Open
Close

Что такое биохимия и как ее делают. Что показывает биохимический анализ крови и какие нормы для взрослых? Показания к сдаче биохимического анализа крови

Биохимический анализ – исследование широкого спектра ферментов, органических и минеральных веществ. Этот анализ обмены веществ в организме человека: углеводный, минеральный, жировой и белковый. Изменения в обменах веществ показывают, существует ли -либо патология и в каком именно органе.

Данный анализ делается в том случае, если у врача есть подозрение на скрытное заболевание. Результат анализа патологию в организме на самом начальном этапе развития, и специалист может сориентироваться с выбором лекарственных средств.

С помощью этого анализа можно выявить заболевание лейкозом на ранней стадии, когда еще симптомы не начали проявляться. В таком случае можно начать принимать необходимые препараты и остановить патологический процесс заболевания.

Процесс забора и значения показателей анализа

На анализ берется кровь из вены, примерно пять-десять миллилитров. Ее помещают в специальную пробирку. Анализ проводят на голодный желудок пациента, для более полной правдивости. Если нет никакого риска для здоровья, рекомендуется не принимать перед крови лекарственные средства.

Для трактовки результатов анализа используют самые информативные показатели:
- уровень глюкозы и сахара – повышенный показатель характеризует развитие сахарного диабета у человека, резкое его снижение представляет угрозу жизни;
- холестерин – повышенное его содержание констатирует факт наличия атеросклероза сосудов и риска сердечно-сосудистых заболеваний;
- трансаминазы – ферменты, выявляющие такие заболевания, как инфаркт миокарда, поражение печени (гепатит), или наличие какой-либо травмы;
- билирубин – его высокие показатели говорят о поражении печени, массивном разрушении эритроцитов и нарушении оттока желчи;
- мочевина и креатин – их избыток указывает на ослабление функции выделения почек и печени;
- общий белок – его показатели изменяются, когда в организме происходит тяжелое заболевание или какой-либо негативный процесс;
- амилаза – является ферментом поджелудочной железы, повышение ее уровня в крови указывает на воспаление железы – панкреатит.

Помимо вышеперечисленного, биохимический анализ крови определяет содержание в организме калия, железа, фосфора и хлора. Расшифровывать результаты анализа может только лечащий врач, который и назначит соответствующее лечение.

Биохимия (от греч. «bios» ‒ «жизнь», биологическая или физиологическая) – это наука, которая изучает химические процессы внутри клетки, влияющие на жизнедеятельность всего организма или его определенных органов. Целью науки биохимии является познание химических элементов, состава и процесса обмена веществ, способов его регуляции в клетке. По другим определениям, биохимией называется наука о химической структуре клеток и организмах живых существ.

Чтобы понять, для чего нужна биохимия, представим науки в виде элементарной таблицы.

Как видно, основой для всех наук есть анатомия, гистология и цитология, которые изучают все живое. На их основе построены биохимия, физиология и патофизиология, где познают функционирование организмов и химические процессы внутри них. Без этих наук не смогут существовать и остальные, что представлены в верхнем секторе.

Есть и другой подход, по которому науки делятся на 3 типа (уровня):

  • Те, что изучают клеточный, молекулярный и тканный уровень жизни (науки анатомия, гистология, биохимия, биофизика);
  • Изучают патологические процессы и заболевания (патофизиология, патологическая анатомия);
  • Диагностируют внешнюю реакцию организма на заболевания (клинические науки, такие как терапия и хирургия).

Вот так мы выяснили, какое место среди наук занимает биохимия, или, как ее еще называют, медицинская биохимия. Ведь любое ненормальное поведение организма, процесс его метаболизма повлияет на химическую структуру клеток и проявит себя во время проведения БАК.

Для чего сдают анализы? Что показывает биохимический анализ крови?

Биохимия крови – это метод диагностирования в лабораторных условиях, что показывает заболевания в различных направлениях медицины (например, терапии, гинекологии, эндокринологии) и помогает определить работу внутренних органов и качество обмена белков, липидов и углеводов, а также достаточность в организме микроэлементов.

БАК, или биохимическое исследование крови, – это анализ, с помощью которого получают самую широкую информацию касательно разнообразных заболеваний. По его результатам можно узнать функциональное состояние организма и каждого органа в отдельном случае, ведь любой недуг, атакующий человека, так или иначе проявится в результатах БАК.

Что входит в состав биохимии?

Не очень удобно, да и не нужно, проводить биохимические исследования абсолютно всех показателей, и кроме того, чем их больше, тем больше нужно крови, а также и дороже они вам обойдутся. Потому различают стандартный и комплексный БАКи. Стандартный назначается в большинстве случаев, а вот расширенный с дополнительными показателями назначает врач, если ему нужно выяснить дополнительные нюансы в зависимости от симптомов недуга и целей анализа.

Базовые показатели.

  1. Общий белок в крови (TP, Total Protein).
  2. Билирубин.
  3. Глюкоза, липаза.
  4. АлАТ (Аланинаминотрансфераза, АЛТ) и АсАТ (Аспартатаминотрансфераза, АСТ).
  5. Креатинин.
  6. Мочевина.
  7. Электролиты (Калий, K/Кальций, Сa/Натрий, Na/ Хлор, Cl/Магний, Mg).
  8. Холестерин общий.

Развернутый профиль включает в себя любые из этих дополнительных показателей (а также другие, очень специфические и узконаправленные, не обозначенные в этом перечне).

Биохимический общетерапевтический стандарт: нормы взрослых

Биохимический анализ крови Нормы
(БАК)
Общий белок от 63 до 85 г/литр
Билирубин (прямой, непрямой, общий) общий до 5-21 мкмоль/литр
прямой – до 7,9 ммоль/литр
непрямой ‒ рассчитывается, как разница между прямым и непрямым показателями
Глюкоза от 3,5 до 5,5 ммоль/литр
Липаза до 490 Ед/литр
АлАТ и АсАТ для мужчин – до 41 Ед/литр
для женщин – до 31 Ед/литр
Креатининфосфокиназа до 180 Ед/литр
ALKP до 260 Ед/литр
Мочевина от 2,1 до 8,3 ммоль/л
Амилаза от 28 до 100 Ед/л
Креатинин для мужчин – от 62 до 144 мкмоль/литр
для женщин – от 44 до 97 мкмоль/литр
Билирубин от 8,48 до 20,58 мкмоль/литр
ЛДГ от 120-240 Ед/литр
Холестерин от 2,97 до 8,79 ммоль/литр
Электролиты К от 3,5 до 5,1 ммоль/литр
Сa от 1,17 до 1,29 ммоль/литр
Na от 139 до 155 ммоль/литр
Cl от 98 до 107 ммоль/литр
Mg от 0,66 до 1,07 ммоль/литр

Расшифровка биохимии

Расшифровка данных, которые были описаны выше, проводится по определенным значениям и нормам.

  1. Общий белок – это количество всего протеина, находящегося в человеческом организме. Превышение нормы указывает на различные воспаления в организме (на проблемы печени, почек, мочеполовой системы, ожогового недуга или на рак), при дегидратации (обезвоживании) во время рвоты, потоотделении в особо больших размерах, кишечной непроходимости или миеломной болезни, недостаток – на дисбаланс в питательном рационе, длительное голодание, болезнь кишечника, печени или при нарушении синтеза в результате наследственных заболеваний.

  2. Альбумин
    ‒ это содержащаяся в крови белковая фракция с высокой концентрацией. Он связывает воду, и его низкое количество приводит к развитию отеков – вода не задерживается в крови и попадает в ткани. Обычно, если снижается белок, то и количество альбумина падает.
  3. Анализ билирубина в плазме общий (прямой и непрямой) – это диагностика пигмента, который образуется после расщепления гемоглобина (для человека он токсический). Гипербилирубинемия (превышение уровня билирубина) называется желтухой, причем выделяют клиническую желтуху надпеченочную (в том числе у новорожденных), печеночно-клеточную и подпеченочную. Она указывает на анемию, обширные кровоизлияния впоследствии гемолитической анемии, гепатит, разрушение печени, онкологию и другие заболевания. Она страшит патологией печени, но может повыситься и у человека, перенесшего удары и травмы.
  4. Глюкоза. Ее уровень определяет углеводный обмен, то есть энергию в организме, и как работает поджелудочная железа. Если глюкозы очень много – это может быть диабет, физические нагрузки или повлиял прием гормональных препаратов, если мало – гиперфункция поджелудочной железы, болезни эндокринной системы.
  5. Липаза – это расщепляющий жиры фермент, который играет важную роль в обмене веществ. Его повышение свидетельствует о болезни поджелудочной.
  6. АЛТ – «печеночный маркер», по нему отслеживают патологические процессы печени. Повышенная норма информирует о проблемах в работе сердца, печении или гепатите (вирусном).
  7. АСТ – «сердечный маркер», по нему видно качество работы сердца. Превышение нормы свидетельствует о нарушении работы сердца и гепатите.
  8. Креатинин – дает информацию о функционировании почек. Повышен, если у человека есть острое или хроническое заболевание почек или наблюдается разрушение ткани мышечной, эндокринных нарушениях. Завышен у людей, которые употребляют много мясных продуктов. И потому креатинин понижен у вегетарианцев, а также у беременных, но очень сильно на диагностику не повлияет.
  9. Анализ мочевины – это исследование продуктов белкового обмена, работы печени и почек. Завышение показателя происходит при нарушении в работе почек, когда они не справляются с выведением жидкости из организма, а снижение характерно для беременных, при диете и нарушениях, связанных с работой печени.
  10. Ггт в биохимическом анализе информирует об обмене аминокислот в организме. Его высокий показатель виден при алкоголизме, а также, если поражается кровь токсинами или предполагается дисфункция печени и желчевыводящих путей. Низкий – если есть хронические заболевания печени.
  11. Лдг в исследовании характеризует протекание энергетических процессов гликолиза и лактата. Высокий показатель указывает на негативное воздействие на печень, легкие, сердце, поджелудочную железу или почки (заболевания пневмония, инфаркт, панкреатит и прочие). Низкий показатель лактатдегидрогеназы, как и низкий креатинин, на диагностику не повлияет. Если ЛДГ повышен, причины у женщин могут быть следующие: повышенные физические нагрузки и беременность. У новорожденных тоже этот показатель слегка завышен.
  12. Электролитный баланс указывает на нормальный процесс обмена веществ в клетку и из клетки назад, в том числе и процесс работы сердца. Алиментарные нарушения зачастую стают главной причиной дисбаланса электролитов, но также это может быть рвота, диарея, гормональный сбой или сбой в работе почек.
  13. Холестерол (холестерин) общий – повышается, если у человека ожирение, атеросклероз, дисфункции печени, щитовидной железы, и снижается, когда человек садится на безжировую диету, при септисе или другой инфекции.
  14. Амилаза – фермент, содержащийся в слюне и поджелудочной. Высокий уровень покажет, если имеются холецистит, признаки сахарного диабета, перитонита, паротита и панкреатита. Также повысится, если употреблять алкогольные напитки или препараты – глюкокортикоиды, также характерно для беременных во время токсикоза.

Показателей биохимии очень много и основных, и дополнительных, также проводится комплексная биохимия, в которую входят как основные, так и дополнительные показатели на усмотрение врача.

Сдать биохимию натощак или нет: как подготовиться к анализу?

Анализ крови на Бх – ответственный процесс, и готовиться к нему нужно заранее и со всей серьезностью.


Эти меры необходимы, чтобы анализ был более точным и никакие дополнительные факторы на него не повлияли. В ином случае ‒ придется пересдавать анализы, так как малейшие изменения условий значительно повлияют на процесс метаболизма.

Откуда берут и как сдавать кровь

Сдача крови на биохимию происходит путем забора шприцом крови из вены на локтевом изгибе, иногда из вены на предплечье или кисти. В среднем достаточно 5-10 мл крови для того, чтобы сделать основные показатели. Если нужен развернутый анализ биохимии – тогда берется и объем крови больше.

Норма показателей биохимии на специализированном оборудовании от разных производителей может несколько отличаться от средних границ. Экспресс-метод подразумевает получение результатов в течение одного дня.

Процедура забора крови почти безболезненна: присаживаетесь, процедурная медсестра готовит шприц, налаживает на руку жгут, обрабатывает место, где будет делаться укол, антисептиком и берет образец крови.

Полученную помещает в пробирку и отдают в лабораторию на диагностику. Врач-лаборант размещает образец плазмы в специальный прибор, который создан для определения с высокой точностью показателей биохимии. Он же проводит обработку и хранение крови, определяет дозирование и порядок проведения биохимии, диагностирует полученные результаты, в зависимости от тех показателей, которые потребовал лечащий врач, и оформляет бланк результатов биохимии и лабораторно-химический анализ.

Лабораторно-химический анализ передают в течение дня лечащему врачу, который ставит диагноз и назначает лечение.

БАК со своим множеством разнообразных показателей дает возможность увидеть обширную клиническую картину конкретного человека и конкретной болезни.

БИОХИМИЯ (биологическая химия) - биологическая наука, изучающая химическую природу веществ, входящих в состав живых организмов, их превращения и связь этих превращений с деятельностью органов и тканей. Совокупность процессов, неразрывно связанных с жизнедеятельностью, принято называть обменом веществ (см. Обмен веществ и энергии).

Изучение состава живых организмов издавна привлекало внимание ученых, поскольку к числу веществ, входящих в состав живых организмов, помимо воды, минеральных элементов, липидов, углеводов и т. д., относится ряд наиболее сложных органических соединений: белки и их комплексы с рядом других биополимеров, в первую очередь с нуклеиновыми кислотами.

Установлена возможность спонтанного объединения (при определенных условиях) большого числа белковых молекул с образованием сложных надмолекулярных структур, напр, белкового чехла хвоста фага, некоторых клеточных органоидов и т. д. Это позволило ввести понятие о самособирающихся системах. Такого рода исследования создают предпосылки для решения проблемы образования сложнейших надмолекулярных структур, обладающих признаками и свойствами живой материи, из высокомолекулярных органических соединений, возникших некогда в природе абиогенным путем.

Современная Б. как самостоятельная наука сложилась на рубеже 19 и 20 вв. До этого времени вопросы, рассматриваемые ныне Б., изучались с разных сторон органической химией и физиологией. Органическая химия (см.), изучающая углеродистые соединения вообще, занимается, в частности, анализом п синтезом тех хим. соединений, которые входят в состав живой ткани. Физиология (см.) же наряду с изучением жизненных функций изучает и хим. процессы, лежащие в основе жизнедеятельности. Т. о., биохимия является продуктом развития этих двух наук и ее можно подразделить на две части: статическую (или структурную) и динамическую. Статическая Б. занимается изучением природных органических веществ, их анализом и синтезом, тогда как динамическая Б. изучает всю совокупность химических превращений тех или иных органических соединений в процессе жизнедеятельности. Динамическая Б., т. о., стоит ближе к физиологии и медицине, чем к органической химии. Этим и объясняется то, что вначале Б. называлась физиологической (или медицинской) химией.

Как всякая быстро развивающаяся наука, Б. вскоре после своего возникновения начала делиться на ряд обособленных дисциплин: биохимия человека и животных, биохимия растений, биохимия микробов (микроорганизмов) и ряд других, поскольку, несмотря на биохимическое единство всего живого, в животных и растительных организмах существуют и коренные различия в характере обмена веществ. В первую очередь это касается процессов ассимиляции. Растения, в отличие от животных организмов, обладают способностью использовать для построения своего тела такие простые химические вещества, как углекислый газ, вода, соли азотной и азотистой кислот, аммиак и др. При этом процесс построения клеток растений требует для своего осуществления притока энергии извне в форме солнечного света. Использование этой энергии первично осуществляют зеленые аутотрофные организмы (растения, простейшие - Euglena, ряд бактерий), которые в свою очередь сами служат пищей для всех остальных, так наз. гетеротрофных организмов (в т. ч. и человека), населяющих биосферу (см.). Т. о., выделение биохимии растений в особую дисциплину является обоснованным как с теоретической, так и практической сторон.

Развитие ряда отраслей промышленности и сельского хозяйства (переработка сырья растительного и животного происхождения, приготовление пищевых продуктов, изготовление витаминных и гормональных препаратов, антибиотиков и т. д.) привело к выделению в особый раздел технической Б.

При изучении химизма различных микроорганизмов исследователи столкнулись с целым рядом специфических веществ и процессов, представляющих большой научно-практический интерес (антибиотики микробного и грибкового происхождения, различные виды брожений, имеющие промышленное значение, образование белковых веществ из углеводов и простейших азотистых соединений и т. д.). Все эти вопросы рассматривают в биохимии микроорганизмов.

В 20 в. возникла как особая дисциплина биохимия вирусов (см. Вирусы).

Потребностями клинической медицины было вызвано возникновение клинической биохимии (см.).

Из других разделов Б., которые обычно рассматриваются как достаточно обособленные дисциплины, имеющие свои задачи и специфические методы исследования, следует назвать: эволюционную и сравнительную Б. (биохимические процессы и хим. состав организмов на различных стадиях их эволюционного развития), энзимологию (структура и функция ферментов, кинетика ферментативных реакций), Б. витаминов, гормонов, радиационную биохимию, квантовую биохимию - сопоставление свойств, функций и путей превращения биологически важных соединений с их электронными характеристиками, полученными с помощью квантовохимических расчетов (см. Квантовая биохимия).

Особенно перспективным оказалось изучение структуры и функции белков и нуклеиновых кислот на молекулярном уровне. Этот круг вопросов изучается науками, возникшими на стыках Б. с биологией и генетикой,- молекулярной биологией (см.) и биохимической генетикой (см.).

Исторический очерк развития исследований по химии живой материи. Изучение живой материи с химической стороны началось с того момента, когда возникла необходимость исследования составных частей живых организмов и совершающихся в них химических процессов в связи с запросами практической медицины и сельского хозяйства. Исследования средневековых алхимиков привели к накоплению большого фактического материала по природным органическим соединениям. В 16 - 17 вв. воззрения алхимиков получили развитие в трудах ятрохимиков (см. Ятрохимия), считавших, что жизнедеятельность организма человека можно правильно понять лишь с позиций химии. Так, один из виднейших представителей ятрохимии - немецкий врач и естествоиспытатель Ф. Парацельс выдвинул прогрессивное положение о необходимости тесной связи химии с медициной, подчеркивая при этом, что задача алхимии не в изготовлении золота и серебра, а в создании того, что является силой и добродетелью медицины. Ятрохимики ввели в мед. практику препараты ртути, сурьмы, железа и других элементов. Позже И. Ван-Гельмонт высказал предположение о наличии в «соках» живого тела особых начал - так наз. «ферментов», участвующих в разнообразных хим. превращениях.

В 17 -18 вв. широкое распространение получила теория флогистона (см. Химия). Опровержение этой, ошибочной в своей основе, теории связано с работами М. В. Ломоносова и А. Лавуазье, открывших и утвердивших в науке закон сохранения материи (массы). Лавуазье внес важнейший вклад в развитие не только химии, но и в изучение биол, процессов. Развивая более ранние наблюдения Майова (J. Mayow, 1643-1679), он показал, что при дыхании, как и при горении органических веществ, поглощается кислород и выделяется углекислый газ. Одновременно им же, вместе с Лапласом, было показано, что процесс биологического окисления является и источником животной теплоты. Это открытие стимулировало исследования по энергетике метаболизма, в результате чего уже в начале 19 в. было определено количество тепла, выделяемого при сгорании углеводов, жиров и белков.

Крупными событиями второй половины 18 в. стали исследования Реомюра (R. Reaumur) и Спалланцани (L. Spallanzani) по физиологии пищеварения. Эти исследователи впервые изучили действие желудочного сока животных и птиц на различные виды пищи (гл. обр. мясо) и положили начало изучению ферментов пищеварительных соков. Возникновение энзимологии (учения о ферментах), однако, обычно связывают с именами К. С. Кирхгофа (1814), а также Пейена и Персо (A. Payen, J. Persoz, 1833), впервые изучивших действие на крахмал фермента амилазы in vitro.

Важную роль сыграли работы Пристли (J. Priestley) и особенно Ингенхауса (J. Ingenhouse), открывших явление фотосинтеза (конец 18 в.).

На рубеже 18 и 19 вв. были проведены и другие фундаментальные исследования в области сравнительной биохимии; тогда же было установлено существование круговорота веществ в природе.

Успехи статической Б. с самого начала были неразрывно связаны с развитием органической химии.

Толчком к развитию химии природных соединений явились исследования шведского химика К. Шееле (1742 - 1786). Он выделил и описал свойства целого ряда природных соединений - молочную, винную, лимонную, щавелевую, яблочную кислоты, глицерин и амиловый спирт и др. Большое значение имели исследования И. Берцелиуса и 10. Либиха, закончившиеся разработкой в начале 19 в. методов количественного элементарного анализа органических соединений. Вслед за этим начались попытки синтезировать природные органические вещества. Достигнутые успехи - синтез в 1828 г. мочевины Ф. Веллером, уксусной к-ты А. Кольбе (1844), жиров П. Бертло (1850), углеводов А. М. Бутлеровым (1861) - имели особенно большое значение, т. к. показали возможность синтеза in vitro ряда органических веществ, входящих в состав животных тканей или же являющихся конечными продуктами обмена. Тем самым была установлена полная несостоятельность широко распространенных в 18-19 вв. виталистических представлений (см. Витализм). Во второй половине 18 - начале 19 в. были проведены и многие другие важные исследования: из мочевых камней была выделена мочевая к-та (Бергман и Шееле), из желчи - холестерин [Конради (J. Conradi)], из меда - глюкоза и фруктоза (Т. Ловиц), из листьев зеленых растений - пигмент хлорофилл [Пеллетье и Кавенту (J. Pelletier, J. Caventou)], в составе мышц был открыт креатин [ Шев-рель (М. E. Chevreul)]. Было показано существование особой группы органических соединений - растительных алкалоидов (Сертюрнер, Мейстер и др.), нашедших позднее применение в мед. практике. Из желатины и бычьего мяса путем их гидролиза были получены первые аминокислоты - глицин и лейцин [Пруст (J. Proust), 1819; Браконно (H. Braconnot), 1820].

Во Франции в лаборатории К. Бернара в составе ткани печени был открыт гликоген (1857), изучены пути его образования и механизмы, регулирующие его расщепление. В Германии в лабораториях Э. Фишера, Э. Ф. Гоппе-Зейлера, А. Косселя, Э. Абдергальдена и других были изучены структура и свойства белков, а также продуктов их гидролиза, в т. ч. и ферментативного.

В связи с описанием дрожжевых клеток (К. Коньяр-Латур во Франции и Т. Шванн в Германии, 1836 -1838 гг.) начали активно изучать процесс брожения (Либих, Пастер и др.). Вопреки мнению Либиха, рассматривавшего процесс брожения как чисто химический процесс, протекающий с обязательным участием кислорода, Л. Пастер установил возможность существования анаэробиоза т. е. жизни в отсутствие воздуха, за счет энергии брожения (процесса, неразрывно связанного, по его мнению, с жизнедеятельностью клеток, напр, клеток дрожжей). Ясность в этот вопрос была внесена опытами М. М. Манассеиной (1871), показавшей возможность сбраживания сахара разрушенными (растиранием с песком) дрожжевыми клетками, и особенно работами Бухнера (1897) по природе брожения. Бухнеру удалось получить из дрожжевых клеток бесклеточный сок, способный, подобно живым дрожжам, сбраживать сахар с образованием спирта и углекислоты.

Возникновение и развитие биологической (физиологической) химии

Накопление большого количества сведений относительно химического состава растительных и животных организмов и химических процессов, протекающих в них, привело к необходимости систематизации и обобщений в области Б. Первой работой в этом плане был учебник Зимона (J. E. Simon) «Handbuch der angewandten medizinischen Chemie» (1842). Очевидно, именно с этого времени термин «биологическая (физиологическая) химия» утвердился в науке.

Несколько позднее (1846) вышла в свет монография Либиха «Die Tierchemie oder die organische Chemie in ihrer Anwendung auf Physiologie und Pathologie». В России первый учебник физиологической химии был издан профессором Харьковского университета А. И. Ходневым в 1847 г. Периодическая литература по биологической (физиологической) химии регулярно начала выходить с 1873 г. в Германии. В этом году Мали (L. R. Maly) опубликовал «Jahres-Bericht uber die Fortschritte der Tierchemie». B 1877 г. Э. Ф. Гоппе-Зейлером был основан научный журнал «Zeitschr. fur physiologische Chemie», переименованный впоследствии в «Hoppe-Seyler’s Zeitschr. fur physiologische Chemie». Позднее биохимические журналы начали издаваться во многих странах мира на английском, французском, русском и других языках.

Во второй половине 19 в. на медицинских факультетах многих русских и зарубежных университетов были учреждены специальные кафедры медицинской, или физиологической, химии. В России первая кафедра медицинской химии была организована А. Я. Данилевским в 1863 г. в Казанском ун-те. В 1864 г. А. Д. Булыгинский основал кафедру медицинской химии на медицинском ф-те Московского ун-та. Вскоре кафедры медицинской химии, позднее переименованные в кафедры физиологической химии, возникают на медицинских факультетах других университетов. В 1892 г. начинает функционировать организованная А. Я. Данилевским кафедра физиологической химии в Военно-медицинской (медико-хирургической) академии в Петербурге. Однако чтение отдельных разделов курса физиологической химии проводилось там значительно раньше (1862- 1874) на кафедре химии (А. П. Бородин).

Подлинный расцвет Б. наступил в 20 в. В самом начале ого была сформулирована и экспериментально обоснована полипептидная теория строения белков (Э. Фишер, 1901 - 1902, и др.). Позднее был разработан ряд аналитических методов, в т. ч. микрометодов, позволяющих изучать аминокислотный состав минимальных количеств белка (несколько миллиграммов); широкое распространение получил метод хроматографии (см.), впервые разработанный русским ученым М. С. Цветом (1901 - 1910), методы рентгеноструктурного анализа (см.), «меченых атомов» (изотопной индикации), цитоспектрофотометрии, электронной микроскопии (см.). Крупных успехов добивается препаративная белковая химия, разрабатываются эффективные методы выделения и фракционирования белков и ферментов и определения их молекулярного веса [Коэн (S. Cohen), Тизелиус (A. Tiselius), Сведберг (Т. Swedberg)].

Расшифровывается первичная, вторичная, третичная и четвертичная структура многих белков (в т. ч. и ферментов) и полипептидов. Синтезируется ряд важных, обладающих биологической активностью белковых веществ.

Крупнейшие заслуги в развитии этого направления связаны с именами Л. Полинга и Кори (R. Corey) - структура полипептидных цепей белка (1951); В. Виньо - структура и синтез окситоцина и вазопрессин (1953); Сэнгера (F. Sanger) - структура инсулина (1953); Стайна (W. Stein) и С. Мура - расшифровка формулы рибонуклеазы, создание автомата для определения аминокислотного состава белковых гидролизатов; Перутца (М. F. Perutz), Кендрю (J. Kendrew) и Филлипса (D. Phillips) - расшифровка с помощью методов рентгеноструктурного анализа структуры и создание трехмерных моделей молекул миоглобина, гемоглобина, лизоцима и ряда других белков (1960 и последующие годы).

Выдающееся значение имели работы Самнера (J. Sumner), впервые доказавшего (1926) белковую природу фермента уреазы; исследования Нортропа (J. Northrop) и Кунитца (М. Kunitz) по очистке и получению кристаллических препаратов ферментов - пепсина и других (1930); В. А. Энгельгардта о наличии АТФ-азной активности у контрактильного белка мышц миозина (1939 - 1942) и т. д. Большое число работ посвящается изучению механизма ферментативного катализа [Михаэлис и Ментен (L. Michaelis, М. L. Menten), 1913; Р. Вильштеттер, Теорелль, Кошленд (Н. Theorell, D. E. Koshland), A. E. Браунштейн и М. М. Шемякин, 1963; Штрауб (F. В. Straub) и др.], сложных мультиферментных комплексов (С. Е. Северин, Ф. Линен и др.), роли структуры клеток в осуществлении ферментативных реакций, природы активных и аллостерических центров в молекулах ферментов (см. Ферменты), первичной структуры ферментов [В. Шорм, Анфинсен (С. В. Anfinsen), В. Н. Орехович и др.], регуляции активности ряда ферментов гормонами (В. С. Ильин и др.). Изучаются свойства «семейств ферментов» - изоферментов [Маркерт, Каплан, Вроблевский (С. Markert, N. Kaplan, F. Wroblewski), 1960-1961].

Важным этапом в развитии Б. явилась расшифровка механизма биосинтеза белка при участии рибосом, информационной и транспортной форм рибонуклеиновых кислот [Ж. Браше, Ф. Жакоб, Моно (J. Monod), 1953-1961; А. Н. Белозерский (1959); А. С. Спирин, А. А. Баев (1957 и последующие годы)].

Блестящие работы Чаргаффа (E. Chargaff), Ж. Дейвидсона, особенно Дж. Уотсона, Ф. Крика и Уилкинса (М. Wilkins), завершаются выяснением структуры дезоксирибонуклеиновой кислоты (см.). Устанавливается двухспиральная структура ДНК и роль ее в передаче наследственной информации. Осуществляется синтез нуклеиновых кислот (ДНК и РНК) А. Корнбергом (1960 - 1968), Вейссом (S. Weiss), С. Очоа. Решается (1962 и последующие годы) одна из центральных проблем современной Б. - расшифровывается РНК-аминокислотный код [Крик, М. Ниренберг, Маттеи (F. Crick, J. H. Matthaei), и др.].

Впервые синтезируется один из генов и фаг фх174. Вводится понятие о молекулярных болезнях, связанных с определенными дефектами в структуре ДНК хромосомного аппарата клетки (см. Молекулярная генетика). Разрабатывается теория регуляции работы цистронов (см.), ответственных за синтез различных белков и ферментов (Жакоб, Моно), продолжается изучение механизма белкового (азотистого) обмена.

Ранее классическими исследованиями И. П. Павлова и его школы раскрываются основные физиологические и биохимические механизмы работы пищеварительных желез. Особенно плодотворным было содружество лабораторий А. Я. Данилевского и М. В. Ненцкого с лабораторией И. П. Павлова, к-рое привело к выяснению места образования мочевины (в печени). Ф. Гопкинс и его сотр. (Англия) установили значение ранее неизвестных компонентов пищи, развив на этой основе новую концепцию заболеваний, вызываемых пищевой недостаточностью. Устанавливается существование заменимых и незаменимых аминокислот, разрабатываются нормы белка в питании. Расшифровывается промежуточный обмен аминокислот - дезаминирование, переаминирование (А. Е. Браунштейн и М. Г. Крицман), декарбоксилирование, их взаимные превращения и особенности обмена (С. Р. Мардашев и др.). Выясняются механизмы биосинтеза мочевины (Г. Кребс), креатина и креатинина, открывается и подвергается детальному изучению группа экстрактивных азотистых веществ мышц - дипептиды карнозин, карнитин, ансерин [В. С. Гулевич, Аккерманн (D. Ackermann),

С. Е. Северин и др.]. Детальному изучению подвергаются особенности процесса азотистого обмена у растений (Д. Н. Прянишников, В. Л. Кретович и др.). Особое место заняло изучение нарушений азотистого обмена у животных и человека при белковой недостаточности (С. Я. Капланский, Ю. М. Гефтер и др.). Осуществляется синтез пуриновых и пиримидиновых оснований, выясняются механизмы образования мочевой к-ты, детально исследуются продукты распада гемоглобина (пигменты желчи, кала и мочи), расшифровываются пути образования гема и механизм возникновения острых и врожденных форм порфирий и порфиринурий.

Выдающиеся успехи достигнуты в расшифровке структуры важнейших углеводов [А. А. Колли, Толленс, Киллиани, Хауорт (B.C.Tollens, H. Killiani, W. Haworth) и др.] и механизмов углеводного обмена. Подробно выяснено превращение углеводов в пищеварительном тракте под влиянием пищеварительных ферментов и кишечных микроорганизмов (в частности, у травоядных животных); уточняются и расширяются работы, посвященные роли печени в углеводном обмене и поддержании концентрации сахара в крови на определенном уровне, начатые в середине прошлого века К. Бернаром и Э. Пфлюгером, расшифровываются механизмы синтеза гликогена (при участии УДФ-глюкозы) и его распада [К. Кори, Лелуар (L. F. Leloir) и др.]; создаются схемы промежуточного обмена углеводов (гликолитический, пентозный цикл, цикл Трикарбоновых кислот); выясняется характер отдельных промежуточных продуктов обмена [Я. О. Парнас, Эмбден (G. Embden), О. Мейергоф, Л. А. Иванов, С. П. Костычев, Гарден (A. Harden), Кребс, Ф. Липманн, Коэн (S. Cohen), В. А. Энгельгардт и др.]. Выясняются биохимические механизмы нарушения углеводного обмена (диабет, галактоземия, гликогенозы и др.), связанные с наследственными дефектами соответствующих ферментных систем.

Выдающиеся успехи достигнуты в расшифровке структуры липидов: фосфолипидов, цереброзидов, ганглиозидов, стеринов и стеридов [Тирфельдер, А. Виндаус, А. Бутенандт, Ружичка, Рейхштейн (H. Thierfelder, A. Ruzicka, Т. Reichstein) и др.].

Трудами М. В. Ненцкого, Ф. Кноопа (1904) и Дакина (H. Dakin) создается теория β-окисления жирных кислот. Разработка современных представлений о путях окисления (при участии коэнзима А) и синтеза (при участии малонил-КоА) жирных кислот и сложных липидов связана с именами Лелуара, Линена, Липманна, Грина (D. Е. Green), Кеннеди (Е. Kennedy) и др.

Значительный прогресс достигнут при изучении механизма биологического окисления. Одна из первых теорий биологического окисления (так наз. перекисная теория) была предложена А. Н. Бахом (см. Окисление биологическое). Позднее появилась теория, согласно к-рой различные субстраты клеточного дыхания подвергаются окислению и углерод их в конечном счете превращается в CO2 за счет кислорода не поглощаемого воздуха, а кислорода воды (В. И. Палладии, 1908). В дальнейшем в разработку современной теории тканевого дыхания крупный вклад был внесен работами Г. Виланда, Тунберга (Т. Tunberg), Л. С. Штерн, О. Варбурга, Эйлера, Д. Кейлина (Н. Euler) и др. Варбургу принадлежит заслуга открытия одного из коферментов дегидрогеназ - никотинамидадениндинуклеотид фосфата (НАДФ), флавинового фермента и его простетической группы, дыхательного железосодержащего фермента, получившего впоследствии название цитохромоксидазы. Им же был предложен спектрофотометрический метод определения концентрации НАД и НАДФ (тест Варбурга), который затем лег в основу количественных методов определения целого ряда биохимических компонентов крови и тканей. Кейлин установил роль в цепи дыхательных катализаторов железосодержащих пигментов (цитохромов).

Крупное значение имело открытие Липманном коэнзима А., позволившее разработать универсальный цикл аэробного окисления активной формы ацетата - ацетил-КоА (лимоннокислый цикл Кребса).

В. А. Энгельгардтом, а также Липманном было введено понятие о «богатых энергией» фосфорных соединениях, в частности АТФ (см. Аденозинфосфорные кислоты), в макроэргических связях которых аккумулируется значительная часть энергии, освобождающейся при тканевом дыхании (см. Окисление биологическое).

Возможность сопряженного с дыханием фосфорилирования (см.) в цепи дыхательных катализаторов, вмонтированных в мембраны митохондрий, была показана В. А. Белицером и Калькаром (H. Kalckar). Большое число работ посвящено изучению механизма окислительного фосфорилирования [Чейне (В. Chance), Митчелл (P. Mitchell), В. П. Скулачев и др.].

20 в. ознаменовался расшифровкой химического строения всех известных в наст, время витаминов (см.), вводятся международные единицы витаминов, устанавливаются потребности в витаминах человека и животных, создается витаминная промышленность.

Не менее значительные успехи достигнуты в области химии и биохимии гормонов (см.); изучена структура и синтезированы стероидные гормоны коры надпочечников (Виндаус, Рейхштейн, Бутенандт, Ружичка); установлено строение гормонов щитовидной железы - тироксина, дийодтиронина [Э. Кендалл (Е. С. Kendall), 1919; Харингтон (С. Harington), 1926]; мозгового слоя надпочечников - адреналина, норадреналина [Такамине (J. Takamine), 1907]. Осуществлен синтез инсулина, установлено строение соматотропной), адренокортикотропного, меланоцитостимулирующего гормонов; выделены и изучены другие гормоны белковой природы; разработаны схемы взаимопревращения и обмена стероидных гормонов (Н. А. Юдаев и др.). Получены первые данные о механизме действия гормонов (АКТГ, вазопрессина и др.) на обмен веществ. Расшифрован механизм регуляции функций эндокринных желез по принципу обратной связи.

Существенные данные получены при изучении химического состава и обмена веществ ряда важнейших органов и тканей (функциональная биохимия). Установлены особенности в химическом составе нервной ткани. Возникает новое направление в Б.- нейрохимия. Выделен ряд сложных липидов, составляющих основную массу тканей мозга, - фосфатиды, сфингомиелины, плазмалогены, цереброзиды, холестериды, ганглиозиды [Тудихум,Уэлш (J. Thudichum, H. Waelsh), A. B. Палладии, E. М. K репс и др.]. Выясняются основные закономерности обмена нервных клеток, расшифровывается роль биологически активных аминов - адреналина, норадреналина, гистамина, серотонина, γ-амино-масляной к-ты и др. Вводятся в медицинскую практику различные психофармакологические вещества, открывающие новые возможности в лечении различных нервных заболеваний. Подробно изучаются химические передатчики нервного возбуждения (медиаторы), широко используются, особенно в сельском хозяйстве, различные ингибиторы холинэстеразы для борьбы с насекомыми-вредителями и т. д.

Значительные успехи достигнуты при изучении мышечной деятельности. Подробно исследуются сократительные белки мышц (см. Мышечная ткань). Установлена важнейшая роль АТФ в сокращении мышц [В. А. Энгельгардт и М. Н. Любимова, Сент-Дъёрдьи, Штрауб (A. Szent-Gyorgyi, F. В. Straub)], в движении клеточных органелл, проникновении в бактерии фагов [Вебер, Гоффманн-Берлинг (Н. Weber, H. Hoffmann-Berling), И. И. Иванов, В. Я. Александров, Н. И. Арронет, Б. Ф. Поглазов и др.]; подробно исследуется механизм мышечного сокращения на молекулярном уровне [Хаксли, Хансон (H. Huxley, J. Hanson), Г. М. Франк, Тономура (J. Tonomura) и др.], изучается роль в мышечном сокращении имидазола и его производных (G. Е. Северин); разрабатываются теории двухфазной мышечной деятельности [Хассельбах (W. Hasselbach)] и т. д.

Важные результаты получены при изучении состава и свойств крови: изучена дыхательная функция крови в норме и при ряде патологических состояний; выяснен механизм переноса кислорода от легких к тканям и углекислоты от тканей к легким [И. М. Сеченов, Дж.Холдейн, Ван-Слайк (D.van Slyke), Дж. Баркрофт, Гендерсон (L. Henderson), С. Е. Северин, Г. Е. Владимиров, Е.М. Крепе, Г. В. Дервиз]; уточнены и расширены представления о механизме свертывания крови; установлено наличие в плазме крови целого ряда новых факторов, при врожденном отсутствии которых в крови наблюдаются различные формы гемофилии. Изучен фракционный состав белков плазмы крови (альбумин, альфа-, бета- и гамма-глобулины, липопротеиды и др.). Открыт ряд новых плазменных белков (пропердин, C-реактивпый белок, гаптоглобин, криоглобулин, трансферрин, церулоплазмин, интерферон и др.). Открыта система кининов - биологически активных полипептидов плазмы крови (брадикинин, каллидин), играющих важную роль в регуляции местного и общего кровотока и принимающих участие в механизме развития воспалительных процессов, шока и других патологических процессов и состояний.

В развитии современной Б. важную роль сыграла разработка ряда специальных методов исследования: изотопной индикации, дифференциального центрифугирования (разделение субклеточных органоидов), спектрофотометрии (см.), масс-спектрометрии (см.), электронного парамагнитного резонанса (см.) и др.

Некоторые перспективы развития биохимии

Успехи Б. в значительной мере определяют не только современный уровень медицины, но и ее возможный дальнейший прогресс. Одной из основных проблем Б. и молекулярной биологии (см.) становится исправление дефектов генетического аппарата (см. Генотерапия). Радикальная терапия наследственных болезней, связанных с мутационными изменениями тех или иных генов (т. е. участков ДНК), ответственных за синтез определенных белков и ферментов, в принципе возможна лишь путем трансплантации синтезированных in vitro или выделенных из клеток (напр., бактерий) аналогичных «здоровых» генов. Весьма заманчивой задачей является также овладение механизмом регуляции считки генетической информации, закодированной в ДНК, и расшифровки на молекулярном уровне механизма клеточной дифференцировки в онтогенезе. Проблема терапии ряда вирусных заболеваний, особенно лейкозов, вероятно, не будет решена до тех пор, пока не станет полностью ясен механизм взаимодействия вирусов (в частности, онкогенных) с инфицируемой клеткой. В этом направлении интенсивно ведутся работы во многих лабораториях мира. Выяснение картины жизни на молекулярном уровне позволит не только полностью понять происходящие в организме процессы (биокатализ, механизм использования энергии АТФ и ГТФ при выполнении механических функций, передача нервного возбуждения, активный транспорт веществ через мембраны, явление иммунитета и т. д.), но и откроет новые возможности в создании эффективных лекарственных средств, в борьбе с преждевременным старением, развитием сердечно-сосудистых заболеваний (атеросклероз), продлении жизни.

Биохимические центры в СССР. В системе АН СССР функционируют Институт биохимии им. А. Н. Баха, Институт молекулярной биологии, Институт химии природных соединений, Институт эволюционной физиологии и биохимии им. И. М. Сеченова, Институт белка, Институт физиологии и биохимии растений, Институт биохимии и физиологии микроорганизмов, филиал Института биохимии УССР, Институт биохимии Арм. ССР и др. В системе АМН СССР имеются Институт биологической и медицинской химии, Институт экспериментальной эндокринологии и химии гормонов, Институт питания, Отдел биохимии Института экспериментальной медицины. Существует также ряд биохимических лабораторий в других институтах и научных учреждениях АН СССР, АМН СССР, академиях союзных республик, в вузах (кафедры биохимии Московского, Ленинградского и других университетов, ряда медицинских институтов, Военно-медицинской академии и т. д.), ветеринарных, сельскохозяйственных и других научных учреждениях. В СССР насчитывается около 8 тыс. членов Всесоюзного биохимического общества (ВБО), к-рое входит в Европейскую федерацию биохимиков (FEBS) и в Международный биохимический союз (IUB).

Радиационная биохимия

Радиационная Б. изучает изменения обмена веществ, возникающие в организме при действии на него ионизирующей радиации. Облучение вызывает ионизацию и возбуждение молекул клетки, реакции их с возникающими в водной среде свободными радикалами (см.) и перекисями, что приводит к нарушению структур биосубстратов клеточных органелл, равновесия и взаимных связей внутриклеточных биохимических процессов. В частности, эти сдвиги в сочетании с пострадиационными воздействиями со стороны поврежденной ц. н. с. и гуморальных факторов дают начало вторичным нарушениям обмена веществ, обусловливающим течение лучевого заболевания. Важную роль в развитии лучевой болезни играет ускорение распада нуклеопротеидов, ДНК и простых белков, торможение их биосинтеза, нарушения скоординированного действия ферментов, а также окислительного фосфорилирования (см.) в митохондриях, уменьшение количества АТФ в тканях и усиленная окисляемость липидов с образованием перекисей (см. Лучевая болезнь , Радиобиология , Радиология медицинская).

Библиография: Афонский С. И. Биохимия животных, М., 1970; Биохимия, под ред. H. Н. Яковлева, М., 1969; ЗбарекиЙ Б. И., Иванов И. И. и М а р-д а ш e в С. Р. Биологическая химия, JI., 1972; Кретович В. JI. Основы биохимии растений, М., 1971; JI e н и н д-ж e р А. Биохимия, пер. с англ., М., 1974; Макеев И. А., Гулевич В. С. иБроуде JI. М. Курс биологической химии, JI., 1947; Малер Г. Р. и КордесЮ. Г. Оснопы биологической химии, пер. с англ., М., 1970; Фердман Д. JI. Биохимия, М., 1966; Филиппович Ю. Б. Основы биохимии, М., 1969; III т р а у б Ф. Б. Биохимия, пер. с венгер., Будапешт, 1965; R а р о р о г t S. М. Medizinische Bioc-hemie, B., 1962.

Периодические издания - Биохимия, М., с 1936; Вопросы медицинской химии, М., с 1955; Журнал эволюционной биохимии и физиологии, М., с 1965; Известия АН СССР, Серия биологические науки, М., с 1958; Молекулярная биология, М., с 1967; Украшський бюхем1чний журнал, Кшв, с 1946 (1926-1937 - Науков1 записки Украшського бюхемичного шети-туту, 1938-1941 - Бюхем1чний журнал); Успехи биологической химии, JI., с 1924; Успехи современной биологии, М., с 1932; Annual Review of Biochemistry, Stanford, с 1932; Archives of Biochemistry and Biophysics, N. Y., с 1951 (1942-1950 - Archives of Biochemistry); Biochemical Journal, L., с 1906; Biochemische Zeitsch-rift, В., с 1906; Biochemistry, Washington, с 1964; Biochimica et biophysica acta, N. Y.- Amsterdam, с 1947; Bulletin de la Soci6t<5 de chimie biologique, P., с 1914; Comparative Biochemistry and Physiology, L., с 1960; Hoppe-Seyler’s Zeitschrift fiir physiologische Chemie, В., с 1877; Journal of Biochemistry, Tokyo, с 1922; Journal of Biological Chemistry, Baltimore, с 1905; Journal of Molecular Biology, L.-N.Y., с 1960; Journal of Neurochemistry, L., с 1956; Proceedings of the Society for Experimental Biology and Medicine, N. Y., с 1903; См. также в ст. Клиническая биохимия, Физиология, Химия.

Б. радиационная - Кузин А. М. Радиационная биохимия, М., 1962; P о -манцев Е. Ф. и д р. Ранние радиационно-биохимические реакции, М., 1966; Федорова Т. А., Терещенко О. Я. и М а з у р и к В. К. Нуклеиновые кислоты и белки в организме при лучевом поражении, М., 1972; Черкасова Л. С. и д р. Ионизирующее излучение и обмен веществ, Минск, 1962, библиогр.; Altman К. I., Gerber G. В. а. О k a d a S. Radiation biochemistry, v. 1-2, N. Y.- L., 1970.

И. И. Иванов; Т. А. Федорова (рад.).

И даже многие его сдавали. Просто, когда врач выдает кучу направлений на анализ, человек идет сдавать кровь, а сам и не подозревает, что это за анализ и для чего он нужен. Давайте разберемся, откуда берут кровь на биохимию, что это за вид анализа, как он сдается, и что можно увидеть по результатам.

Представляет собой науку, которая исследует химический состав организмов и процессы, которые регулируют их жизнедеятельность. Медицина использует данную науку для исследований состояния компонентов и тел, которые входят в химический состав крови. Данный анализ так и зазывают – биохимия, или биохимический анализ крови.

Это одно из самых распространенных исследований, которое используется для контроля метаболизма и состояния внутренних органов. Данным анализом пользуются во всех отраслях медицины: кардиологии, медицины, гинекологии, хирургии и прочих.

Для расшифровки анализа существуют определенные нормы параметров, по которым специалист ориентируется, читая результаты.

Отклонение от нормы того или иного параметра в меньшую или большую сторону могут свидетельствовать о каких-либо заболеваниях.

Откуда берут кровь на биохимию и подготовка к процедуре

На концентрацию крови и ее состав влияют множество факторов. В основном – это усталость, продукты питания, количество употребляемой жидкости и т.д. именно из-за этого специалисты рекомендуют сдавать после сна – с самого утра и на голодный желудок.

В таком состоянии лучше всего видны количество и качество тел в крови. Но такое условие актуально при плановом осмотре. Если же критическая ситуация, то в стационарных условиях кровь на анализ берется в любое время суток. Это связано с тем, что развитие болезни – это важнейший фактор, на фоне еды или физической активности. Кровь для такого исследования нужна цельная, чтобы можно было провести анализ плазмы и сыворотки. Такую кровь берут из вены.

При диагностике проводится специальная процедура – центрифугирование.

При этом кровь в пробирке помещается в специальный прибор и разделяется на плотные элементы и плазму. При умении расшифровывать результаты анализов, можно выявить множество патологий на ранних стадиях и остановить их развитие.

Перед плановой сдачей биохимического анализа нужно соблюсти несколько правил, чтобы результат был максимально точным:

  1. утром перед сдачей крови ничего не кушать, не пить и не заниматься спортом
  2. накануне вечером нельзя ужинать слишком поздно, запрещено употреблять жирную, копченую, слишком соленую и острую пищу
  3. не рекомендуется кушать сладкое и пить чай-кофе с большим количеством сахара
  4. за 2-3 дня до сдачи анализа для биохимического исследования лучше отказаться от употребления алкоголя
  5. запрещено накануне сдачи крови пить гормональные препараты, антибиотики или транквилизаторы – они могут слишком искажать химический состав крови
  6. за 24 часа до анализа лучше отказаться от термических процедур – принятия саун, посещение бань

Соблюдая эти правила можно получить более точные показатели тел и веществ в крови. Если же по результатам видно какое-то отклонение, то рекомендовано еще раз сдать биохимию, для подтверждения результатов. Повторная сдача рекомендуется в той же лаборатории и в то же время суток.

Основные показатели анализа и их значение

Когда лечащий врач направляет пациента на биохимический анализ крови, он указывает, какие конкретно показатели его интересуют для подтверждения или опровержения диагноза. Если же исследование проводится с профилактической целью, тогда необходимо количество основных показателей:

Который находится в сыворотке крови. Измеряется он в граммах на литр. Для каждой возрастной категории, норма белка разная:

  • Дети от рождения до 12 месяцев – 40-73 г/л
  • Дети до 14 лет – 60-80 г/л
  • Взрослые – 62-88 г/л

Если общий белок оказывается ниже нормы, это говорит о развитии гипопротеинемии, а чрезмерное количество белка, это гиперпротеинемия.

– важнейший показатель при диагностике сахарного диабета. Пониженный уровень свидетельствует о нарушении работы и . Уровень глюкозы измеряется в ммоль/литр крови. Нормальные показатели, в зависимости от возраста следующие:

  • дети до 14 лет – 3,3-5,5
  • взрослые до 60 лет – 3,8-5,8
  • старше 60 лет – 4,6-6,1

Самая распространенная причина пониженной глюкозы, это чрезмерное количество инсулина (для диабетиков). Также при голодании, при нарушении метаболизма, при нарушении функций надпочечников может возникать гипергликемия (повышение количества глюкозы в крови).

Больше информации о том, как правильно расшифровать биохимический анализ крови можно узнать из видео:

– это самые основные кровяные белки, которые составляют до 65% всех белков в плазме крови. Данные белки выполняют транспортную функцию, соединяясь с гормонами и кислотами и перенося их по организму. Также они связывают многие токсические компоненты и отправляют их в печень для фильтрации. Вторая важная миссия альбуминов – поддерживают консистенцию крови, благодаря обмену жидкости. Выше нормы альбумины практически не бывают (а если бывают, то в случае обезвоживания), а вот их понижение может сигнализировать о наличие инфекции, о беременности, о , а расстройствах , о и других заболеваниях.

Альбумины, как и все белки измеряются показателем грамм на литр. Норма должна быть такой:

  • Детки до 4х дней – 28-44 г/л
  • Дети до 5 лет – 38-50 г/л
  • Дети до 14 лет 38-54 г/л
  • Люди до 65 лет – 36-51 г/л
  • Люди старше 65 лет – 35-49 г/л

– это пигмент желтого цвета, образовывающийся при распаде цитохромов и гемоглобина. Нормальный показатель данного пигмента – 3,4-17,1 мкммоль/литр. Повышение билирубина – это показатель патологий , печеночных инфекций (гепатит А, Б, С) или нарушения выработки , в результате чего снижается (транспортный белок) и развивается анемия, на фоне недостатка кислорода.

– это липид крови, участвующий в строении клеток. 80% его вырабатывается в организме, а остальные 20 поступают с пищей. Если при анализе холестерина в крови 3,2-5,6 ммоль/литр – это норма. Повышенный холестерин может привести к множеству заболеваний. Его избыток образовывает холестериновые бляшки в сосудах, из-за чего нарушается кровообращение, могут возникнуть закупорки, сосуды теряют свою эластичность и в результате возникает заболевание – атеросклероз.

Электролиты:

  • Хлор находится в крови. Этот электролит отвечает за кислотный и водный баланс. При нормальном состоянии зло должен быть не менее 98 и не больше 107 ммоль/литр крови.
  • Калий находится внутри клеток и сигнализирует о функциональности . Его повышение говорит о патологиях мочеполовой системы (цистит, воспаление, инфекция и т.д.). Норма калия – 3,5-5,5, ммоль/литр.
  • (136-145 ммоль/л) содержится во внеклеточной жидкости. Отклонения от нормы количества натрия говорит об обезвоживании, нарушенном кровяном давлении, нарушении в работе нервных тканей.

Которая образовывается в результате обмена веществ. То есть, это конечный продукт, который выводится через почки и . Если кислота выше нормы, это может быть сигналом об образовании камней в почках и о почечных патологиях. Показатель мочевой кислоты зависит от половой принадлежности:

  • Мужчины – 210-420 мкмоль/литр
  • Женщины – 150-350 мкмоль/литр

В конце важно отметить, что такой анализ крови является неотъемлемой частью диагностики организма. По результатам данного анализа специалист может увидеть состояние внутренних органов. В случае отклонения одного или другого параметра, врач назначит дополнительное исследование для подтверждения подозрения на развитие заболевания.