цитрокарда в сальнике также зависит от пути введения. При пероральном введении тканевая биодоступность в 2 раза выше, чем при внутривенном, и составляет 86 и 43% от содержания его в крови, соответственно. Наименьшее содержание цитрокарда отмечается в мозге. Тканевая биодоступность при внутривенном введении составляет 8,9% от его содержания в кровотоке. При пероральном введении концентрации соединения в мозге ниже порога определения. Тогда как у аналога цитрокарда – фенибута концентрации в мозге при внутривенном введении составляет 9%, при пероральном – 100% .

    Основные выводы

    1. В результате проведённых исследований установлено, что распределение цитрокарда в органы и ткани носит неоднородный характер. Наибольшую тропность изучаемое соединение имеет к органам с высокой степенью васкуляризации и органам элиминации.
    2. В мозге крыс соединение определяется в низких концентрациях, что, скорее всего, связанно с транспортом через гематоэнцефалический барьер и не связано с липофильностью цитрокарда и высокой степенью васкуляризации мозга.

    Литература

    1. Каркищенко Н.Н., Хоронько В.В., Сергеева С.А., Каркищенко В.Н. Фармакокинетика. Феникс, Ростов-на-Дону; 2001.
    2. Жердев В.П., Бойко С.С., Месонжник Н.В., Апполонова С.А. Экспериментальная фармакокинетика препарата дилепт. Экспериментальная и клиническая фармакология. 2009. Т.72, №3, С. 16-21.
    3. Спасов А.А., Смирнова Л.А., Иёжица И.Н. и др. Фармакокинетика производных бензимидазола. Вопросы медицинской химии. 2002. Т. 48, №3, С. 233-258.
    4. Бойко С.С., Колыванов Г.Б., Жердев В.П. и др. Экспериментальное исследование фармакокинетики триптофансодержащего дипептида ГБ-115. Бюллетень экспериментальной биологии и медицины. 2007. Т. 144, №9, С. 285-287.
    5. Бастрыгин Д.В., Виглинская А.О., Колыванов Г.Б. и др. Фармакокинетика соединения М-11 у крыс. Экспериментальная и клиническая фармакология. 2010. Т. 74, №7, С. 22-26.
    6. Тюренков И.Н., Перфилова В.Н., Бородкина Л.Е., Гречко О.Ю., Ковтун В.В. Кардио- и церебропротекторное действие новых структурных аналогов ГАМК. Вестник Волгоградской медицинской академии. 2000, №6, С. 52-56.
    7. Перфилова В.Н., Тюренков И.Н., Писарев В.Б. и др. Морфофункциональная оценка кардиопротекторного действия производных ГАМК в условиях хронической алкогольной интоксикации. Бюлл. ВНЦ РАМН и АВО. 2008, №1, С. 16-21.
    8. Бородкина Л.Е., Воронков А.В., Багметов М.Н. и др. Влияние новых производных фенибута на мнестическую функцию и ориентировочно-исследовательское поведение животных в условиях хронической алкоголизации. Вестник Волгоградской медицинской академии. 200, №39. С. 46-49.
    9. Тюренков И.Н., Перфилова В.Н, Смирнова Л.А. и др. Разработка хроматографического метода количественного определения фенибута в биологических пробах. Химико-фармацевтический журнал. 2010. Т. 44, № 12, С. 68-70.
    10. Тюренков И.Н., Перфилова В.Н., Смирнова Л.А. и др. Фармакокинетические свойства фенибута при внутривенном и пероральном введении. Вопросы биологической, медицинской и фармацевтической химии. 2010. №9, С. 22-25.