Open
Close

Поджелудочная железа и ее анатомия. Анатомия и физиология Рассмотрим основные шаги

К основным функциям ПЖ относят:

нейтрализацию кислого химуса, поступающего в двенадцатиперстную кишку из желудка (бикарбонаты);

синтез и секрецию пищеварительных ферментов;

выработку гормонов, регулирующих обмен углеводов (инсулин, глюкагон).

Экзокринная функция ПЖ контролируется нервными и гормональными механизмами. В межпищеварительный период ПЖ, как правило, находится в покое. При воздействии на организм человека изображения и запаха пищи, ПЖ активируется, причем ее секреторный ответ соответствует размеру, консистенции и нутритивному составу пищи. Нервный контроль включает в себя ЦНС, чувствительный и двигательный отделы автономной нервной системы и интрапанкреатическую нервную систему. Нервная система является интегратором сенсорной и гормональной информации. В железистой структуре ПЖ все стимулирующие пути объединяются вокруг протоковых и ацинарных клеток.

Двенадцатиперстная кишка - важнейший сенсорный орган, вовлеченный в секрецию ПЖ, и участок ЖКТ, где встречаются пища и панкреатический секрет. Дуоденальная слизистая содержит эндокринные клетки, продуцирующие секретин в ответ на присутствие в просвете кишки кислоты и холецистокинин (ХК) в ответ на присутствие белков или жиров.

Для обеспечения адекватной секреции бикарбонатов, протеолитических ферментов, гормонов, а соответственно поддержания определенного местного гомеостаза, ПЖ использует механизм «обратной связи». «Физиологический процесс» (например, образование кислоты) служит стимулом для «ответа» (секреция бикарбонатов), который в свою очередь призван изменить или прервать физиологический процесс.«Ответ» продолжается до тех пор, пока стимул не устранен (Рисунок 6).

Рис. 6.

В течение суток ПЖ вырабатывает 1,5 - 2,0 л панкреатического сока, имеющего рН 7,5 - 9,0 и относительную плотность 1007 - 1015. В состав секрета входят вода, белки, натрий, калий, кальций и ферменты (Таблицы 1 и 2).

Таблица 1. Электролиты сока поджелудочной железы человека

Электролиты панкреатического секрета выполняют несколько функций: ощелачивают кислое желудочное содержимое в ДПК, инактивируют пепсин, обеспечивают оптимум рН для гидролиза нутриентов в полости тонкой кишки, повышают (Са2+, Cl-) активность ряда панкреатических и кишечных гидролаз, поддерживают изотонию кишечного содержимого, что немаловажно для реализации пищеварительных функций (моторики, секреции, всасывания, механизмов их регуляции).

Основная часть органических компонентов панкреатического сока образуется в панкреацитах в результате специфического синтеза, другая - выделяется из крови. В панкреатическом секрете содержатся мочевина, мочевая кислота, креатинин, остаточный азот, альбумин, глобулины; общий белок составляет 2-3,5 г/л, основная часть которого представлена панкреатическими ферментами (Таблица 2).

ПЖ синтезирует белок со скоростью, недоступной другим органам, уступая, пожалуй, лишь лактирующей молочной железе. Ациноцит в одну минуту синтезирует 107 молекул фермента, в среднем за сутки в составе панкреатического секрета в ДПК поступает до 20 г пищеварительных ферментов. Панкреатический секрет содержит ферменты, гидролизующие практически все макронутриенты, употребляемые человеком, в том числе и те ферменты, которые не дублируются ферментативной активностью других секретов и энтероцитов.

Таблица 2. Экзокринные ферментные белки секрета поджелудочной железы человека и их гидролизуемые субстраты

Ферменты

Число выделенных изоформ

Активаторы

Гидролизуемые субстраты (мишени)

Трипсиноген

энтерокиназа

внутренние связи белка (основные аминокислоты)

Химотрипсиноген

внутренние связи белка (ароматические аминокислоты, лейцин, глутамин, метионин)

Проэластаза Е

внутренние связи белка (нейтральные аминокислоты)

Прокарбокипептидаза А

наружные связи белков, включая ароматические и нейтральные алифатические аминокислоты

Прокарбокипептидаза В

наружные связи белков, включая ароматические и основные аминокислоты с карбоксильного конца

Профосфолипаза А2

Фосфатидилхолин (образование лизофосфатидилхолина и жирных кислот)

б-Амилаза

б-1,4 гликозидные связи крахмала, гликогена

триглицериды (образование 2-моно-глицеридов и жирных кислот)

Карбоксилэстераза

эфиры холестерина, жирорастворимых витаминов; три-, ди- и моноглицериды

Рибонуклеаза

РНК, олигонуклеотиды

Дезоксирибонуклеаза

ДНК, олигонуклеотиды

Ингибитор трипсина

Протеолитические ферменты синтезируются и выделяются ациноцитами в неактивной зимогенной форме в виде трипсиногенов, химотрипсиногенов, прокарбоксипептидов, проэластаз и транспортируются по протоковой системе в просвет двенадцатиперстной кишки. В зоне щеточной каймы энтероцитов фиксирована энтеропептидаза-энтерокиназа, отщепляющая от молекулы трипсиногенов гексапептид с превращением последних в трипсины. В последнее время показано, что энтероциты синтезируют и транслоцируют на мембрану своих микроворсинок проэнтеропептидазу (проэнтероки-назу), превращающуюся в активную форму (активатора трипсиногена) под действием другого энтерального фермента - дуоденазы.

Химотринсиногены, проэластазы и прокарбоксипептидазы под влиянием трипсина переходят в активные химотрипсины, эластазы и карбоксипептидазы А и В. Трипсин, химотрипсин и эластаза, являясь эндопептидазами, гидролизуют белки до поли- и оли- гопептидов, гидролиз которых продолжается карбоксипептидазами, кишечными ами- нопептидазами и дипептидазами.

Основным, и по существу единственным, липолитическим ферментом, расщепляющим пищевые триглицериды, является панкреатическая липаза. Фермент синтезируется и выделяется ациноцитами в активном состоянии. В отличие от протеаз и фосфолипаз, липаза не способна лизировать ациноцит или другие части железы, так как специфична в своей активности, гидролизуя только триглицериды в эмульгированном состоянии. Активность липазы повышают ионы кальция, хлористый натрий, соли желчных кислот.

Фосфолипазы гидролизуют фосфолипиды и вырабатываются в зимогенной форме, что важно для предотвращения аутолиза ПЖ, активируются трипсином. Гидролиз углеводов осуществляется б-амилазой. Оптимум рН для амилазы - 7,0-7,2, активность зависит от наличия в среде ионов хлора.

Фазы секреции ПЖ.

Мозговая (первая) фаза имеет сложнорефлекторный механизм, реализуясь через ЦНС путем условных и безусловных рефлексов. Секреция в эту фазу имеет небольшой объем (до 15% от стимулированной секреции). Основным механизмом стимуляции секреции являются холинергические влияния эфферентов блуждающих нервов на М-холинорецепторы панкреоцитов.

Желудочная (вторая) фаза секреции имеет более сложные механизмы и сопровождается выделением около 10% общей стимулированной секреции. В секрете имеется высокое содержание ферментных белков при низкой концентрации гидрокарбонатов.

Кишечная (третья, энтеральная) фаза секреции имеет наиболее сложный механизм и составляет до 80% объема постпрандиальной секреции. Эту фазу принято делить на дуоденальную и подвздошно-ободочную. Основной является дуоденальная фаза, когда под действием кислого желудочного содержимого стимулируется большая по объему и концентрации гидрокарбоната секреция ПЖ и продолжается секреция панкреатических ферментов. Большинство из уже подвергнувшихся гидролизу нутриентов в значительно большей степени стимулируют панкреатическую секрецию, чем поли- или мономеры.

Основным стимулятором секреции воды и гидрокарбонатов, определяя объем панкреатического сока в кишечную фазу, является секретин. Его высвобождение дуоденальными S-клетками происходит при ацидификации содержимого ДПК. Порогом рилизинга секретина является рН 4,5; с понижением рН рилизинг этого пептида повышается (Рисунок 7). Парасимпатическая нервная система играет главную роль в регуляции секреции бикарбонатов. Центростремительные чувствительные волокна блуждающего нерва играют значительную роль в восприятии дуоденальной секреции и усилении эффекта секретина.

Рис. 7.

В кишечную фазу отчетливо выражено взаимное потенцирование эффектов секретина и ХК, что проявляется в панкреатической секреции ферментов и электролитов (Рисунок 8). Синтез ХК происходит в эндокринных клетках кишечника, клетках ЦНС, нервных клетках кишечника. ХК-синтезирующие нервы обнаружены так же и в ПЖ, однако эти волокна преимущественно распространяются на внутрипанкреатические узлы и островковые клетки, чем на ацинарные клетки.

Рис. 8.

Между эндо- и экзокринной функциями ПЖ существует тесная связь. Так, трипсин влияет на синтез инсулина и глюкагона. На внешнюю секрецию влияют уровень глюкозы крови и инсулин; последний обеспечивает поступление аминокислот и глюкозы в ацинусы.

Ацинусы поджелудочной железы продуцируют ферменты, важные для переваривания углеводов, жиров и белков. Панкреатические протоки секретируют в просвет двенадцатиперстной кишки жидкость, богатую бикарбонатами. Важной особенностью является сохранение щелочной реакции среды в протоках и двенадцатиперстной кишке, поскольку в кислой среде ферменты поджелудочной железы теряют активность.

Стимуляция секреции поджелудочной железы

Секреция поджелудочной железы стимулируется блуждающим нервом и различными гормонами (гастрин антрального отдела желудка, холецистокинин-панкреозимин (ХЦК-ПЗ) и секретин тонкой кишки). Раздражение блуждающего нерва вызывает усиление секреции панкреатических ферментов ацинарной тканью, но не влияет на секрецию бикарбонатов в протоках. ХЦК-ПЗ является очень мощным стимулятором секреции панкреатических ферментов и слабым стимулятором секреции панкреатических бикарбонатов. Секретин, напротив, не играет существенной роли в секреции ферментов, но является сильным возбудителем секреции бикарбонатов. Взаимосвязь между описанными факторами весьма сложна.

Вид, запах и и прожевывание пищи (нервная фаза) условнорефлекторным путем вызывает стимуляцию секреторного аппарата поджелудочной железы вследствие раздражения блуждающего нерва. Импульсы с блуждающего нерва через центральную иервную систему вызывают выделение гастрина в антральном отделе желудка, который непосредственно стимулирует отделение панкреатического сока, а также усиливает желудочное кислотовыделение париетальными клетками. При соприкосновении кислоты со слизистой оболочкой двенадцатиперстной кишки увеличивается высвобождение секретина и в меньшей степени ХЦК-ПЗ. Кроме того, раздражение блуждающего нерва может непосредственно стимулировать париетальные клетки, усиливая желудочное кислотовыделение.

С момента попадания пищи в желудок наступает желудочная фаза панкреатической секреции. Механическое растяжение дна и антрального отделов желудка стимулирует высвобождение гастрина в антральном отделе и усиливает выделение кислоты париетальными клетками. Кроме того, высвобождение гастрина происходит под влиянием продуктов переваривания белка. Имеются данные о стимулирующем действии на париетальные клетки желудка кальция, находящегося в просвете кишки.

Наиболее важна кишечная фаза панкреатической секреции. При снижении рН в двенадцатиперстной кишке до 4,5 и ниже происходит выделение секретина. Традиционная концепция такова, что единственным стимулятором выделения секретина является соляная кислота, однако недавно проведенные исследования показали, что таким же действием обладают некоторые жирные кислоты. Это важно учитывать при лечении больного с острым панкреатитом, когда необходимо принять все меры для поддержания рН среды в двенадцатиперстной кишке около 4,5, чтобы не вызывать стимуляции панкреатической секреции секретином. Наличие соляной кислоты в двенадцатиперстной кишке, также как и некоторые виды пищи являются стимуляторами выделения ХЦК-ПЗ. Ни углеводы, ни нейтральные жиры не стимулируют панкреатическую секрецию. Из жирных кислот наиболее сильным стимулирующим действием на ХЦК-ПЗ обладают кислоты с углеродной цепью, состоящей из 16 и 18 атомов углерода (пищевые жиры). Жирные кислоты, имеющие молекулы с длиной углеродной цепи 8 и 10 атомов, стимулируют выделение ХЦК-ПЗ в меньшей степени. По этой причине при лечении острого рецидивирующего панкреатита целесообразно применение специальной смеси триглицеридов со средней длиной углеродной цепи (которая содержит 68 % молекул с 8 атомами углерода, 24 % - с 10 атомами и менее 5%-более чем с 10 атомами углерода и стимулирует выделение панкреатических ферментов в меньшей степени, чем пищевые жиры). Применение смеси отдельных аминокислот вызывает опосредованную ответную реакцию ферментов .

Тот факт, что секретин и ХЦК-ПЗ находятся в большом количестве в двенадцатиперстной и тощей кишке и обеспечивают обильное выделение бикарбонатов и ферментов при перфузии каждого из названных отделов кишечника соответствующим раздражителем, указывает на их большое физиологическое значение. Количества ХЦК-ПЗ, вырабатываемого в двенадцатиперстной кишке, достаточно для обеспечения пищеварения в верхнем ее отделе, а также для обеспечения минимальной панкреатической секреции в случае гастроеюностомии. Как правило, большее количество хлористоводородной кислоты желудка полностью нейтрализуется в начальном отделе двенадцатиперстной кишки, поэтому секретин, выделяемый в дистальном отделе двенадцатиперстной кишки, и тощей кишке, имеет ограниченное значение, за исключением состояния после гастроеюностомии.

Реакция поджелудочной железы на пищу

Существует много способов стимуляции секреторного аппарата поджелудочной железы. Секреция панкреатических ферментов при пищевом раздражении поддерживается на максимальном уровне до тех пор, пока пища продолжает поступать в двенадцатиперстную кишку. Твердая и калорийная пища дольше задерживается в желудке, чем жидкая. Именно по этой причине переваривание твердой пищи сопровождается более продолжительным выделением панкреатических ферментов, чем жидкой. На этом наблюдении основаны важные диетические рекомендации при лечении рецидивирующего панкреатита, состоящие в том, что пища должна быть малокалорийной, жидкой, в основном содержать углеводы и минимальное количество жиров и белка.

В экспериментальных условиях присутствие хлористоводородной кислоты в двенадцатиперстной кишке вызывало отчетливое увеличение секреции панкреатических бикарбонатов путем стимуляции продукции секретина. Однако в одном случае пищевое раздражение не сопровождалось ни уменьшением рН внутридуоденальной среды, ни повышением уровця секретина в плазме по сравнению с базальным. На основании такого рода результатов был обсужден важный вопрос о физиологической роли секретина в процессах пищеварения. По-видимому, небольшое количество секретина высвобождается во время пищеварения при попадании некоторых кислот в двенадцатиперстную кишку. Хотя это количество секретина само по себе оказывает небольшое влияние на секрецию панкреатических бикарбонатов, отмечено, что его физиологическое действие на протоки поджелудочной железы заметно возрастает в присутствии ХЦК-ПЗ. В свою очередь физиологическое действие ХЦК-ПЗ на ацинарную ткань усиливается в присутствии секретина. Таким образом, в результате двойной стимуляции протоков секретином и ХЦК-ПЗ значительно возрастает секреция жидкости и бикарбонатов за счет суммации эффектов. В результате двойной стимуляции ацинарного аппарата ХЦК-ПЗ и секретином значительно повышается секреция ферментов. Все это следует учитывать при диетическом лечении панкреатита в стадии рассасывания, направленном «а предотвращение стимуляции как секретина, так и ХЦК-ПЗ, поскольку каждый из них потенцирует действие другого.

Состав панкреатического сока

Электролиты . Концентрация ионов натрия и калия в панкреатическом соке равна таковой в плазме и не зависит от скорости их секреции. Концентрация бикарбонатов в панкреатическом соке заметно увеличивается в ответ на стимуляцию эпителия панкреатических протоков секретином. При увеличении концентрации бикарбонатных ионов концентрация хлоридов реципрокно уменьшается. По существу в панкреатическом соке нет ионизированного кальция, так как он находится в связанном с панкреатическими ферментами состоянии.

Отделение панкреатического сока уменьшается при внутривенном введении таких медикаментозных средств, как ацетазоламид (диамокс), антидиуретический гормон (АДГ), антихолинергические средства, глюкагон и соматостатин. Хотя их применение для лечения острого панкреатита заманчиво, проверенных данных о лечебной ценности названных средств нет.

Панкреатические ферменты. Протеолитические ферменты секретируются в виде проферментов. Основные ферменты - трипсиноген, химотрипсиноген, эластаза (которая иначе называется эндопептидаза, так как разрывает внутреннюю пептидную связь в молекуле белка), прокарбоксипептидаза А и прокарбоксипептидаза В (иначе называемые экзопептидазами, потому что они разрывают конечную пептидную связь аминокислот). В соке поджелудочной железы продуцируется только один ингибитор трипсина, предотвращающий преждевременную активацию трипсина в протоках поджелудочной железы. При попадании панкреатических протеолитических ферментов в двенадцатиперстную кишку энтерокиназа способствует превращению трипсиногена в трипсин, после чего усиливается активация протеолитических ферментов под действием трипсина. Активированный трипсин является автокатализатором превращения трипсиногена в трипсин, что обеспечивает нарастание количества этого фермента и активацию других протеолитических энзимов.

Основными липолитическими ферментами являются липаза и фосфолипазы А и В. Липаза секретируется в активной форме, но не оказывает повреждающего действия на ацинарные клетки и панкреатические протоки. Фосфолипазы А и В поддерживаются в активном состоянии под влиянием небольшого количества трипсина. Под действием липазы быстро происходит отщепление двух жирных кислот от пищевых триглицеридов с образованием 2-моноглицеридов. Третья жирная кислота отщепляется более медленно.

Амилаза секретируется в активной форме, не токсичной для ткани поджелудочной железы, и способствует гидролизу крахмала с образованием мальтозы.

Клеточные процессы секреции поджелудочной железы

Механизмы секреции бикарбонатов в панкреатических протоках не совсем ясны. По-видимому, в этом процессе играет роль угольная ангидраза, находящаяся в эпителии протоков.

Первым этапом действия ХЦК-ПЗ на ацинарные клетки является высвобождение кальция из мембраносвязанных комплексов. В связи с клеточными процессами секреции панкреатических ферментов возникает ряд важных вопросов. Традиционное мнение заключается в том, что ферменты перед их выделением содержатся в виде гранул проферментов. Однако панкреатическая секреция может осуществляться и при отсутствии таких гранул. Другая точка зрения состоит в том, что наблюдается параллелизм секреции панкреатических ферментов (т. е. уровень различных ферментов в период их отделения остается постоянным). Наряду с имеющимися данными о параллелизме секреции пищеварительных ферментов имеются указания на зависимость состава секретируемых ферментов от состава пищи как у человека, так и у экспериментальных животных.

Не исключено, что голодание или дефицит гормонов может вызвать атрофию поджелудочной железы. В частности, имеются данные о том, что гастрин является трофическим гормоном поджелудочной железы. Так, у экспериментальных животных при парентеральном питании снижается уровень содержания гастрина в плазме и развивается атрофия поджелудочной железы, несмотря на инфузию экзогенного пентагастрина.

Питер А. Бенкс Панкреатит, 1982г.

Физиология поджелудочной железы. Поджелудочный сок представляет собой бесцветную жидкость. В течение суток поджелудочная железа человека вырабатывает 1,5-2,0 л сока; его рН составляет 7,5-8,8. Под влиянием ферментов поджелудочного сока происходит расщепление кишечного содержимого до конечных продуктов, пригодных для усвоения организмом. a-Амилаза, липаза, нуклеаза секретируются в активном состоянии, а трипсиноген, химотрипсиноген, профосфолипаза А, проэластаза и прокарбоксипептидазы А и В - в виде проферментов. Трипсиноген в двенадцатиперстной кишке превращается в трипсин. Последний активизирует профосфолипазу А, проэластазу и прокарбоксипептидазы А и В, которые превращаются соответственно в фосфолипазу А, эластазу и карбоксипептидазы А и В.
Ферментный состав сока поджелудочной железы зависит от вида принимаемой пищи: при приеме углеводов возрастает преимущественно секреция амилазы; белков - трипсина и химотрипсина; жирной пищи - липазы. В состав сока поджелудочной железы входят бикарбонаты, хлориды Na+, К+, Са2+, Mg2+, Zn2+.
Секреция поджелудочной железы регулируется нервно-рефлекторным и гуморальным путями. Различают спонтанную (базальную) и стимулирующую секрецию. Первая обусловлена способностью клеток поджелудочной железы к автоматизму, вторая - влиянием на клетки нейрогуморальных факторов, которые включаются в процесс приемом пищи.
Основными стимуляторами экзокринных клеток поджелудочной железы являются ацетилхолин и гастроинстести-нальные гормоны - холецистокинин и секретин. Они усиливают выделение ферментов и бикарбонатов поджелудочным соком. Поджелудочный сок начинает выделяться через 2-3 мин после начала принятия пищи в результате рефлекторного возбуждения железы с рецепторов ротовой полости. А затем воздействие желудочного содержимого на двенадцатиперстную кишку высвобождает гормоны холецистокинин и секретин, которые и определяют механизмы секреции поджелудочной железы.

Пищеварение в толстом кишечнике

Пищеварение в толстом кишечнике. Пищеварение в толстом кишечнике практически отсутствует. Низкий уровень ферментативной активности связан с тем, что поступающий в этот отдел пищеварительного тракта химус беден непереваренными пищевыми веществами. Однако толстая кишка в отличие от других отделов кишечника богата микроорганизмами. Под влиянием бактериальной флоры происходит разрушение остатков непереваренной пищи и компонентов пищеварительных секретов, в результате чего образуются органические кислоты, газы (СО2, СН4, H2S) и токсичные для организма вещества (фенол, скатол, индол, крезол). Часть этих веществ обезвреживается в печзни, другая - выводится с каловыми массами. Большое значение имеют ферменты бактерий, расщепляющие целлюлозу, гемицеллюлозу и пектины, на которые не действуют пищеварительные ферменты. Эти продукты гидролиза всасываются толстой кишкой и используются организмом. В толстой кишке микроорганизмами синтезируются витамин К и витамины группы В. Наличие в кишечнике нормальной микрофлоры защищает организм человека и повышает иммунитет. Остатки непереваренной пищи и бактерии, склеенные слизью сока толстой кишки, образуют каловые массы. При определенной степени растяжения прямой кишки возникает позыв к дефекации и происходит произвольное опорожнение кишечника; рефлекторный непроизвольный центр дефекации находится в крестцовом отделе спинного мозга.



Всасывание

Всасывание. Продукты пищеварения проходят через слизистую оболочку желудочно-кишечного тракта и всасываются в кровь и лимфу при помощи транспорта и диффузии. Всасывание происходит главным образом в тонком кишечнике. Слизистая оболочка ротовой полости также обладает способностью к всасыванию, это свойство используется в применении некоторых лекарственных препаратов (валидол, нитроглицерин и др.). В желудке всасывание практически не происходит. В нем всасываются вода, минеральные соли, глюкоза, лекарственные вещества и др. В двенадцатиперстной кишке также происходит всасывание воды, минеральных веществ, гормонов, продуктов расщепления белка. В верхних отделах тонкого кишечника углеводы в основном всасываются в виде глюкозы, галактозы, фруктозы и других моносахаридов. Аминокислоты белков всасываются в кровь при помощи активного транспорта. Продукты гидролиза основных пищевых жиров (триглицериды) способны проникать через клетку кишечника (энтероцит) только после соответствующих физико-химических преобразований. Моноглицериды и жирные кислоты всасываются в энтероцитах только после взаимодействия с желчными кислотами путем пассивной диффузии. Образовав с желчными кислотами комплексные соединения, они транспортируются главным образом в лимфу. Часть жиров может поступать непосредственно в кровь, минуя лимфатические сосуды. Всасывание жиров тесно связано с всасыванием жирорастворимых витаминов (A, D, Е, К). Витамины, растворимые в воде, могут всасываться методом диффузии (например, аскорбиновая кислота, рибофлавин). Фолиевая кислота усваивается в конъюгированном виде; витамин В12 (цианокобаламин) - в подвздошной кишке при помощи внутреннего фактора, который образуется на теле и дне желудка.
В тонкой и толстой кишках происходит всасывание воды и минеральных солей, которые поступают с пищей и сек-ретируются пищеварительными железами. Общее количество воды, которое всасывается в кишечнике человека в течение суток, составляет около 8-10 л, натрия хлорида - 1 моль. Транспорт воды тесно связан с транспортом ионов Na+ и определяется им.

Регуляция пищеварения

Регуляция процессов пищеварения обеспечивается местным и центральным уровнями.
Местный уровень регуляции осуществляется нервной системой, которая представляет комплекс связанных между собой сплетений, расположенных в толще стенок желудочно-кишечного тракта. В их состав входят чувствительные (сенсорные), эффекторные и вставочные нейроны симпатической и парасимпатической вегетативной нервной системы. Кроме того, в желудочно-кишечном тракте находятся нейроны, вырабатывающие нейропептиды, которые влияют на процессы пищеварения. К ним относятся холецистокинин, гастриносвобождающий пептид, соматостатин, вазоактивный интестинальный пептид, энфекалин и др. Вместе с нейронной сетью в желудочно-кишечном тракте находятся эндокринные клетки (диффузная эндокринная система), расположенные в эпителиальном слое слизистой оболочки и в поджелудочной железе. Они содержат гастроинтестинальные гормоны и другие биологически активные вещества и освобождаются при механическом и химическом воздействии пищи на эндокринные клетки просвета желудочно-кишечного тракта. Важную роль в регуляции функций желудочно-кишечного тракта играют и простогландины группы Е и F.
Центральный уровень регуляции пищеварительной системы включает ряд структур центральной нервной системы (спинного мозга и ствола мозга), которые входят в состав пищевого центра. Последний, кроме координирующей деятельности желудочно-кишечного тракта, осуществляет регуляцию пищевых отношений. В формировании целенаправленных пищевых отношений принимают участие гипоталамус, лимбическая система и кора головного мозга. Компоненты пищевого центра, несмотря на то что располагаются на разных уровнях центральной нервной системы, имеют функциональную связь. Действие пищевого центра многостороннее. За счет его активности формируется пищедобы-вающее поведение (пищевая мотивация), при этом происходит сокращение скелетной мускулатуры (необходимо найти пищу и приготовить ее).
Пищевой центр регулирует моторную, секреторную и всасывающую активность желудочно-кишечного тракта. Функция пищевого центра обеспечивает появление сложных субъективных ощущений, таких как голод, аппетит, чувство сытости.

Дыхательная система

Дыхательная система объединяет органы, которые выполняют воздухоносную (полость рта, носоглотка, гортань, трахея, бронхи) и дыхательную, или газообменную (легкие), функции.
Основная функция органов дыхания - обеспечение газообмена между воздухом и кровью путем диффузии кислорода и углекислого газа через стенки легочных альвеол в кровеносные капилляры. Кроме того, органы дыхания участвуют в звукообразовании, определении запаха, выработке некоторых гормоноподобных веществ, в липидном и водно-солевом обмене, в поддержании иммунитета организма.
В воздухоносных путях происходит очищение, увлажнение, согревание вдыхаемого воздуха, а также восприятие запаха, температурных и механических раздражителей.
Характерной особенностью строения дыхательных путей является наличие хрящевой основы в их стенках, в результате чего они не спадаются. Внутренняя поверхность дыхательных путей покрыта слизистой оболочкой, которая выстлана мерцательным эпителием и содержит значительное количество желез, выделяющих слизь. Реснички эпителиальных клеток, двигаясь против ветра, выводят наружу вместе со слизью и инородные тела.

Полость носа

Полость носа (cavitas nasi) - это начальный отдел дыхательных путей и одновременно орган обоняния. Проходя через полость носа, воздух или охлаждается, или согревается, увлажняется и очищается. Полость носа формируется наружным носом и костями лицевого черепа, делится перегородкой на две симметричные половины. Спереди входными отверстиями в носовую полость являются ноздри, а сзади через хоаны она соединяется с носовой частью глотки. Перегородка носа состоит из перепончатой, хрящевой и костной частей. В каждой половине носа выделяют преддверие полости носа. Внутри оно покрыто переходящей через ноздри кожей наружного носа, содержащей потовые, сальные железы и жесткие волоски, которые задерживают частицы пыли. От боковой стенки в просвет каждой половины носа выступают по три выгнутые костные пластинки: верхняя, средняя и нижняя раковины. Они делят полость носа на узкие, соединенные между собой носовые ходы.
Различают верхний, средний и нижний носовые ходы, расположенные под соответствующей носовой раковиной. В каждый носовой ход открываются воздухоносные (околоносовые) пазухи и каналы черепа: отверстия решетчатой кости, клиновидная, верхнечелюстная (гайморова) и лобная пазухи, носослезный канал. Слизистая оболочка носа продолжается в слизистую оболочку околоносовых пазух, слезного мешка, носовой части глотки и мягкого нёба. Она плотно срастается с надкостницей и надхрящницей стенок полости носа и покрыта эпителием, который содержит большое количество бокаловидных слизистых желез, кровеносных сосудов и нервных окончаний.

В верхней носовой раковине, частично в средней и в верхнем отделе перегородки находятся нейросенсорные (чувствительные) клетки обоняния. Воздух из полости носа попадает в носоглотку, а затем в ротовую и гортанную части глотки, где открывается отверстие гортани. В области глотки происходит пересечение пищеварительного и дыхательного путей; воздух сюда может поступать и через рот.

Гортань

Гортань (larynx) выполняет функции дыхания, звукообразования и защиты нижних дыхательных путей от попадания в них инородных частиц. Она расположена в передней области шеи, на уровне IV-VII шейных позвонков; на поверхности шеи образует небольшое (у женщин) и сильно выступающее вперед (у мужчин) возвышение - выступ гортани. Сверху гортань подвешена к подъязычной кости, внизу соединяется с трахеей. Спереди гортани лежат мышцы шеи, сбоку -- сосудисто-нервные пучки.
Скелет гортани составляют непарные и парные хрящи. К непарным относятся щитовидный, перстневидный хрящи и надгортанник, к парным - черпаловидные, рожковидные и клиновидные хрящи, которые соединяются между собой связками, соединительнотканными мембранами и суставом.

Хрящи гортани

Хрящи гортани. Основу гортани составляет гиалиновый перстневидный хрящ, который соединяется с первым хрящом трахеи при помощи связки. Он имеет дугу и четырехугольную пластинку; дуга хряща направлена вперед, пластинка ~ назад. На верхнем крае пластинки находятся две составные поверхности для соединения с черпаловидными хрящами. На дуге перстневидного хряща расположен гиалиновый непарный, самый большой хрящ гортани - щитовидный. На передней части щитовидного хряща находятся верхняя щитовидная и небольшая нижняя щитовидная вырезки. Задние края пластинок щитовидного хряща образуют с каждой стороны длинный верхний и короткий нижний рога. Черпаловидный хрящ парный, гиалиновый, похож на четырехгранную пирамиду. В нем различают переднелатеральную, медиальную и заднюю поверхность. Основание хряща направлено вниз, верхушка заострена, отклонена несколько назад. От основания отходит мышечный отросток, к которому прикрепляются голосовые связка и мышца. Сверху и спереди вход в гортань прикрывает надгортанник - эластичный отросток. Он прикрепляется щитонадгортанной связкой к щитовидному хрящу. Надгортанник перекрывает вход в гортань во время проглатывания еды. Рожковидный и клиновидный хрящи находятся в толще черпаловидной связки.
Соединяются хрящи гортани между собой и с подъязычной костью при помощи суставов (перстнещитовидный, перстнечерпаловидный) и связок (щитоподъязычная мембрана, серединная щитоподъязычная, латеральные щито-подъязычные, подъязычно-надгортанная, щитонадгортан-ная, перстнещитовидная, перстнетрахеальная).

Мышцы гортани

Мышцы гортани. Все мышцы гортани делятся на три группы: расширители, суживающие голосовую щель и изменяющие напряжение голосовых связок.
К мышцам, расширяющим голосовую щель, относится только одна мышца - задняя перстнечерпаловидная. Эта парная мышца при сокращении оттягивает мышечный отросток назад, поворачивает черпаловидный хрящ наружу. Голосовой отросток поворачивается также латерально и голосовая щель расширяется.
В группу мышц, суживающих голосовую щель, входят парная латеральная перстнечерпаловидная и парная щиточерпаловидная, парная косая черпаловидная мышцы и непарная поперечная черпаловидная мышца.
К мышцам, натягивающим (напрягающим) голосовые связки, относится парная

Полость гортани

Полость гортани. В полости гортани различают три отдела: преддверие, межжелудочковый отдел и подголосовую полость (рис.79).

Рис. 79. Полость гортани (фронтальный распил):
1 - надгортанник; 2 - надгортанный бугорок; 3 - преддверие гортани; 4 - складка преддверия; 5 - желудочек гортани; 6 - голосовая складка; 7- щитовидный хрящ; 8 - голосовая щель; 9 - подголо-совая полость; 10 - полость трахеи; 11 - перстневидный хрящ; 12 - латеральная перстнечерпаловидная мышца; 13 - голосовая мышца; 14- щиточерпаловидная мышца; 15- щель преддверия

Преддверие гортани находится в пределах от входа в гортань до складок преддверия. Складки преддверия сформированы слизистой оболочкой гортани, которая содержит слизистые железы и утолщенные эластические волокна. Между этими складками находится щель преддверия.
Средний отдел - межжелудочковый - самый узкий. Он простирается от складок преддверия вверху к голосовым связкам внизу. Между складками преддверия (ложная голосовая складка) и голосовой складкой с левой и правой сторон гортани расположены желудочки. Правая и левая голосовые складки ограничивают голосовую щель - наиболее узкую часть полости гортани. В голосовой щели выделяют межперепончатую и межхрящевую части. Длина голосовой щели у мужчин равна 20-24 мм, у женщин - 16-19 мм; ширина при спокойном дыхании - 5 мм, а при голосообразовании - 15 мм.
Нижний отдел полости гортани, который переходит в трахею, называется подголосовой полостью.
Гортань имеет три оболочки: слизистую, фиброзно-хряще-вую и соединительнотканную. Первая покрыта многорядным мерцательным эпителием, кроме голосовых связок. Фиброзно-хрящевая оболочка состоит из гиалиновых и эластичных хрящей. Последние в свою очередь окружены плотной волокнистой соединительной тканью и выполняют роль каркаса гортани.
При образовании звука голосовая щель закрыта и открывается только при повышении давления воздуха в подголосовой полости на выдохе. Воздух, поступающий из легких в гортань, вибрирует голосовые связки. При этом образуются звуки разной высоты и силы. В формировании звука участвуют мышцы гортани, которые суживают и расширяют голосовую щель. Кроме того, звукообразование зависит от состояния резонаторов (полость носа, придаточные пазухи носа, глотка), возраста, пола, функции речевого аппарата. В звукообразовании принимает участие и центральная нервная система, под контролем которой находятся голосовые связки и мышцы гортани. У детей размеры гортани меньше, чем у взрослых; голосовые связки короче, тембр голоса выше. Размеры гортани могут изменяться в период полового созревания, что ведет к изменению голоса.

Трахея и бронхи

Трахея (trachea) - непарный орган, через который воздух поступает в легкие и наоборот (рис. 80).
Трахея имеет форму трубки длиной 9-10 см, несколько сжатой в направлении спереди назад; поперечник ее равен в среднем 15- 18 мм.
Основу трахеи составляют 16-20 гиалиновых хрящевых полуколец, соединенных между собой кольцевыми связками.
Трахея начинается на уровне нижнего края VI шейного позвонка, и заканчивается на уровне верхнего края V грудного позвонка.
В трахее различают шейную и грудную части. В шейной части спереди трахеи находятся щитовидная железа, сзади - пищевод, а по бокам - сосудисто-нервные пучки (общая сонная артерия, внутренняя яремная вена, блуждающий нерв).
В грудной части спереди трахеи находятся дуга аорты, плечеголовной ствол, левая плечеголовная вена, начало левой общей сонной артерии и вилочковая железа.

Рис. 80. Трахея, главные бронхи и легкие:
1 - трахея; 2 - верхушка легкого; 3 - верхняя доля; 4 а - косая щель; 46- горизонтальная щель; 5- нижняя доля; 6- средняя доля; 7- сердечная вырезка левого легкого; 8 - главные бронхи; 9 - бифуркация трахеи

В грудной полости трахея делится на два главных бронха, которые отходят в правое и левое легкое. Место деления трахеи называется бифуркацией. Правый главный бронх имеет более вертикальное направление; он короче и шире левого. В связи с этим инородные тела из трахеи чаще попадают в правый бронх. Длина правого бронха около 3 см, а левого 4-5 см. Над левым главным бронхом лежит дуга аорты, над правым - непарная вена. Правый главный бронх имеет 6-8, а левый 9-12 хрящевых полуколец. Внутри трахея и бронхи выстланы слизистой оболочкой с реснитчатым многослойным эпителием, содержащей слизистые железы и одиночные лимфоидные узелки. Снаружи трахея и главный бронх покрыты адвентицией.
Главные бронхи (первого порядка) в свою очередь делятся на долевые (второго порядка), а они в свою очередь - на сегментарные (третьего порядка), которые делятся далее и образуют бронхиальное дерево легких.
Главные бронхи состоят из неполных хрящевых колец; в бронхах среднего калибра гиалиновая хрящевая ткань заменяется на хрящевую эластическую; в концевых бронхиолах хрящевая оболочка отсутствует.

Легкие

Легкие (pulmones) - главный орган дыхательной системы, который насыщает кислородом кровь и выводит углекислый газ. Правое и левое легкое расположено в грудной полости, каждое в своем плевральном мешке (см. рис. 80). Внизу легкие прилегают к диафрагме, спереди, с боков и сзади каждое легкое соприкасается с грудной стенкой. Правый купол диафрагмы лежит выше левого, поэтому правое легкое короче и шире левого. Левое легкое уже и длиннее, потому что в левой половине грудной клетки находится сердце, которое своей верхушкой повернуто влево.
Верхушки легких выступают выше ключицы на 2-3 см. Нижняя граница легкого пересекает VI ребро по средне-ключичной линии, VII ребро - по передней подмышечной, VIII-по средней подмышечной, IX - по задней подмышечной, Х ребро - по околопозвоночной линии.
Нижняя граница левого легкого расположена несколько ниже. На максимальном вдохе нижний край опускается еще на 5-7 см.
Задняя граница легких проходит вдоль позвоночника от II ребра. Передняя граница (проекция переднего края) берет начало от верхушек легких, проходит почти параллельно на расстоянии 1,0-1,5 см на уровне хряща IV ребра. В этом месте граница левого легкого отклоняется влево на 4- 5 см и образует сердечную вырезку. На уровне хряща VI ребра передние границы легких переходят в нижние.
В легком выделяют три поверхности: выпуклую реберную, прилегающую к внутренней поверхности стенки грудной полости; диафрагмальную - прилегает к диафрагме; медиальную (средостенную), направленную в сторону средостения. На медиальной поверхности находятся ворота легкого, через которые входят главный бронх, легочная артерия и нервы, а выходят две легочные вены и лимфатические сосуды. Все вышеперечисленные сосуды и бронхи составляют корень легкого.
Каждое легкое бороздами делится на доли: правое - на три (верхнюю, среднюю и нижнюю), левое - на две (верхнюю и нижнюю).
Большое практическое значение имеет деление легких на так называемые бронхолегочные сегменты; в правом и в левом легком по 10 сегментов (рис. 81). Сегменты отделяются один от другого соединительнотканными перегородками (малососудистыми зонами), имеют форму конусов, верхушка которых направлена к воротам, а основание - к поверхности легких. В центре каждого сегмента расположены сегментарный бронх, сегментарная артерия, а на границе с другим сегментом - сегментарная вена.
Каждое легкое состоит из разветвленных бронхов, которые образуют бронхиальное дерево и систему легочных пузырьков. Вначале главные бронхи делятся на долевые, а затем и на сегментарные. Последние в свою очередь разветвляются на субсегментарные (средние) бронхи. Субсегмен-тарные бронхи также делятся на более мелкие 9-10-го порядка. Бронх диаметром около 1 мм называется дольковым и вновь разветвляется на 18-20 конечных бронхиол. В правом и левом легком человека насчитывается около 20 000 конечных (терминальных) бронхиол. Каждая конечная бронхиола делится на дыхательные бронхиолы, которые в свою очередь делятся последовательно дихотомично (на две) и переходят в альвеолярные ходы.

Рис. 81. Схема сегментов легкого:
А - вид спереди; Б - вид сзади; В - правое легкое (вид сбоку); Г- левое легкое (вид сбоку)

Каждый альвеолярный ход заканчивается двумя альвеолярными мешочками. Стенки альвеолярных мешочков состоят из легочных альвеол. Диаметр альвеолярного хода и альвеолярного мешочка составляет 0,2-0,6 мм, альвеолы - 0,25-0,30 мм.
Дыхательные бронхиолы, а также альвеолярные -ходы, альвеолярные мешочки и альвеолы легкого образуют альвеолярное дерево (легочный ацинус), которое является структурно-функциональной единицей легкого. Количество легочных ацинусов в одном легком достигает 15 000; количество альвеол в среднем составляет 300-350 млн, а площадь дыхательной поверхности всех альвеол - около 80 м2.
Для кровоснабжения легочной ткани и стенок бронхов кровь поступает в легкие по бронхиальным артериям из грудной части аорты. Кровь от стенок бронхов по бронхиальным венам отходит в протоки легочных вен, а также в непарную и полунепарную вены. По левой и правой легочным артериям в легкие поступает венозная кровь, которая обогащается кислородом в результате газообмена, отдает углекислый газ и, превратившись в артериальную кровь, по легочным венам стекает в левое предсердие.
Лимфатические сосуды легких впадают в бронхолегоч-ные, а также в нижние и верхние трахеобронхиальные лимфоузлы.

Плевра и средостение

Плевра (pleura) - тонкая гладкая серозная оболочка, которая окутывает каждое легкое.
Различают висцеральную плевру, которая плотно срастается с тканью легкого и заходит в щели между долями легкого, и париетальную, которая выстилает внутри стенки грудной полости. В области корня легкого висцеральная плевра переходит в париетальную.
Париетальная плевра состоит из реберной, медиасти-нальной (средостенной) и диафрагмальной плевры. Реберная плевра покрывает внутреннюю поверхность ребер и межреберных промежутков, около грудины и сзади около позвоночного столба переходит в медиастинальную плевру. Вверху реберная и медиастинальная плевра переходят одна в другую и образуют купол плевры, а внизу они переходят в диафрагмальную плевру, которая покрывает диафрагму, кроме центральной части, где диафрагма соединяется с перикардом.
Таким образом, между париетальной и висцеральной плеврой образуется щелевидное замкнутое пространство - плевральная полость. В этой полости находится небольшое количество серозной жидкости, которая увлажняет листки плевры при дыхательных движениях легких. В местах перехода реберной плевры в диафрагмальную и медиастинальную образуются углубления - плевральные синусы. Эти синусы являются резервными пространствами правой и левой плевральных полостей, а также вместилищем для накопления плевральной жидкости при нарушении процессов ее образования и усвоения.
Между реберной и диафрагмальной плеврой находится реберно-диафрагмальный синус; в месте перехода медиас-тинальной плевры в диафрагмальную - диафрагмо-меди-астинальный синус, а в месте перехода реберной плевры в медиастинальную образуется реберно-медиастинальный синус.
Площадь париетальной плевры больше, чем висцеральной. Левая плевральная полость длиннее и уже, чем правая. Верхняя граница плевры выступает на 3-4 см выше за I ребро. Сзади плевра опускается до уровня головки XII ребра, где переходит в диафрагмальную плевру. Спереди на правой стороне плевра идет от грудино-ключичного сустава и опускается до VI ребра и переходит в диафрагмальную плевру. Слева париетальная плевра проходит параллельно правому листку своей плевры до хряща IV ребра, затем отклоняется влево и на уровне VI ребра переходит в диафрагмальную. Нижняя граница плевры представляет собой линию перехода реберной плевры в диафрагмальную. Она пересекает VII ребро среднеключичной линии, IX- по средней подмышечной, затем идет горизонтально, пересекая Х и XI ребра, подходит к позвоночному столбу на уровне шейки XII ребра, где нижняя граница переходит в заднюю границу плевры.
Средостение (mediastinum) представляет собой комплекс органов, расположенных между правой и левой плевральными полостями. Спереди средостение ограничено грудиной, сзади - грудным отделом позвоночного столба, с боков- правой и левой медиастинальной плеврой. Вверху средостение продолжается до верхней апертуры грудной клетки, внизу - до диафрагмы. Различают два отдела средостения: верхнее и нижнее.
В верхнем средостении находятся вилочковая железа, правая и левая плечеголовные вены, верхняя полая вена, дуга аорты и отходящие от нее сосуды (плечеголовной ствол, левая общая сонная и подключичная артерии), трахея, верхняя часть пищевода, соответствующие отделы грудного лимфатического протока правого и левого симпатических стволов, проходят блуждающий и диафрагмальный нервы.
В нижнем средостении находятся перикард с расположенными в нем сердцем, крупными сосудами, главные бронхи, легочные артерии и вены, лимфатические узлы, нижняя часть грудной аорты, непарная и полунепарная вены, средний и нижние отделы пищевода, грудной лимфатический проток, симпатические стволы и блуждающие нервы.

Физиология дыхания

Поджелудочная железа – очень важный орган для правильной работы всего организма человека.
Ее особенностью является то, что она одновременно выполняет две функции:

  • экзокринную - она управляет процессом пищеварения, его скоростью;
  • эндокринную - контролирует углеводный и жировой обмен, поддерживает иммунную систему.
    Анатомия и физиология поджелудочной железы позволяет лучше понять уникальность этого органа.

Анатомия поджелудочной железы

Это - удлиненный орган с однородной плотной структурой, находится на втором месте по величине после печени.
Для здорового человека в юношеском и среднем возрасте характерна однородная структура железы. При ультразвуковом исследовании (УЗИ) ее эхогенность (то есть отражение ультразвуковых волн тканями органа) сопоставима с результатами исследования печени, обычно описывается как мелкозернистая и однородная.
Но также нормальной считается пониженная эхогенность у полных людей и - у худых людей.

Орган закладывается на пятой неделе беременности. Полностью развитие поджелудочной железы завершается к шести годам.
У новорожденного ребенка ее размер равен 5÷5,5 см, у годовалого - 7 см, у десятилетнего – 15 см.
У взрослого человека достигает длины 16÷23 см и толщины до 5 см в самой широкой части.
Вес поджелудочной железы равен 60÷80 граммам, причем в пожилом возрасте он снижается до 50÷60 граммов.
Величина органа может быть больше или меньше нормы при возникновении различных заболеваний. Он может увеличиться при воспалении (панкриатите) из-за отеков и сдавливать рядом лежащие внутренние органы, что тоже отрицательно скажется на них. При атрофии железистой ткани поджелудочной железы () возникает уменьшение ее размера.

Поэтому при любых симптомах (боль в животе, диспепсия) рекомендуется обратиться к врачу и сделать УЗИ.

Орган условно можно разделить на:

  • Головку – это самая толстая часть органа (до 5 см). Она лежит в подковообразной петле двенадцатиперстной кишки, чуть сместившись вправо от линии позвоночного столба.
  • Тело поджелудочной железы проходит за желудком влево и вглубь брюшной полости.
  • Хвост (до 2 см) немного приподнят вверх и подходит к селезенке.

Орган состоит из основной части – паренхимы, которая по строению напоминает цветную капусту. Сверху она покрыта оболочкой из соединительной ткани, называемой капсулой.
Ткань паренхимы (98% всей массы поджелудочной железы) составляют дольки (ацинусы). Они вырабатывают панкреатический сок и передают его по микропротокам в основной канал органа - вирсунгов проток, который открывается вместе с желчным протоком в 12-перстную кишку, где происходит переваривание пищи.

В течение суток у взрослого здорового человека вырабатывается 1,5÷2 литра панкреатического сока.

  • главные пищеварительные ферменты - липазу, амилазу и протеазу, которые участвуют в переваривании жиров, белков и углеводов;
  • бикарбонаты, которые создают в 12-перстной кишке щелочную среду и этим нейтрализуют поступающую из желудка кислоту.

Оставшиеся 2% органа заняты мелкими островками Лангерганса, большинство которых расположено в хвосте. Эти группы клеток, не имеют протоков, находятся рядом с кровеносными капиллярами и выделяют прямо в кровь гормоны, в частности, инсулин.

Кровоснабжение тканей поджелудочной железы происходит благодаря крупным артериям, от которых отходят более мелкие поджелудочные артерии. Они разветвляются и образуют мощную капиллярную сеть, которая пронизывает все ацинусы (клетки, вырабатывающие пищеварительные ферменты), обеспечивая их необходимыми элементами.
При воспалении железа может увеличиться и сдавить артерии, что ухудшает питание органа и провоцирует дальнейшее осложнение болезни.
Также при остром воспалительном процессе существует опасность возникновения сильного кровотечения, которое будет сложно остановить.

Где находится поджелудочная железа?

Орган за желудком в левой части (кроме головки) брюшной полости примерно на 6÷8 см выше пупочной области (в точке перехода от грудного отдела позвоночника к поясничному). Его головка плотно охватывается петлей 12-перстной кишки, тело почти перпендикулярно идет вглубь, а хвост – влево и вверх до селезенки.

Фактически орган защищен со всех сторон:

  • впереди от него располагается желудок;
  • позади - позвоночник;
  • с левой стороны - селезенка;
  • с правой стороны - 12-перстная кишка.

Физиология поджелудочной железы

Этот орган выполняет двойную функцию:

  • участвует в пищеварении,
  • регулирует в крови.

1. Пищеварительная (экзокринная) функция поджелудочной железы
98% всей массы поджелудочной железы составляют дольки (ацинусы). Именно они занимаются производством панкреатического сока, а затем передают его по микропротокам в основной канал органа - , который открывается вместе с желчным протоком в 12-перстную кишку, где происходит переваривание пищи.
Панкреатический сок содержит:

  • ферменты, которые преобразуют жиры, белки и углеводы в простые элементы и помогают организму их усвоить, то есть преобразовать в энергию или органическую ткань;
  • бикарбонаты, которые нейтрализуют кислоты, поступившие в 12-перстную кишку из желудка.

Ферменты, входящие в состав поджелудочного сока:


Липаза - расщепляет жиры, поступившие в кишечник до глицерина и жирных кислот, для дальнейшего поступления в кровь.
Амилаза - преобразует крахмал в олигосахариды, которые при помощи других ферментов превращаются в глюкозу, а она поступает в кровь, откуда в качестве энергии распространяется по всему человеческому организму.
Протеазы (пепсин, химотрипсин, карбоксипептидаза и эластаза) - преобразуют белки в аминокислоты, которые легко усваиваются организмом.

Процесс переработки углеводов (сахароза, фруктоза, глюкоза) начинается уже при нахождении в ротовой полости, но здесь расщепляются только простые сахара, а сложные могут распадаться только под влиянием специализированных ферментов поджелудочной железы в 12-перстной кишке, а также ферментов тонкого кишечника (мальтазы, лактазы и инвертазы), и только после этого организм сможет их усвоить.

Жиры поступают в 12-перстную кишку «нетронутые», и здесь начинается их переработка. При помощи фермента поджелудочной железы липазы и других ферментов, вступивших между собой в реакцию и образовавших сложные комплексы, жир расщепляется в жирные кислоты, а те проходят через стенки тонкого кишечника и попадают в кровь.

Производство пищеварительных ферментов начинается при поступлении сигналов, возникающих при растяжении стенок желудочно-кишечного тракта, а также от вкуса и запаха пищи, а прекращается при достижении определенного уровня их концентрации.

Если у поджелудочной железы нарушается проходимость протоков (это возникает при остром панкреатите), ферменты активируются в самом органе и начинают расщеплять его ткани, а позже - вызывают некроз клеток и образуют токсины. При этом начинается острая боль. В то же время из-за недостатка ферментов в пищеварительном тракте возникает диспепсия.

2. Гормональная (эндокринная) функция поджелудочной железы
Наряду с пищеварительными ферментами орган производит гормоны, управляющие углеводным и жировым обменом.
Их в поджелудочной железе вырабатывают группы клеток, называемые островками Лангерганса и занимающие всего2% массы органа (в основном в хвостовой части). Они не имеют протоков, находятся рядом с кровеносными капиллярами и выделяют гормоны прямо в кровь.

Поджелудочной железой вырабатываются следующие гормоны:

  • инсулин, управляющий поступлением питательных веществ, в частности глюкозы, в клетку;
  • глюкагон, управляющий уровнем глюкозы в крови и активизирующий ее получение из жировых запасов организма при недостаточном количестве;
  • соматостатин и панкреатический полипептин, останавливающие производство других гормонов или ферментов при отсутствии их надобности.

Инсулин играет огромную роль в обмене веществ организма и обеспечение его энергией.
Если выработка этого гормона снижается, у человека возникает сахарный диабет. Теперь ему придется в течение всей своей жизни понижать уровень глюкозы в крови при помощи лекарств: регулярно делать себе инъекции инсулина или принимать специальные препараты, уменьшающие содержание сахара.

Поджелудочная железа и другие органы, расположенные рядом

Железа находится в брюшной полости, вокруг располагаются кровеносные сосуды, печень, почки, желудочно-кишечный тракт и т. д. Отсюда следует, что при заболевании какого-нибудь одного органа, его увеличении или инфицировании, существует опасность и для других, не зря симптомы многих заболеваний совпадают.

Так, деятельность поджелудочной железы тесно связана с 12-перстной кишкой: через вирсунгов проток в кишечник поступает панкреатический сок, расщепляющий пищу для полного усвоения питательных веществ.
Например, при язве 12-перстной кишки и, как следствие, сужении протока возникает воспаление поджелудочной железы (панкреатит). Если болезнь не лечить, железа прекращает производство гормонов и ферментов, нормальную ткань постепенно заменяет рубцовая, возникающая гнойная инфекция приводит к возникновению перитонита, при котором возможен летальный исход.

Кроме того, и поджелудочная железа, и печень сильно страдают от приема алкоголя и курения - их клетки перестают выполнять свои функции, и на их месте могут возникнуть злокачественные опухоли.

Поджелудочная железа (Pancreas) — железа двойной функции: внешнесекреторной и внутрисекреторной. Внешнесекреторная функция заключается в синтезе и выделении в двенадцатиперстную кишку сока, содержащего пищеварительные ферменты и электролиты, внутрисекреторная - в синтезе и выделении в кровь гормонов.

Внешнесекреторная часть железы сильно развита и составляет более 95 % ее массы. Она имеет дольчатое строение и состоит из альвеол (ацинусов) и выводных протоков. Основная масса ацинусов (железисто-пузырьковидные концевые отделы) представлена панкреатическими клетками - панкреацитами - секретируемыми клетками.

Внутрисекреторная часть железы представлена островками Лангерганса, которые составляют около 30 % массы железы. Различают несколько видов островков Лангерганса по способности секретировать полипептидные гормоны: А-клетки продуцируют глюкогон, В-клетки - инсулин, D-клетки - самостатин. Основную массу островков Лангерганса (около 60 %) составляют В-клетки.

Поджелудочная железа лежит в брыжейке двенадцатиперстной кишки, на печени, разделяясь на правую, левую и среднюю доли. Проток поджелудочной железы открывается в двенадцатиперстную кишку самостоятельно или вместе с желчным протоком. Иногда встречается добавочный проток, который впадает в двенадцатиперстную кишку самостоятельно. Иннервируется поджелудочная железа симпатическими и парасимпатическими нервами (n. vagus).

У собак железа длинная, узкая, красноватого цвета, образует более объемистую левую ветвь и более длинную правую ветвь, достигающую почек. Поджелудочный проток открывается в двенадцатиперстную кишку вместе с желчным протоком. Иногда встречается добавочный проток. Абсолютная масса железы 13-18 г.

У крупного рогатого скота поджелудочная железа располагается вдоль двенадцатиперстной кишки от 12-го грудного до 2-4-го поясничного позвонка, под правой ножкой диафрагмы, частично на лабиринте ободочной кишки. Состоит из поперечной и правой продольной ветвей, соединяющихся под углом в правой стороне. Выводной проток открывается обособленно от желчного протока на расстоянии 30-40 см от него (у овец вместе с желчным протоком). Абсолютная масса железы у крупного рогатого скота 350-500 г, у овец 50-70 г.

У лошадей на поджелудочной железе различают среднюю часть - тело, прилежащее к воротному изгибу двенадцатиперстной кишки. Левый конец железы, или хвост, длинный и узкий, достигает слева слепого мешка желудка, соединяясь с ним, селезенкой и левой почкой. Правый конец железы, или головка, доходит до правой почки, слепой и ободочной кишки. Поджелудочный проток открывается вместе с печеночным. Иногда встречается дополнительный проток. Цвет железы желтоватый, абсолютная масса до 250-350 г.

У свиней на железе различают среднюю, правую и левую доли. Через среднюю долю проходит воротная вена печени. Железа лежит под двумя последними грудными и двумя первыми поясничными позвонками. Проток один, открывается на 13-20 см дистальнее устья желчного протока. Абсолютная масса железы 150 г.

Внешнесекреторная (экзогенная) функция поджелудочной железы. Основной продукт внешнесекреторной функции поджелудочной железы - пищеварительный сок, который содержит 90 % воды и 10% плотного осадка. Плотность сока 1,008-1,010; рН 7,2-8,0 (у лошадей 7,30-7,58; у крупного рогатого скота 8). В состав плотного осадка входят белковые вещества и минеральные соединения: бикарбонат натрия, хлорид натрия, хлорид кальция, фосфорнокислый натрий и др.

Сок поджелудочной железы содержит протеолитические и нуклеолитические ферменты (трипсин, хемотрипсин, карбоксипептидазы, эластазу, нуклеазы, аминопептидазу, коллагеназу, дипептидазу), амилолитические ферменты (а-амилазу, мальтазу, лактазу, инвертазу) и липолитические ферменты (липазу, фосфолипазу, холинэстеразу, карбоксиэстеразу, моноглицеридлипазу, щелочную фосфатазу). Трипсин расщепляет белки до аминокислот и выделяется в виде неактивного трипсиногена, который активируется ферментом кишечного сока энтерокиназой. Химотрипсин расщепляет белки и полипептиды до аминокислот и выделяется в форме неактивного химотрипсиногена; активируется трипсином. Карбоксиполипептидазы действуют на полипептиды, отщепляя от них аминокислоты. Дипептидазы расщепляют дипептиды на свободные аминокислоты. Эластаза действует на белки соединительной ткани - эластин, коллаген. Протаминаза расщепляет протамины, нуклеазы - нуклеиновые кислоты на мононуклеотиды и фосфорную кислоту.

При воспалении поджелудочной железы, аутоиммунных процессах протеолитические ферменты становятся активными уже в самой железе, вызывая ее разрушение. а-Амилаза расщепляет крахмал и гликоген до мальтозы; мальтаза - мальтозу до глюкозы; лактаза расщепляет молочный сахар на глюкозу и галактозу (она имеет существенное значение в пищеварении молодняка), инвертаза - сахарозу на глюкозу и фруктозу; липаза и другие липолитические ферменты расщепляют жиры на глицерин и жирные кислоты. Липолитические ферменты, в частности липаза, секретируются в активном состоянии, но расщепляют только жир, эмульгированный желчными кислотами. Амилазы, также как и липазы, в соке поджелудочной железы находятся в активном состоянии.

Из электролитов в соке поджелудочной железы содержатся натрий, калий, хлор, кальций, магний, цинк, медь и значительное количество бикарбонатов, обеспечивающих нейтрализацию кислого содержимого двенадцатиперстной кишки. Тем самым создается оптимальная среда для активных ферментов.

Доказано, что помимо перечисленного выше действия сок поджелудочной железы обладает свойством регуляции микробной ассоциации в двенадцатиперстной кишке, оказывая определенное бактерицидное действие. Прекращение поступления в кишечник панкреатического сока ведет к усиленному бактериальному росту в проксимальном отделе тонкого кишечника у собак.

Эндокринная (гормональная) функция поджелудочной железы. Важнейшими гормонами поджелудочной железы являются инсулин, глюкогон и соматостатин.

Инсулин образуется в В-клетках из предшественника - проинсулина. Синтезируемый проинсулин поступает в аппарат Гольджи, где расщепляется на молекулу С-пептида и молекулу инсулина. Из аппарата Гольджи (пластинчатый комплекс) инсулин, С-пептид и частично проинсулин поступают в везикулы, где инсулин связывается с цинком и депонируется в таком состоянии. Под влиянием различных стимулов инсулин освобождается от цинка и поступает в прекапиллярное пространство. Основным стимулятором секреции инсулина служит глюкоза: при ее повышении в крови усиливается синтез инсулина. В определенной степени этим свойством обладают аминокислоты аргинин и лейцин, а также глюкогон, глетрин, секретин, глюкокортикоиды, соматостатин, никотиновая кислота. Инсулин в крови находится в свободном и связанном с белками плазмы состоянии. Распад инсулина происходит в печени под влиянием глютатионтрансферазы и глютатионредуктазы, в почках под влиянием инсулиназы, в жировой ткани под влиянием протеолитических ферментов. Проинсулин и С-пептид тоже подвергаются дегидратации в печени. Его биологическое действие обусловлено способностью связываться со специфическими рецепторами клеточной цитоплазматической мембраны.

Инсулин усиливает синтез углеводов, белков, нуклеиновых кислот и жира. Он ускоряет транспорт глюкозы в клетки инсулинозависимых тканей (печень, мышцы, жировая ткань), стимулирует синтез гликогена в печени и подавляет глюконеогенез (образование глюкозы из неуглеводных компонентов), гликогенолиз (распад гликогена), что в конечном итоге ведет к снижению уровня сахара в крови. Этот гормон ускоряет транспорт аминокислот через цитоплазматическую мембрану клеток, стимулирует синтез белка. Инсулин участвует в процессе включения жирных кислот в триглицериды жировой ткани, стимулирует синтез липидов и подавляет липолиз (распад жира).

В регуляции синтеза белка и утилизации углеводов вместе с инсулином участвуют кальций и магний. Концентрация инсулина в крови человека 15-20 мкЕД/мл.

Глюкогон - полипептид, секреция которого регулируется глюкозой, аминокислотами, гастроинтестинальными гормонами (панклеозимин) и симпатической нервной системой. Секреция глюкогона усиливается при снижении в крови сахара, СЖК, раздражении симпатической нервной системы, а угнетается при гипергликемии, повышении уровня СЖК, соматостатина. Под влиянием глюкогона стимулируется глюконеогенез, ускоряется распад гликогена, т. е. увеличивается продукция глюкозы. Под действием глюкогона ускоряется синтез активной формы фосфорилазы, участвующей в образовании глюкозы из неуглеводных компонентов (глюконеогенез). Глюкогон способен связываться с рецепторами адипацитов (клеток жировой ткани), способствуя распаду триглицеридов с образованием глицерина и СЖК. Глюконеогенез сопровождается не только образованием глюкозы, но и промежуточных продуктов обмена веществ - кетоновых тел, развитием кетоацидоза. Содержание в плазме крови глюкогона у человека составляет 50-70пг/мл. Концентрация этого гормона в крови увеличивается при голодании (голодный кетоз у овец), хронических заболеваниях печени.

Соматостатин - гормон, основной синтез которого осуществляется в гипоталамусе, а также в D-клетках поджелудочной железы. Соматостатин подавляет секрецию СТГ, АКТГ, ТТГ, гастрина, глюкогона, инсулина, ренина, секретина, вазоактивного желудочного пептида, желудочного сока, панкреатических ферментов и электролитов. Содержание соматостатина в крови повышается при сахарном диабете I типа, D-клеточной опухоли поджелудочной железы (соматостатиноме). Говоря о гормонах поджелудочной железы, следует отметить, что энергетический баланс в организме поддерживается сплошными биохимическими процессами, в которых непосредственное участие принимают инсулин, глюкогон и частично соматостатин. Так, во время голодания уровень в крови инсулина снижается, а глюкогона повышается, усиливается глюконеогенез. Благодаря этому поддерживается минимальный уровень глюкозы в крови. Усиление липолиза сопровождается повышением в крови СЖК, которые используются сердечной и другими мышцами, печенью, почками в качестве энергетического материала. В условиях гипогликемии источником энергии становятся и кетокислоты.

Нейроэндокринная регуляция функции поджелудочной железы. Деятельность поджелудочной железы находится под влиянием парасимпатической (n. vagus) и симпатической (чревные нервы) нервной системы, гипоталамогипофизарной системы и других желез внутренней секреции. В частности, блуждающий нерв играет определенную роль в регуляции ферментообразования. Секреторные волокна входят также в состав симпатических нервов, иннервирующих поджелудочную железу. При стимуляции отдельных волокон блуждающего нерва с усилением сокоотделения происходит и его торможение. Основоположником отечественной физиологии И. П. Павловым доказано, что отделение поджелудочного сока начинается при виде корма или раздражении рецепторов полости рта и глотки. Этот феномен необходимо учитывать в случаях назначения голодной диеты при остром панкреатите у собак, кошек и других животных, не допуская их зрительного и обонятельного контакта с кормом.

Наряду с нервной происходит и гуморальная регуляция функции поджелудочной железы. Поступление соляной кислоты в двенадцатиперстную кишку вызывает секрецию поджелудочного сока даже после перерезки блуждающих и чревных (симпатических) нервов и разрушения продолговатого мозга. Это положение лежит в основе назначения медикаментов, снижающих секрецию поджелудочного сока при остром панкреатите. Под влиянием соляной кислоты желудочного сока, поступающего в кишечник, из клеток слизистой оболочки тонкой кишки выделяется просекретин. Соляная кислота активирует просекретин, превращая его в секретин. Всасываясь в кровь, секретин действует на поджелудочную железу, усиливая выделение ею сока: одновременно он тормозит функцию обкладочных желез, чем препятствует чрезмерно интенсивной секреции соляной кислоты железами желудка. Секретин в физиологическом отношении является гормоном. Под влиянием секретина образуется большое количество поджелудочного сока, бедного ферментами и богатого щелочами. Учитывая эту физиологическую особенность, лечение острого панкреатита направлено на снижение секреции соляной кислоты в желудке, подавление активности секретина.

В слизистой оболочке двенадцатиперстной кишки образуется также гормон панкреозимин, который усиливает образование ферментов в поджелудочном соке. Подобное действие оказывают гастрин (образуется в желудке), инсулин, соли желчных кислот.

Тормозящее влияние на секрецию панкреатического сока оказывают нейропептиды - гастроингибирующий полипептид (ГИП), панкреатический полипептид (ПП), вазоактивный интерстинальный полипептид (ВИП), а также гормон соматостатин.

При лечении плотоядных животных с нарушением внешнесекреторной функции поджелудочной железы необходимо иметь в виду, что на молоко выделяется мало сока, на мясо, черный хлеб - много. При кормлении мясом выделяется много трипсина, при кормлении молоком - много липазы и трипсина.