Open
Close

Отличия прокариот от эукариот. Кто такие эукариоты и прокариоты: сравнительная характеристика клеток разных царств Отличия в строении клеток эукариот и прокариот

Сходства и различия в строении прокариотических и эукариотических клеток


1. Вспомните примеры многоядерных клеток.
2. Какую форму могут иметь бактерии?

Прокариоты.

Древнейшие на Земле организмы не имеют клеточного ядра и называются прокариотами, т. е, доядерными. Они объединяются в отдельное царство - Дробянки, к которому относятся бактерии и сине-зеленые водоросли.

Каковы же отличительные признаки прокариотических клеток по сравнению с эукариотическими?

Клетки прокариот, как правило, значительно меньше, чем у эукариот - их размеры редко превышают 10 мкм, а бывают размером даже 0,3 X 0,2 мкм. Правда, есть и исключения - описана огромная бактериальная клетка размером 100 х 10 мкм.

Строение и обмен веществ прокариот. Прокариоты, как следует из их названия, не имеют оформленного ядра.

Единственная кольцевая молекула ДНК , находящаяся в клетках прокариот и условно называемая бактериальной хромосомой, находится в центре клетки, однако эта молекула ДНК не имеет оболочки и располагается непосредственно в цитоплазме (рис. 36).

Снаружи клетки прокариот, так же как и эукариотические клетки, покрыты плазматической мембраной . Строение мембран у двух этих групп организмов одинаковое. Клеточная мембрана прокариот образует многочисленные впячивания внутрь клетки - мезосомы. На них располагаются ферменты, обеспечивающие реакции обмена веществ в прокариотической клетке. Поверх плазматической мембраны клетки прокариот покрыты оболочкой, состоящей из углеводов, напоминающей клеточную стенку растительных клеток. Однако эта стенка образована не клетчаткой, как у растений, а другими полисахаридами - пектином и муреином.


Содержание урока конспект уроку и опорный каркас презентация урока акселеративные методы и интерактивные технологии закрытые упражнения (только для использования учителями) оценивание Практика задачи и упражнения,самопроверка практикумы, лабораторные, кейсы уровень сложности задач: обычный, высокий, олимпиадный домашнее задание Иллюстрации иллюстрации: видеоклипы, аудио, фотографии, графики, таблицы, комикси, мультимедиа рефераты фишки для любознательных шпаргалки юмор, притчи, приколы, присказки, кроссворды, цитаты Дополнения внешнее независимое тестирование (ВНТ) учебники основные и дополнительные тематические праздники, слоганы статьи национальные особенности словарь терминов прочие Только для учителей

Прочитаем информацию .

Клетка - сложная система, состоящая из трех структурно-функциональных подсистем поверхностного аппарата, цитоплазмы с органоидами и ядра.

Прокариоты (доядерные) - клетки, не обладающие, в отличие от эукариотов, оформленным клеточным ядром и другими внутренними мембранными органоидами.

Эукариоты (ядерные) - клетки, обладающие, в отличие от прокариот, оформленным клеточным ядром, ограниченным от цитоплазмы ядерной оболочкой.

Сравнительная характеристика строения клеток прокариот и эукариот

Структура

Эукариотические клетки

Прокариотические клетки

Есть у растений, грибов; отсутствует у животных у животных. Состоит из целлюлозы (у растений) или хитина (у грибов)

Есть. Состоит из полимерных белковоуглеводных молекул

Есть и окружено мембраной

Нуклеарная область; ядерной мембраны нет

Кольцевые; белка практически не содержат. Транскрипция и трансляция происходят в цитоплазме

Есть, но они меньше по размеру

Есть у большинства клеток

Есть у всех организмов, кроме высших растений

Есть у некоторых бактерий

Есть у растительных клеток

Нет. Фотосинтез зеленых и пурпурных протекает в бактриохлорофиллах (пигментах)

Изображение

Эукариотическая клетка

Прокариотическая клетка

Клеточная стенка - жёсткая оболочка клетки, расположенная снаружи от цитоплазматической мембраны и выполняющая структурные, защитные и транспортные функции. Обнаруживается у большинства бактерий, архей, грибов и растений. Клетки животных и многих простейших не имеют клеточной стенки.

Плазматическая (клеточная) мембрана - поверхностная, периферическая структура, окружающая протоплазму растительных и животных клеток.

Ядро - обязательная часть клетки у многих одноклеточных и всех многоклеточных организмов.

Термин «ядро» (лат. nucleus) впервые применил Р. Броун в 1833 году, когда описывал шарообразные структуры, наблюдаемые им в клетках растений.

Цитоплазма - внеядерная часть клетки, в которой содержатся органоиды. Ограничена от окружающей среды плазматической мембраной.

Хромосомы - структурные элементы ядра клетки, содержащие ДНК, в которой заключена наследственная информация организма.

Эндоплазматический ретикулум (ЭПС) - клеточный органоид; система канальцев, пузырьков и «цистерн», отграниченных мембранами.

Расположена в цитоплазме клетки. Участвует в обменных процессах, обеспечивая транспорт веществ из окружающей среды в цитоплазму и между отдельными внутриклеточными структурами.

Рибосомы - внутриклеточные частицы, состоящие из рибосомной РНК и белков. Присутствуют в клетках всех живых организмов.

Комплекс Гольджи (аппарат Гольджи) - органоид клетки, участвующий в формировании продуктов ее жизнедеятельности (различных секретов, коллагена, гликогена, липидов и др.), в синтезе гликопротеидов.

Гольджи Камилло (1844 — 1926) - итальянский гистолог.

Разработал (1873) метод приготовления препаратов нервной ткани. Установил два типа нервных клеток. Описал т. н. Гольджи аппарат и др. Нобелевская премия (1906, совместно с С. Рамон-и-Кахалем).

Лизосомы - структуры в клетках животных и растительных организмов, содержащие ферменты, способные расщеплять (т. е лизировать — отсюда и название) белки, полисахариды, пептиды, нуклеиновые кислоты.

Митохондрии - органеллы животных и растительных клеток. В митохондрии протекают окислительно-восстановительные реакции, обеспечивающие клетки энергией. Число митохондрий в одной клетке от единиц до нескольких тысяч. У прокариот отсутствуют (их функцию выполняет клеточная мембрана).

Вакуоли - полости, заполненные жидкостью (клеточным соком), в цитоплазме растительных и животных клеток.

Реснички - тонкие нитевидные и щетинковидные выросты клеток, способные совершать движения. Характерны для инфузорий, ресничных червей, у позвоночных и человека — для эпителиальных клеток дыхательных путей, яйцеводов, матки.

Жгутики - нитевидные подвижные цитоплазматические выросты клетки, свойственные многим бактериям, всем жгутиковым, зооспорам и сперматозоидам животных и растений. Служат для передвижения в жидкой среде.

Хлоропласты - внутриклеточные органоиды растительной клетки, в которых осуществляется фотосинтез; окрашены в зеленый цвет (в них присутствует хлорофилл).

Микротрубочки - белковые внутриклеточные структур, входящие в состав цитоскелета.

Представляют собой полые внутри цилиндры диаметром 25 нм.

В клетках микротрубочки играют роль структурных компонентов и участвуют во многих клеточных процессах, включая митоз, цитокенез и везикулярный транспорт.

Микрофиламенты (МФ) - нити, состоящие из молекул белка и присутствующие в цитоплазме всех эукариотический клеток.

Имеют диаметр около 6-8 нм.

Органоиды (органеллы) - постоянные клеточные компоненты, выполняющие определенные функции в жизни клетки.

Используемая литература:

1.Биология: полный справочник для подготовки к ЕГЭ. / Г.И.Лернер. - М.: АСТ: Астрель; Владимир; ВКТ, 2009

2.Биология: учеб. для учащихся 11 класса общеобразоват. Учреждений: Базовый уровень / Под ред. проф. И.Н.Пономаревой. - 2-е изд., перераб. - М.: Вентана-Граф, 2008.

3.Биология для поступающих в вузы. Интенсивный курс / Г.Л.Билич, В.А.Крыжановский. - М.: Издательство Оникс, 2006.

4.Общая биология: учеб. для 11 кл. общеобразоват. учреждений / В.Б.Захаров, С.Г.Сонин. - 2-е изд., стереотип. - М.: Дрофа, 2006.

5.Биология. Общая биология. 10-11 классы: учеб. для общеобразоват. учреждений: базовый уровень / Д.К.Беляев, П.М.Бородин, Н.Н.Воронцов и др. под ред. Д.К.Беляева, Г.М.Дымшица; Рос. акад. наук, Рос. акад. образования, изд-во «Просвещение». - 9-е изд. - М.: Просвещение, 2010.

6.Биология: учеб.-справ.пособие / А.Г.Лебедев. М.: АСТ: Астрель. 2009.

7.Биология. Полный курс общеобразовательной средней школы: учебное пособие для школьников и абитуриентов / М.А.Валовая, Н.А.Соколова, А.А. Каменский. - М.: Экзамен, 2002.

Используемые Интернет-ресурсы.


Единство строения клеток.

Содержание любой клетки отделен от внешней среды особой структурой - плазматической мембраной (плазмалемма). Эта обособленность позволяет создавать внутри клетки совсем особая среда, не похоже на то, что его окружает. Поэтому в клетке могут происходить те процессы, которые не происходят нигде, их называют процессами жизнедеятельности.

Внутренняя среда живой клетки, ограниченное плазматической мембраной, называется цитоплазмой. Она включает гиалоплазму (основную прозрачную вещество) и клеточные органеллы, а также различные непостоянные структуры - включения. К органелл, которые есть в любой клетке, относятся также рибосомы, на которых происходит синтез белка.

Строение клеток эукариот.

Эукариоты - это организмы, клетки которых имеют ядро. Ядро - это самая органеллы эукариотической клетки, в которой хранится и из которой переписывается наследственная информация, записанная в хромосомах. Хромосома - это молекула ДНК, интегрированная с белками. В ядре содержится ядрышко - место, где образуются другие важные органеллы, участвующих в синтезе белка - рибосомы. Но рибосомы только формируются в ядре, а работают они (т.е. синтезируют белок) в цитоплазме. Часть из них находится в цитоплазме свободно, а часть прикрепляется к мембран, образуют сетку, которая получила название эндоплазматической.

Рибосомы - немембранни органеллы.

Эндоплазматическая сеть - это сеть канальцев, ограниченных мембранами. Существует два типа: гладкая и гранулярная. На мембранах гранулярной эндоплазматической сети расположены рибосомы, поэтому в ней происходит синтез и транспортировки белков. А гладкая эндоплазматическая сеть - это место синтеза и транспортировки углеводов и липидов. На ней рибосом нет.

Для синтеза белков, углеводов и жиров необходима энергия, которую в эукариотической клетке производят «энергетические станции» клетки - митохондрии.

Митохондрии - двомембранни органеллы, в которых осуществляется процесс клеточного дыхания. На мембранах митохондрий окисляются органические соединения и накапливается химическая энергия в виде особых энергетических молекул (АТФ).

В клетке также есть место, где органические соединения могут накапливаться и откуда они могут транспортироваться, - это аппарат Гольджи, система плоских мембранных мешочков. Он участвует в транспортировке белков, липидов, углеводов. В аппарате Гольджи образуются также органеллы внутриклеточного пищеварения - лизосомы.

Лизосомы - одномембранни органеллы, характерные для клеток животных, содержат ферменты, которые могут расщеплять белки, углеводы, нуклеиновые кислоты, липиды.

В клетке могут быть органеллы, не имеющие мембранной строения, например рибосомы и цитоскелет.

Цитоскелет - это опорно-двигательная система клетки, включает микрофиламенты, реснички, жгутики, клеточный центр, который производит микротрубочки и центриоли.

Существуют органеллы, характерные только для клеток растений, - пластиды. Бывают: хлоропласты, хромопласты и лейкопласты. В хлоропластах происходит процесс фотосинтеза.

В клетках растений также вакуоли - продукты жизнедеятельности клетки, являющиеся резервуарами воды и растворенных в ней соединений. В эукариотических организмов относятся растения, животные и грибы.

Строение клеток прокариот.

Прокариоты - одноклеточные организмы, в клетках которых нет ядра.

Прокариотические клетки малы по размерам, сохраняют генетический материал в форме кольцевой молекулы ДНК (нуклеоидом). В прокариотических организмов относятся бактерии и цианобактерии, которые раньше называли сине-зелеными водорослями.

Если в прокариот происходит процесс аэробного дыхания, то для этого используются специальные выпячивание плазматической мембраны - мезосомы. Если бактерии фотосинтезирующие, то процесс фотосинтеза происходит на фотосинтетических мембранах - тилакоидов.

Синтез белка в прокариот происходит на рибосомах. В прокариотических клетке мало органелл.

Гипотезы происхождения органелл эукариотических клеток.

Прокариотические клетки появились на Земле раньше, чем эукариотические.

1) симбиотические гипотеза объясняет механизм возникновения некоторых органоидов эукариотической клетки - митохондрий и фотосинтезирующих пластид.

2) Инвагинацыонная гипотеза - утверждает, что происхождение эукариотической клетки исходит из того, что предковой формы был аэробный прокариот. Органеллы в нем возникли в результате впячивания и отслоение частей оболочки с последующей функциональной специализацией в ядро, митохондрии, хлоропласты других органелл.

Признаки Эукариоты Прокариоты
Ядерная оболочка Присутствует Отсутствует
ДНК Находится в фор­ме линейных хро­мосом, где ДНК связана с белками гисто-нами, причем на долю белков при­ходится до 65 % массы хромосомы Обычно одна кольцевая хромосо­ма, всегда связанная с плазмати­ческой мембраной. Суперспирали-зованная «голая» (без белков) ДНК собрана в петли (около 120), от­ходящие от центральной области, в которой они связаны небольшим количеством белковых молекул
Комплекс Гольджи Присутствует Отсутствует
ЭПС Присутствует Отсутствует
Лизосомы Присутствуют Отсутствуют
**Жгутики Покрыты мем­браной, в середи­не две централь­ные микротру­бочки, по перифе­рии - девять двойных микро­трубочек, в осно­вании - базальные тельца Принципиально отличны от жгу­тиков эукариот. В основании базальное тельце с 2 или 4 дисками и крючок. Сам жгутик - микро­трубочка из белка флагеллина
Рибосомы Состоят из двух субъединиц, ко­эффициент седи­ментации 80, со­держат молекулы белка и четыре молекулы рРНК Состоят из двух субъединиц, коэффициент седиментации 70, содержат молекулы белка и три молекулы рРНК
Клеточный центр Присутствует Отсутствует
**Цито-скелет Присутствует Отсутствует
Признаки Эукариоты Прокариоты
Митохонд­рии Присутствуют Отсутствуют
Пластиды у автотрофов Присутствуют Отсутствуют
Способ по­глощения нищи За счет осмоса; путем фагоцито­за и пиноцитоза. Захват пищи ртом у многокле­точных живот­ных За счет осмоса
Пищевари-гсльные вакуоли Присутствуют Отсутствуют

Задание 2.21. Заполните таблицу

Таблица 15

Сравнительная характеристика клеток эукариот

Признаки Царство Животные Царство Растения Царство Грибы
Клеточная стенка Отсутствует, на поверхности мембраны нахо­дится гликока-ликс Образована целлюлозой (клетчаткой) Образована хитином
Резервное питательное вещество Гликоген Крахмал Гликоген
Наличие пластид Как правило, отсутствуют Присутствуют Отсутст­вуют
Пишите митохондрий Присутствуют Присутствуют Присут­ствуют
Центриоли в клеточном центре Присутствуют Отсутствуют у высших расте­ний Отсутст­вуют
Способ поглащения пищи Захват пищи За счет осмоса За счет осмоса

ДЗ№14

Задание 2.22. Тест «Ядро. Эукариоты, прокариоты»

1. Оболочка ядра образована:

1. Мембраной, имеющей 3. Одной мембраной, поры
поры. отсутствуют.

2. Двумя мембранами, 4. Двумя мембранами, поры
имеет поры. отсутствуют.

2. Ядрышки в ядре обеспечивают:

1. Синтез белков. 3. Образование субъединиц

2. Удвоение ДНК. рибосом.

4. Образование центриолей клеточного центра.

3. Наследственную информацию клетки хранят:
1.ДНК. З.Липиды.

2. Белки хромосом. 4. Углеводы.

*4. К прокариотам относятся:

1. Вирусы. 4. Синезеленые.

2. Грибы. 5. Животные.

3. Растения. 6. Бактерии.
*5. К эукариотам относятся:

1. Вирусы. 4. Синезеленые.

2. Грибы. 5. Животные.

3. Растения. 6. Бактерии.

*6. Симбионтами эукариотической клетки считаются:

1. Рибосомы. 3. Митохондрии.

2. Комплекс Гольджи. 4. Пластиды.
*7. У прокариот отсутствуют:

1. Митохондрии. 5. Комплекс Гольджи.

2. Пластиды. 6. ЭПС.

3. Ядро. 7. Лизосомы.

4. Рибосомы. 8. Клеточный центр.

8. Вещество, характерное для клеточной стенки грибов:

1. Целлюлоза (клетчатка). 3. Муреин.

2. Хитин. 4. Такого вещества нет.

9. Запасное питательное вещество, характерное для грибов:

1. Крахмал. 3. Гликоген.

2. Глюкоза. 4. Такого вещества нет.

10. В клеточном центре не имеют центриолей:

1. Низшие растения. 3. Многоклеточные животные.

2. Высшие растения. 4. Простейшие.

Задание 2.23. Определите правильность суждений,

относящихся к теме «Органоиды клетки.

Прокариоты, эукариоты»

1. Лизосомы образуются в комплексе Гольджи.

2. Рибосомы отвечают за синтез белка.

3. Кмембранам шероховатой ЭПС прикреплены рибосомы.

4. Комплекс Гольджи отвечает за выведение продуктов биосинтеза из клетки.

5. Митохондрии присутствуют в растительных и животных клетках.

6. Хромопласты имеют зеленую окраску.

7. Лейкопласты могут превращаться вхлоропласты.

8. Длярастительных клеток характерна центральная вакуоль.

9. В ядрышках синтезируются субъединицы рибосом.

10. Ядро - одномембранный органоид.

11. В ядре происходит синтез рибосомальных белков.
**12. Высшиерастения не имеют центриолей.

13. В клетках грибов встречаются хлоропласты.

14. У растений нет митохондрий.

** 15. У водорослей в клеточном центре есть центриоли.

16. Грибы относятся к эукариотам.

17. Грибы относятся к царству Растения.

18. В состав клеточной стенки грибов входит хитин.

19. Основное запасное вещество грибов - крахмал.

20. В клетках грибов хлоропласты отсутствуют.

21. Прокариоты имеют кольцевую ДНК.

22. Прокариоты имеют одну линейную хромосому.
**23. Бактерии имеют 70S рибосомы.

**24. Бактерии имеют 80S рибосомы.

ЗАЧЕТ 2

Задание 2.24. Вопросы к зачету по теме «Структура и функции клетки»

I. Когда и кем были созданы первые два положения клеточной и теории?

2. Кто доказал, что новые клетки образуются путем деления материнской клетки?

3. Кто показал, что клетка является единицей развития?

4. Чем образована плазмалемма?

5. Из каких слоев состоят оболочки животной и растительной клеток?

6. Перечислите функции клеточной оболочки.

7. Назовите виды транспорта через клеточную мембрану.

8. Что такое фагоцитоз и пиноцитоз?

9. В каком участке клетки образуются субъединицы рибосом?

10. Каковы функции рибосом?

11. ** 11. Каков коэффициент седиментации прокариотических ри­босом и эукариотических?

12. Какие виды эндоплазматической сети вам известны и каковы их функции?

13. Какие функции выполняет комплекс Гольджи?

14. Какие функции выполняют лизосомы?

15. Какие органоиды клетки называют органоидами дыхания?

16. Как происходят взаимопревращения пластид?

17. Как называется внутренняя среда у митохондрий и пластид?

18. Чем образованы центриоли клеточного центра?

19. Какие эукариоты не имеют центриолей?

20. Каковы функции клеточного центра?

21. Перечислите органоиды движения клетки.

22. Перечислите одномембранные органоиды клетки.

23. Перечислите двумембранные органоиды клетки.

24. Перечислите немембранные органоиды клетки.

25. В каких клеточных органоидах имеется ДНК?

26. Каковы функции ядра?

27.Какие органоиды отсутствуют в растительной клетке высших растений?

28. Какое вещество характерно для стенок растительных клеток?

29.Какие органоиды отсутствуют в клетках многоклеточных животных?

30. Какие органоиды эукариотической клетки возникли в резульгате симбиоза?

31. Какие клеточные органоиды способны к самоудвоению?

32. Приведите классификацию эукариот.

33. Какое вещество характерно для стенок клеток грибов?

34. Какое запасное вещество характерно для клеток грибов?

35.Приведите классификацию прокариот

36. Какие органоиды отсутствуют у прокариот?

37. Какое вещество характерно для стенок бактериальных клеток?

38. Как происходит размножение прокариот?

39. В какой форме находится генетический материал у эукариотческой клетки?

40.В какой форме находится генетический материал у прокариотической клетки?

ДЗ№15

Задание 3.1. Заполните таблицу

Таблица 16 Различия в обмене веществ между гетеротрофами и автотрофами

Задание 3.2. Определите правильность суждений, относящихся к теме «Обмен веществ и энергии»

1. Гетеротрофные организмы используют для синтеза органичес­ких соединений неорганический источник углерода - СО 2 .

2. Гетеротрофные организмы, которые в качестве источника энергии используют энергию химических связей органических ве­ществ, относятся к хемогетеротрофам.

3. Первые гетеротрофные организмы Земли были анаэробными организмами.

4. В настоящее время все гетеротрофы используют кислород для дыхания, для окисления органических веществ.

5. Автотрофные организмы способны использовать углеродуглекислого газа для синтеза органических соединений.

6. Хемоавтотрофные организмы в качестве основного источника энергии используют энергию химических связей молекул органичес­их веществ.

7. Фотоавтотрофные организмы в качестве источника энер­гии используют энергию света, в качестве источника углерода – СО 2

8. Наиболее древние фотосинтезирующие организмы Земли (зеленые и пурпурные бактерии) при фотосинтезе выделяют О 2 .

9. Синезеленые (цианобактерии) при фотосинтезе впервые ста­ли выделять кислород в атмосферу.

10. В результате симбиоза бактерий-окислителей с анаэробной клеткой бактерии преобразовались в митохондрии.

11. В результате симбиоза синезеленых с древней эукариотической клеткой появились растения, при этом синезеленые транс­формировались в хлоропласты.

12. Ассимиляция - совокупность реакций обмена веществ в клетке.

13. Диссимиляция - совокупность реакций распада и окисления, протекающих в клетке.

14. Реакции пластического обмена идут с потреблением энергии.

15. Реакции энергетического обмена идут с выделением энергии.

Задание 3.3. Заполните таблицу

Таблица 17 Реакции ассимиляции и диссимиляции

ДЗ№16

Таблица 18 Фотосинтез

Фазы фотосин­теза Процессы, происходящие в данной фазе Результаты процессов
Световая фаза За счет световой энергии происходит окисление хлорофилла. Восстановле­ние его происходит за счет электро­нов, отбираемых у водорода воды. Создается разность потенциалов между внутренней и наружной сто­ронами мембраны тилакоида, и с по­мощью АТФ-синтетазы образуется АТФ, при этом происходит восстанов­ление НАДФ+ доНАДФ Н 2 Происходит фо­толиз воды, при котором выделя­ется О 2 , энергия света превраща­ется в энергию химических связей АТФ иНАДФН 2
Темновая фаза Происходит фиксация СО?. В реак­циях цикла Кальвинапревращается СОг в глюкозу за счет АТФ и вос­становительной силы НАДФ Н^ образованных в световую фазу Образование моносахаридов

Задание 3.8. Тест «Фотосинтез»

*1. Максимально используются в световую фазу фотосинтеза:

1. Красные лучи. 3. Зеленые лучи.

2. Желтые лучи. 4. Синие лучи.

2. Фотосинтетические пигменты располагаются:

3. В строме. пласта.

3. Протоны в световую фазу фотосинтеза накапливаются:

1. В мембранах тилакоидов. 4. В межмембранном

2. В полости тилакоидов. пространстве хлоро-

3. В строме. пласта.

4. Реакции темновой фазы фотосинтеза происходят:

1. В мембранах тилакоидов. 4. В межмембранном

2. В полости тилакоидов. пространстве хлоро-

3. В строме. пласта.
*5. В световую фазу фотосинтеза происходит:

1. Образование АТФ. 3. Выделение О 2

2. Образование НАДФ ■ Н. 4. Образование углеводов.

6. В темновую фазу фотосинтеза происходит:

1. Образование АТФ. 3. Выделение О г

2. Образование НАДФ Н 2 . 4. Образование углеводов.

7. При фотосинтезе происходит выделение О 2 , который образу­ется при разложении:

1.СО 2 . З.СО 2 иН 2 О.

2. (Я 2 О.) 4. С 6 Н, 2 О 6 .

8. Реакции цикла Кальвина происходят:

1. В мембранах тилакоидов. 3. В полостях тилакоидов.

2. В строме. 4. И в тилакоидах, и в строме.
*9. Синтезировать органические вещества, используя неоргани­ческий источник углерода, способны:


10. Синтезировать органические вещества, используя только орга­нический источник углерода, способны:

1. Хемоавтотрофы. 3. Фотоавтотрофы.

2. Хемогетеротрофы. 4. Все вышеперечисленные.

ДЗ№17

Тема: Энергетический обмен

Задание 3.9. Тест «Гликолиз»

*1. На подготовительном этапе энергетического обмена проис­ходит:

1. Гидролиз белков до 2. Гидролиз жиров

аминокислот до глицерина и жирных кислот.

3. Гидролиз углеводов 4. Гидролиз нуклеиновых

до моносахаридов. кислот до нукяеотидов.

2. Обеспечивают гликолиз:

1. Ферменты пищеваритель- 3. Ферменты цикла Кребса.
ного тракта и лизосом.

2. Ферменты цитоплазмы. 4. Ферменты дыхательной цепи.

3. В результате бескислородного окисления в клетках у животных при недостатке О 2 образуется:

1.ПВК. 3. Этиловый спирт.

4. В результате бескислородного окисления в клетках у растений при недостатке О 2 образуется:

1. ПВК. 3. Этиловый спирт

2. Молочная кислота. 4. Ацетил-КоА.

5. Энергия, образующаяся при гликолизе одного моля глюкозы, равна:

1.200кДж. 3. бООкДж.

2. 400 кДж. 4. 800 кДж.

6. Три моля глюкозы подверглось гликолизу в животных клетках при недостатке кислорода. При этом углекислого газа выделилось:

1. 3 моль. 4. Углекислый газ в животных

2. 6 моль. клетках при гликолизе
3.12 моль. не выделяется.

**7. К биологическому окислению относятся:

1. Окисление вещества А в реакции: А + О 2 -» AO 2

2. Дегидрирование вещества А в реакции: АН 2 + В -> А + ВН,.

3. Потеря электронов (например, Fe 2+ в реакции: Fe 2+ -^Fe 3+ + e).

4. Приобретение электронов (например, Fe 3+ в реакции: Fe 2+ ->
-> Fe 3+ + e~).

*8. Реакции подготовительного этапа энергетического обмена происходят:

1. В пищеварительном 3. В цитоплазме.
тракте. 4. В лизосомах.

2. В митохондриях.

9. Энергия, которая выделяется в реакциях подготовительного этапа энергетического обмена:

2. Запасается в форме АТФ.

3. Большая часть рассеивается в форме тепла, меньшая - запасает­ся в форме АТФ.

4. Меньшая часть рассеивается в форме тепла, большая - запасает­ся в форме АТФ.

10. Энергия, которая выделяется в реакциях гликолиза:

1. Рассеивается в форме тепла.

2. Запасается в форме АТФ.

3. 120 кДж рассеивается в форме тепла, 80 кДж запасается в форме АТФ.

4. 80 кДж рассеивается в форме тепла, 120 кДж запасается в форме АТФ.

Задание 3.11. Тест «Кислородное окисление»

1. Реакции кислородного окисления происходят:

1. В цитоплазме клетки. 3. Во всех органоидах и цитоплазме.

2. В ядре клетки. 4. В митохондриях.

2. В результате гликолиза образуется и поступает в митохонд­рию:

1. Глюкоза. 3. Пировиноградная кислота.

2. Молочная кислота. 4. Ацетил-КоА.

3. В цикл Кребса включается:

1.ПВК. 3. Этиловый спирт.

2. Молочная кислота. 4. Ацетильная группа.

*4. В реакциях цикла Кребса происходит:

1. Дегидрирование ацетильной группы.

3. Образуется одна молекула АТФ при разрушении каждой ацетильной группы.

4. В результате работы АТФ-синтетазы образуется 34 моля АТФ.

5. Реакции цикла Кребса происходят:

1. В матриксе митохондрий.

2. В цитоплазме клеток.

3. На внутренней мембране митохондрий на ферментах дыхательной цепи.

4. В межмембранном пространстве митохондрий.

6. При полном разрушении в митохондрии одной молекулы ПВК образуется:

1.12 пар атомов водорода. 3. 6 пар атомов водорода.

7. При полном разрушении одной молекулы глюкозы в дыхательную цепь транспортируется:

1. 12 пар атомов водорода. 3. 6 пар атомов водорода.

2. 10 пар атомов водорода. 4. 5 пар атомов водорода.

8. Протонный резервуар митохондрий находится:

1. В межмембранном пространстве.

2. В матриксе.

3.На внутренней стороне внутренней мембраны

4. В матриксе и на внутренней стороне внутренней мембраны.

9. АТФ-синтетазой при восстановлении 12 пар атомов водорода образуется:

1. 38 молекулы АТФ. 3. 34.молекулы АТФ.

2. 36 молекулы АТФ. 4. 42 молекулы АТФ.

10. При полном окислении одного моля глюкозы образуется:

1. 38 моля АТФ. 3. 34 моля АТФ.

2. 36 молей АТФ. 4. 42 моля АТФ.

ДЗ№18

Задание 3.15. Тест «Код ДНК. Транскрипция»

1. Триплетность генетического кода проявляется в том, что:

1.Одну аминокислоту кодируют не один, не два, а три нуклеотида.

2. Вырожденность генетического кода проявляется в том, что:

3.Одну аминокислоту могут кодировать до 6 кодонов.

4.Рамка считывания всегда равна трем нуклеотидам, один нуклеотид не может входить в состав двух кодонов.

5.У всех организмов Земли генетический код одинаков.

3. Однозначность генетического кода проявляется в том, что:

1. Одну аминокислоту кодируют не один, не два, а три нуклеотида.

2.Один кодон всегда кодирует одну аминокислоту.

3.Одну аминокислоту могут кодировать до 6 кодонов.

4.Рамка считывания всегда равна трем нуклеотидам, один нуклеотид не может входить в состав двух кодонов.

5.У всех организмов Земли генетический код одинаков.

4. Универсальность генетического кода проявляется в том, что:

2. Один кодон всегда кодирует одну аминокислоту.

5. Неперекрываемость генетического кода проявляется в том, что:

1. Одну аминокислоту кодируют не один, не два, а три нуклео­тида.

2. Один кодон всегда кодирует одну аминокислоту.

3. Одну аминокислоту могут кодировать до 6 кодонов.

4. Рамка считывания всегда равна трем нуклеотидам, один нуклеотид не может входить в состав двух кодонов.

5. У всех организмов Земли генетический код одинаков.

6.Транскрипция - это:
1. Удвоение ДНК.

2. Синтез иРНК на ДНК.

3. Синтез полипептидной цепочки на иРНК.

4. Синтез иРНК, затем синтез на ней полипептидной цепочки.
*7. ДНК содержится:

1. В ядре. 5. В комплексе Гольджи.

2. В митохондриях.

3. В пластидах..

4. В лизосомах. 8.

*8. В ДНК может быть зашифрована структура:

1. Полипептидов. 5. рРНК.

2. Полисахаридов. 6. Олигосахаридов.

3. Жиров. 7. Моносахаридов.

4. тРНК. 8. Жирных кислот.

9. Кодовые триплеты ДНК кодируют :

1.10 аминокислот. 3. 26 аминокислот.

2.20 аминокислот. 4. 170 аминокислот.

10. Все многообразие аминокислот, входящих в состав белков, кодируют:

1. 20 кодовых триплетов. 3. 61 кодовый триплет.

2. 64 кодовых триплета. 4. 26 кодовых триплетов.

11. Матрицей при транскрипции являются:

1. Кодирующая цепь ДНК. 3. иРНК.

2. Обе цепи. 4. Цепь ДНК, комплементарная

кодогенной.

*12. Для транскрипции необходимы:
1. АТФ. 5.ТТФ.

2. УТФ. 6. Кодирующая цепь ДНК.

3. ГТФ. 7. Рибосомы.

4. ЦТФ. 8. РНК-полимераза.

13. Участок молекулы ДНК, с которого происходит транскрипция,
содержит 30 000 нуклеотидов. Для транскрипции потребуется:

1. 30 000 нуклеотидов. 3. 60 000 нуклеотидов.

2. 15 000 нуклеотидов. 4. 90 000 нуклеотидов.

14. РНК-полимераза при транскрипции движется:

15. РНК-полимераза способна собирать полинуклеотид:

1. От 5"-конца к З"-концу. 3. Начиная с любого конца.

2.От З"-конца к 5"-концу. 4. В зависимости от фермента.

ДЗ№19

Задание 3.18. Заполните таблицу

Таблица 20 Биосинтез белка

Что происхо­дит на данном этапе Что необходимо
Транскрип­ция: образо­вание иРНК /. Кодирующая цепь ДНК /. Кодирует последовательность аминокислот
2. Фермент РНК-полимераза 2. Образует иРНК
3. АТФ, УТФ, ГТФ, ЦТФ 3. Материал и энергия для синтеза и РНК
Трансляция: синтез па иРНК молипептид-иой цепочки 1. иРНК 1. Переносит информацию о стро­ении белка из ядра в цитоплазму
2. Рибосомы 2. Органоиды, отвечающие за син­тез полипептидов
Что происходит на данном этапе Что необходимо Функции структур, веществ и органоидов, принимающих участие в процессе
Трансляция: синтез на иРНК полипептидной цепочки 3. тРНК 3. Молекулы, транспортирую­щие аминокислоты в рибосомы
4. Аминокислоты 4. Строительный материал
5. Ферменты ами-ноацил-тРНК-синтетазы 5. Присоединяют аминокислоты к соответствующей тРНК за счет энергии АТФ
6. Энергия в фор­ме AT Ф, ГТФ 6. Энергия для присоединения аминокислот к 3 "-концу тРНК, для сканирования, образования пептидных связей, движения рибосомы

Задание 3.19. Тест «Трансляция»

*1. К реакциям матричного синтеза относятся:

1. Репликация ДНК. 3. Трансляция.

2. Транскрипция. 4. Образование нуклеотидов.

2. Если информационная РНК состоит из 156 нуклеотидов (вме­сте с терминальным триплетом), то на ней закодировано:

1. 156 аминокислот. 3. 52 аминокислоты.

2. 155 аминокислот. 4. 51 аминокислота.
**3. Сколько известно различных видов тРНК?

1. 20 различных видов, столько же, сколько и аминокислот.

2.Один вид, который транспортирует все 20 видов аминокислот.

3.61 вид тРНК, столько же, сколько кодовых триплетов.

4.Более 30, так как с одним кодоном могут соединяться не­колько антикодоновразных тРНК, последний нуклеотид в антикодоне не всегда важен.

4. Аминокислота соединяется со своей тРНК:

1.С помощью фермента аминоацил-тРНК-синтетазы без затра­ты АТФ.

2.С помощью фермента аминоацил-тРНК-синтетазы с затратой АТФ.

3.С помощью фермента РНК-полимеразы без затраты АТФ.

4. С помощью фермента РНК-полимеразы с затратой АТФ.
**5. Как происходит инициация трансляции?

1. Рибосома присоединяется к 5"-концу иРНК, в П-участок заходит метиониновая тРНК с метионином.

2. Малая субъединица рибосомы присоединяется к иРНК и ска­нирует ее до инициирующего кодона, затем присоединяется большая субъединица рибосомы и в П-участок заходит метиониновая тРНК с метионином.

3. (Малая субъединица рибосомы присоединяется к иРНК, в П-участок заходит тРНК с метионином, инициаторный комплекс сканирует иРНК до инициирующего кодона, затем присоединяется большая субъединица рибосомы.)

6. Каждая следующая тРНК со своей аминокислотой попадают:

1. В любой, или А-, или Р-участок рибосомы.

2. Только в А-участокрибосомы.

3. Только в Р-участок рибосомы.

4. В зависимости от вида тРНК, некоторые - в А-участок, другие - в Р-участок.

7. В функциональном центре рибосомы имеется:

1.3 нуклеотида. 3.9 нуклеотидов.

2. 6 нуклеотидов. 4. 12 нуклеотидов.

*8. Для трансляции необходимы:

1.Кодирующая цепь ДНК.

2.ДНК-полимераза.

3.РНК-полимераза.

4.Аминоацил-тРНК-синтетазы.

5.Нуклеотиды.

9. Синтез полипептидной цепи на матрице иРНК - это:

1. Репликация. 3. Транскрипция.

2.Трансляция. 4. Процессинг.

10. Рибосома по иРНК может двигаться:

1. От 5"- к 3"-концу. 3. В обоих направлениях.

2. От 3"- к 5"-концу. 4. В зависимости от син-

тезируемого белка.

ЗАЧЕТ 3

Задание 3.2O. Вопросы к зачету по теме «Обмен веществ»

1. Что такое ассимиляция?

2. Что такое диссимиляция?

3. Какие организмы называются автотрофами?

4. На какие группы делятся автотрофы?

5. Какие организмы называются гетеротрофами?

6. Какие три этапа энергетического обмена вам известны?

7. Каковы продукты гидролиза белков, жиров, углеводов, нукле­
иновых кислот на подготовительном этапе?

8. Что происходит с энергией, выделяющейся на подготовитель­
ном этапе энергообмена?

9. Где расположены ферменты бескислородного этапа энергооб­
мена?

10. Какие продукты и сколько энергии образуется при гликолизе?
11. Как называются реакции, связанные с дегидрированием и декарбоксилированием, которые протекают в матриксе митохондрий?
12. Сколько молекул АТФ образуется при дегидрировании и декарбоксилировании ацетильной группы в цикле Кребса?

13. Сколько пар атомов водорода транспортируется на дыхатель­ную цепь при полном дегидрировании 2 молекул ПВК?

14. Какие ферменты перекачивают протоны в протонный резервуар митохондрий?

15. . Напишите общую формулу энергетического обмена.

16. Что может быть закодировано в ДНК?

17. Что означает триплетность генетического кода?

18. Что означает однозначность генетического кода? Сколько триплетов кодируют 20 видов аминокислот?

19. В чем заключается вырожденность генетического кода?

20. Что означает универсальность генетического кода?

21. Что означает неперекрываемость генетического кода?

22. Что такое транскрипция?

23. Что необходимо для транскрипции?

24. Участок ДНК содержит 300 000 нуклеотидов. Сколько нуклеотидов нужно для репликации и для транскрипции?

25. В каком направлении движется РНК-полимераза по кодиру­ющей цепи?

26. иРНК вместе с терминальным триплетом состоит из 156 нуклеотидов. Сколько аминокислот закодировано в этой иРНК?

27. Что такое трансляция?

28. Что необходимо для трансляции?

29. Сколько нуклеотидов в ФЦР рибосомы?

30. В какой участок ФЦР поступает тРНК с новой аминокисло­той?

31. Напишите общую формулу фотосинтеза.

33. Где происходят световые реакции фотосинтеза?

34. Что происходит в световую фазу фотосинтеза?

35. Где находятся протонные резервуары в хлоропласте?

36. Где происходят темновые реакции фотосинтеза?

37. Что происходит в темновую фазу фотосинтеза?

**38. Какая (какие) фотосистема (фотосистемы) есть у фотосинтезирующих серобактерий?

**39. Какая (какие) фотосистема (фотосистемы) есть у синезеле-ных?

40. Кто открыл процесс хемосинтеза?


Похожая информация.


Сценарий анимации О 9 9 – Л- 7

«Сравнение клеток эукариот и прокариот».

Экран 1.

Лабораторная работа:«Сравнение клеток эукариот и прокариот».

(рис. 1) (рис. 2)

Экран 2

Оборудование: стол, на столе:

Микроскоп тканевая салфетка готовые микропрепараты бактерий и клеток эукариот

Таблицы строения клеток эукариот и прокариот

Экран 3 .

(Верхняя строка экрана) Лабораторная работа: «Сравнение клеток эукариот и прокариот».

Цель: Познакомиться с двумя уровнями клеток, изучить строение бактериальной клетки, сравнить строение клеток бактерий и простейших организмов.

Экран 4 . (Верхняя строка экрана) Эукариоты.

Демонстрация текста + озвучивание

(рис. 3) (рис. 4) (рис. 5)

Эукариоты или ядерные (от греч. eu - хорошо и carion - ядро) - организмы, содержащие в клетках четко оформленное ядро. К эукариотам относятся одноклеточные и многоклеточные растения, грибы и животные, то есть все организмы, кроме бактерий. Клетки эукариот разных царств различаются по ряду признаков. Но во многом их строение сходно. Каковы же особенности клеток эукариот? Из предыдущих уроков вы знаете, что в клетках животных нет клеточной оболочки, которая есть у растений и грибов, нет пластид, которые есть у растений и некоторых бактерий. Вакуоли в клетках животных очень малы и непостоянны. Центриоли у высших растений не обнаружены.

Экран 5 . (Верхняя строка экрана) Прокариоты.

Демонстрация текста + озвучивание

(рис. 6)

Клетки прокариот или предъядерные (от лат. pro - вместо, впереди и carion) не имеют оформленного ядра. Ядерное вещество у них расположено в цитоплазме и не отграничено от нее мембраной. Прокариоты - наиболее древние примитивные одноклеточные организмы. К ним относят бактерии и цианобактерии. Размножаются они простым делением. У прокариот в цитоплазме расположена одиночная кольцевая молекула ДНК, которая называется нуклеоидом или бактериальной хромосомой, в которой записана вся наследственная информация бактериальной клетки. Непосредственно в цитоплазме располагаются рибосомы. Клетки прокариот гаплоидны. Они не содержат митохондрий, комплекса Гольджи, ЭПС. Синтез АТФ осуществляется в них на плазматической мембране. Клетки прокариот, так же как и эукариотические клетки, покрыты плазматической мембраной. Поверх которой располагается клеточная стенка и слизистая капсула. Несмотря на относительную простоту, прокариоты являются типичными независимыми клетками.

Экран 6 (

Демонстрация текста + озвучивание: «Перед проведением практической работы необходимо ознакомиться с инструкцией».

Предложения появляются последовательно над рисунком.

1. Рассмотрите под микроскопом готовые микропрепараты эукариотических клеток: амебы обыкновенной, хламидомонады и Мукора.

2. Рассмотрите готовый микропрепарат прокариотической клетки под микроскопом.

3. Рассмотрите таблицы со строением клеток эукариот и прокариот.

4. Заполните таблицу, отметив наличие органоида «+», а отсутствие «-». Напишите, какие организмы относятся к прокариотам и эукариотам.

Сравнительная характеристика прокариот и эукариот

Признаки

Прокариоты

Эукариоты

Наличие оформленного ядра

Цитоплазма

Клеточная оболочка

Митохондрии

Рибосомы

Какие организмы относятся

Экран 7 (Верхняя строка) Лабораторная работа: «Сравнение клеток эукариот и прокариот».

Демонстрация

Озвучивание

    Появляется микроскоп и готовые микропрепараты тканей растений. Рука протирает салфеткой зеркало, затем появляется глаз, смотрящий в окуляр. Руки помещают препарат амебы обыкновенной на предметный столик, затем вращают револьверный столик, останавливается объектив, увеличивается изображение объектива и цифры на нем (х8), объектив возвращается к исходному размеру. Руки вращают зеркало. Увеличение препарата.

    Приблизить и показать микропрепарат амебы

Появляется готовый препарат хламидомонады. Руки помещают препарат на предметный столик. Глаз направляется к окуляру. Приблизить и показать строение клетки.

Препарат снимается, микроскоп удаляется.

Появляется готовый препарат Мукора. Руки помещают препарат на предметный столик. Глаз направляется к окуляру. Приблизить и показать строение клетки.

Препарат снимается, микроскоп удаляется.

Появляется готовый препарат бактериальной клетки. Руки помещают препарат на предметный столик. Глаз направляется к окуляру. Приблизить и показать строение клетки.

    Появляются таблицы со строением клеток эукариот

(рис 12)

(рис. 13)

И прокариот

(рис. 14)

    Появляется тетрадь и ручка. Одна рука берет тетрадь, открывает ее и заполняется таблица.

Признаки

Прокариоты

Эукариоты

Наличие оформленного ядра

Цитоплазма

Клеточная оболочка

Митохондрии

Рибосомы

Какие организмы относятся

бактерии

Грибы, растения, животные

(таблица 1)

    Текст вывода:

Внутри прокариотической клетки отсутствуют органоиды, окруженные мембранами, т.е. в ней нет эндоплазматической сети, нет митохондрий, нет пластид, комплекса Гольджи, нет ядра.

Прокариоты часто имеют органоиды движения – жгутики и реснички.

Эукариоты имеют ядро и органоиды, более сложное строение, которое указывает на процесс эволюции.

    Приготовьте к работе микроскоп.

    Рассмотрите под микроскопом готовые микропрепараты эукариотических клеток.

    Рассмотрите таблицы со строением клеток эукариот и прокариот.

    Заполните таблицу, отметив наличие органоида «+», а отсутствие «-». Напишите, какие организмы относятся к прокариотам и эукариотам.

    Сделайте вывод: Есть ли принципиальные различия между прокариотами и эукариотами? О чём это может говорить?