Open
Close

Строение органов человека. Клеточное строение организма

Биология (от греческих слов bios – жизнь, logos – учение) – это наука, изучающая живые организмы и явления живой природы.

Предметом изучения биологии является многообразие живых организмов, населяющих Землю.

Свойства живой природы. Все живые организмы обладают рядом общих признаков и свойств, которые отличают их от тел неживой природы. Это особенности строения, обмен веществ, движение, рост, размножение, раздражимость, саморегуляция. Остановимся на каждом из перечисленных свойств живой материи.

Высокоупорядоченное строение. Живые организмы состоят из химических веществ, которые имеют более высокий уровень организации, чем вещества неживой природы. Все организмы имеют определенный план строения – клеточный или неклеточный (вирусы).

Обмен веществ и энергии – это совокупность процессов дыхания, питания, выделения, посредством которых организм получает из внешней среды необходимые ему вещества и энергию, преобразует и накапливает их в своем организме и выделяет в окружающую среду продукты жизнедеятельности.

Раздражимость – это ответная реакция организма на изменения окружающей среды, помогающая ему адаптироваться и выжить в изменяющихся условиях. При уколе иглой человек отдергивает руку, а гидра сжимается в комочек. Растения поворачиваются к свету, а амеба удаляется от кристаллика поваренной соли.

Рост и развитие. Живые организмы растут, увеличиваются в размерах, развиваются, изменяются благодаря поступлению питательных веществ.

Размножение – способность живого к самовоспроизведению. Размножение связано с явлением передачи наследственной информации и является самым характерным признаком живого. Жизнь любого организма ограничена, но в результате размножения живая материя «бессмертна».

Движение. Организмы способны к более или менее активному движению. Это один из ярких признаков живого. Движение происходит и внутри организма, и на уровне клетки.

Саморегуляция. Одним из самых характерных свойств живого является постоянство внутренней среды организма при изменяющихся внешних условиях. Регулируются температура тела, давление, насыщенность газами, концентрация веществ и т. д. Явление саморегуляции осуществляется не только на уровне всего организма, но и на уровне клетки. Кроме того, благодаря деятельности живых организмов саморегуляция присуща и биосфере в целом. Саморегуляция связана с такими свойствами живого, как наследственность и изменчивость.

Наследственность – это способность передавать признаки и свойства организма из поколения в поколение в процессе размножения.

Изменчивость – это способность организма изменять свои признаки при взаимодействии со средой.

В результате наследственности и изменчивости живые организмы приспосабливаются, адаптируются к внешним условиям, что позволяет им выжить и оставить потомство.

§ 44. Строение клетки

Большинство живых организмов имеет клеточное строение. Клетка – это структурная и функциональная единица живого. Для нее характерны все признаки и функции живых организмов: обмен веществ и энергии, рост, размножение, саморегуляция. Клетки различны по форме, размеру, функциям, типу обмена веществ (рис. 47).

Рис. 47. Разнообразие клеток: 1 – эвглена зеленая; 2 – бактерия; 3 – растительная клетка мякоти листа; 4 – эпителиальная клетка; 5 – нервная клетка


Размеры клеток варьируют от 3-10 до 100 мкм (1 мкм = 0,001 м). Реже встречаются клетки размером менее 1–3 мкм. Существуют также и клетки-гиганты, размеры которых достигают нескольких сантиметров. По форме клетки также весьма разнообразны: шаровидные, цилиндрические, овальные, веретеновидные, звездчатые и т. д. Однако между всеми клетками много общего. Они имеют одинаковый химический состав и общий план строения.

Химический состав клетки. Из всех известных химических элементов в живых организмах встречаются около 20, причем на долю 4 из них: кислорода, углерода, водорода и азота – приходится до 95 %. Эти элементы называют элементами-биогенами. Из неорганических веществ, входящих в состав живых организмов, наибольшее значение имеет вода. Ее содержание в клетке колеблется от 60 до 98 %. Кроме воды в клетке находятся и минеральные вещества, в основном в виде ионов. Это соединения железа, иода, хлора, фосфора, кальция, натрия, калия и т. д.

Кроме неорганических веществ в клетке присутствуют и органические вещества: белки, липиды (жиры), углеводы (сахара), нуклеиновые кислоты (ДНК, РНК). Они составляют основную массу клетки. Наиболее важными органическими веществами являются нуклеиновые кислоты и белки. Нуклеиновые кислоты (ДНК и РНК) участвуют в передаче наследственной информации, синтезе белков, регуляции всех процессов жизнедеятельности клетки.

Белки выполняют целый ряд функций: строительную, регуляторную, транспортную, сократительную, защитную, энергетическую. Но самой важной является ферментативная функция белков.

Ферменты – это биологические катализаторы, ускоряющие и регулирующие все многообразие химических реакций, протекающих в живых организмах. Ни одна реакция в живой клетке не протекает без участия ферментов.

Липиды и углеводы выполняют в основном строительную и энергетическую функции, являются запасными питательными веществами организма.

Так, фосфолипиды вместе с белками строят все мембранные структуры клетки. Высокомолекулярный углевод – целлюлоза образует клеточную оболочку растений и грибов.

Жиры, крахмал и гликоген являются запасными питательными веществами клетки и организма в целом. Глюкоза, фруктоза, сахароза и другие сахара входят в состав корней и листьев, плодов растений. Глюкоза является обязательным компонентом плазмы крови человека и многих животных. При расщеплении углеводов и жиров в организме выделяется большое количество энергии, необходимой для процессов жизнедеятельности.

Клеточные структуры. Клетка состоит из наружной клеточной мембраны, цитоплазмы с органеллами и ядра (рис. 48).




Рис. 48. Комбинированная схема строения животной (А) и растительной (Б) клетки: 1 – оболочка; 2 – наружная клеточная мембрана; 3 – ядро; 4 – хроматин; 5 – ядрышко; 6 – эндоплазматическая сеть (гладкая и гранулярная); 7 – митохондрии; 8 – хлоропласты; 9 – аппарат Гольджи; 10 – лизосома; 11 – клеточный центр; 12 – рибосомы; 13 – вакуоль; 14 – цитоплазма


Наружная клеточная мембрана – это одномембранная клеточная структура, которая ограничивает живое содержимое клетки всех организмов. Обладая избирательной проницаемостью, она защищает клетку, регулирует поступление веществ и обмен с внешней средой, поддерживает определенную форму клетки. Клетки растительных организмов, грибов, кроме мембраны снаружи имеют еще и оболочку. Эта неживая клеточная структура состоит из целлюлозы у растений и хитина – у грибов, придает прочность клетке, защищает ее, является «скелетом» растений и грибов.

В цитоплазме, полужидком содержимом клетки, находятся все органоиды.

Эндоплазматическая сеть пронизывает цитоплазму, обеспечивая сообщение между отдельными частями клетки и транспорт веществ. Различают гладкую и гранулярную ЭПС. На гранулярной ЭПС находятся рибосомы.

Рибосомы – это мелкие тельца грибовидной формы, на которых идет синтез белка в клетке.

Аппарат Гольджи обеспечивает упаковку и вынос синтезируемых веществ из клетки. Кроме того, из его структур образуются лизосомы. Эти шарообразные тельца содержат ферменты, которые расщепляют поступающие в клетку питательные вещества, обеспечивая внутриклеточное переваривание.

Митохондрии – это полуавтономные мембранные структуры продолговатой формы. Их число в клетках различно и увеличивается в результате деления. Митохондрии – это энергетические станции клетки. В процессе дыхания в них происходит окончательное окисление веществ кислородом воздуха. При этом выделяющаяся энергия запасается в молекулах АТФ, синтез которых происходит в этих структурах.

Хлоропласты, полуавтономные мембранные органеллы, характерны только для растительных клеток. Хлоропласты имеют зеленую окраску за счет пигмента хлорофилла, они обеспечивают процесс фотосинтеза.

Кроме хлоропластов растительные клетки имеют и вакуоли, заполненные клеточным соком.

Клеточный центр участвует в процессе деления клетки. Он состоит из двух центриолей и центросферы. Во время деления они образуют нити веретена деления и обеспечивают равномерное распределение хромосом в клетке.

Ядро – это центр регуляции жизнедеятельности клетки. Ядро отделено от цитоплазмы ядерной мембраной, в которой имеются поры. Внутри оно заполнено кариоплазмой, в которой находятся молекулы ДНК, обеспечивающие передачу наследственной информации. Здесь происходит синтез ДНК, РНК, рибосом. Часто в ядре можно увидеть одно или несколько темных округлых образований – это ядрышки. Здесь образуются и скапливаются рибосомы. В ядре молекулы ДНК не видны, так как находятся в виде тонких нитей хроматина. Перед делением ДНК спирализуются, утолщаются, образуют комплексы с белком и превращаются в хорошо заметные структуры – хромосомы (рис. 49). Обычно хромосомы в клетке парные, одинаковые по форме, величине и наследственной информации. Парные хромосомы называются гомологичными. Двойной парный набор хромосом называется диплоидным. В некоторых клетках и организмах содержится одинарный, непарный набор, который называется гаплоидным.



Рис. 49. А– строение хромосомы: 1 – центромера; 2 – плечи хромосомы; 3 – молекулы ДНК; 4 – сестринские хроматиды; Б – виды хромосом: 1 – равноплечная; 2 – разноплечная; 3 – одноплечная


Число хромосом для каждого вида организмов постоянно. Так, в клетках человека 46 хромосом (23 пары), в клетках пшеницы 28 (14 пар), голубя 80 (40 пар). Эти организмы содержат диплоидный набор хромосом. Некоторые организмы, такие, как водоросли, мхи, грибы, имеют гаплоидный набор хромосом. Половые клетки у всех организмов гаплоидны.

Кроме перечисленных, некоторые клетки имеют специфические органоиды – реснички и жгутики, обеспечивающие движение в основном у одноклеточных организмов, но имеются они и у некоторых клеток многоклеточных организмов. Например, жгутики имеются у эвглены зеленой, хламидомонады, некоторых бактерий, а реснички – у инфузорий, клеток ресничного эпителия животных.

§ 45. Особенности жизнедеятельности клетки

Обмен веществ и энергии в клетке. Основой жизнедеятельности клетки являются обмен веществ и превращение энергии. Совокупность химических превращений, протекающих в клетке или организме, связанных между собой и сопровождающихся превращением энергии, называется обменом веществ и энергии.

Синтез органических веществ, сопровождающийся поглощением энергии, называется ассимиляцией или пластическим обменом. Распад, расщепление органических веществ, сопровождающийся выделением энергии, называется диссимиляцией или энергетическим обменом.

Главным источником энергии на Земле является Солнце. Клетки растений специальными структурами в хлоропластах улавливают энергию Солнца, превращая ее в энергию химических связей молекул органических веществ и АТФ.

АТФ (аденозинтрифосфат) – это органическое вещество, универсальный аккумулятор энергии в биологических системах. Солнечная энергия превращается в энергию химических связей этого вещества и расходуется на синтез глюкозы, крахмала и других органических веществ.

Кислород атмосферы, как это ни покажется странным, – побочный продукт процесса жизнедеятельности растений – фотосинтеза.

Процесс синтеза органических веществ из неорганических под действием энергии Солнца называется фотосинтезом.

Обобщенное уравнение фотосинтеза можно представить в следующем виде:

6СО 2 + 6Н 2 О – свет > С 6 Н 12 О 6 + 6О 2 .

В растениях органические вещества создаются в процессе первичного синтеза из углекислого газа, воды и минеральных солей. Животные, грибы, многие бактерии используют готовые органические вещества (из растений). Кроме того, при фотосинтезе образуется кислород, который необходим живым организмам для дыхания.

В процессе питания и дыхания органические вещества расщепляются и окисляются кислородом. Освобождающаяся энергия частично выделяется в виде тепла, а частично вновь запасается в синтезируемых молекулах АТФ. Этот процесс протекает в митохондриях. Конечные продукты распада органических веществ – вода, углекислый газ, соединения аммиака, которые вновь используются в процессе фотосинтеза. Запасенная в АТФ энергия расходуется на вторичный синтез органических веществ, характерных для каждого организма, на рост, размножение.

Итак, растения обеспечивают все организмы не только питательными веществами, но и кислородом. Кроме того, они преобразуют энергию Солнца и передают ее через органические вещества всем другим группам организмов.

§ 46. Типы обмена веществ у организмов

Обмен веществ как основное свойство организмов. Организм находится в сложных взаимоотношениях с окружающей средой. Из нее он получает пищу, воду, кислород, свет, тепло. Создавая посредством этих веществ и энергии массу живого вещества, строит свое тело. Однако, используя эту среду, организм благодаря своей жизнедеятельности одновременно и воздействует на нее, изменяет ее. Следовательно, главным процессом взаимосвязи организма и среды является обмен веществ и энергией.

Типы обмена веществ. Факторы внешней среды имеют различное значение для разных организмов. Растениям для роста и развития необходимы свет, вода и углекислый газ, минеральные вещества. Животным и грибам такие условия недостаточны. Им необходимы питательные органические вещества. По способу питания, источнику получения органических веществ и энергии все организмы делятся на автотрофные и гетеротрофные.

Автотрофные организмы синтезируют органические вещества в процессе фотосинтеза из неорганических (углекислого газа, воды, минеральных солей), используя энергию солнечного света. К ним относятся все растительные организмы, фотосинтезирующие цианобактерии. К автотрофному питанию способны и хемосинтезирующие бактерии, использующие энергию, которая выделяется при окислении неорганических веществ: серы, железа, азота.

Процесс автотрофной ассимиляции осуществляется за счет энергии солнечного света или окисления неорганических веществ, а органические вещества синтезируются при этом из неорганических. В зависимости от поглощения неорганического вещества различают ассимиляцию углерода, ассимиляцию азота, ассимиляцию серы и других минеральных веществ. Автотрофная ассимиляция связана с процессами фотосинтеза и хемосинтеза и носит название первичного синтеза органического вещества.

Гетеротрофные организмы получают готовые органические вещества от автотрофов. Источником энергии для них является энергия, запасенная в органических веществах и выделяющаяся при химических реакциях распада и окисления этих веществ. К ним относятся животные, грибы, многие бактерии.

При гетеротрофной ассимиляции организм поглощает органические вещества в готовом виде и преобразует их в собственные органические вещества за счет энергии, содержащейся в поглощенных веществах. Гетеротрофная ассимиляция включает процессы потребления пищи, переваривания ее, усвоения и синтеза новых органических веществ. Этот процесс носит название вторичного синтеза органических веществ.

Процессы диссимиляции у организмов также различаются. Одним из них для жизнедеятельности необходим кислород – это аэробные организмы. Другим кислород не нужен, и процессы их жизнедеятельности могут протекать в бескислородной среде – это анаэробные организмы.

Различают внешнее дыхание и внутреннее. Газообмен между организмом и внешней средой, включающий в себя поглощение кислорода и выделение углекислого газа, а также транспорт этих веществ по организму к отдельным органам, тканям и клеткам, называется внешним дыханием. В этом процессе кислород не используется, а только транспортируется.

Внутреннее, или клеточное, дыхание включает в себя биохимические процессы, которые приводят к усвоению кислорода, освобождению энергии и образованию воды и углекислого газа. Эти процессы протекают в цитоплазме и митохондриях эукариотных клеток или на специальных мембранах прокариотных клеток.

Обобщенное уравнение процесса дыхания:

C 6 H 12 O 6 + 6O 2 > 6CO 2 + 6H 2 O.

2. Другой формой диссимиляции является анаэробное, или бескислородное, окисление. Процессы энергетического обмена в этом случае протекают по типу брожения. Брожение – это форма диссимиляции, при которой богатые энергией органические вещества расщепляются с освобождением энергии до менее богатых энергией, но тоже органических веществ.

В зависимости от конечных продуктов различают типы брожения: спиртовое, молочнокислое, уксуснокислое и т. д. Спиртовое брожение встречается у дрожжевых грибов, некоторых бактерий, а также протекает в некоторых растительных тканях. Молочнокислое брожение встречается у молочнокислых бактерий, а также протекает в мышечной ткани человека и животных при недостатке кислорода.

Взаимосвязь реакций обмена веществ у автотрофных и гетеротрофных организмов. Через процессы обмена веществ автотрофные и гетеротрофные организмы в природе связаны между собой (рис. 50).




Рис. 50. Поток вещества и энергии в биосфере


Самыми важными группами организмов являются автотрофы, которые способны синтезировать органические вещества из неорганических. Большинство автотрофов – зеленые растения, которые в процессе фотосинтеза превращают неорганический углерод – углекислый газ в сложные органические соединения. Зеленые растения выделяют при фотосинтезе также кислород, который необходим для дыхания живых существ.

Гетеротрофы усваивают только готовые органические вещества, получая энергию при их расщеплении. Автотрофные и гетеротрофные организмы связаны между собой процессами обмена веществ и энергий. Фотосинтез является практически единственным процессом, обеспечивающим организмы питательными веществами и кислородом.

Несмотря на большие масштабы фотосинтеза, зеленые растения Земли используют всего 1 % солнечной энергии, падающей на листья. Одна из важнейших задач биологии – повышение коэффициента использования солнечной энергии культурными растениями, создание продуктивных сортов.

В последние годы особое внимание привлекает к себе одноклеточная водоросль хлорелла, которая содержит в своем теле до 6 % хлорофилла и обладает замечательной способностью усваивать до 20 % солнечной энергии. При искусственном разведении хлорелла быстро размножается, а в ее клетке повышается содержание белка. Этот белок используется в качестве пищевых добавок ко многим продуктам. Установлено, что с 1 га водной поверхности можно получать ежедневно до 700 кг сухого вещества хлореллы. Кроме того, в хлорелле синтезируется большое количество витаминов.

Еще один интерес к хлорелле связан с космическими полетами. Хлорелла в искусственных условиях может обеспечить кислородом, выделяемым при фотосинтезе, космический корабль.

§ 47. Раздражимость и движение организмов

Понятие о раздражимости. Микроорганизмы, растения и животные реагируют на самые разнообразные воздействия окружающей среды: на механические воздействия (укол, давление, удар и т. д.), на изменение температуры, интенсивность и направление световых лучей, на звук, электрические раздражения, изменения в химическом составе воздуха, воды или почвы и т. д. Это приводит к определенным колебаниям организма между стабильным и нестабильным состоянием. Живые организмы способны в меру своего развития анализировать эти состояния и соответствующим образом реагировать на них. Подобные свойства всех организмов называются раздражимостью и возбудимостью.

Раздражимость – это способность организма реагировать на внешние или внутренние воздействия.

Раздражимость возникла у живых организмов как приспособление, обеспечивающее лучший обмен веществ и защиту от воздействий условий среды.

Возбудимость – это способность живых организмов воспринимать воздействия раздражителей и отвечать на них реакцией возбуждения.

Воздействие окружающей среды сказывается на состоянии клетки и ее органелл, тканей, органов и организма в целом. Организм отвечает на это соответствующими реакциями.

Простейшим проявлением раздражимости является движение. Оно характерно даже для самых простейших организмов. Это можно пронаблюдать в опыте над амебой под микроскопом. Если рядом с амебой поместить небольшие комочки пищи или кристаллики сахара, то она начинает активное движение в сторону питательного вещества. С помощью ложноножек амеба обволакивает комочек, вовлекая его внутрь клетки. Там сразу же образуется пищеварительная вакуоль, в которой пища переваривается.

С усложнением строения организма усложняются как обмен веществ, так и проявления раздражимости. У одноклеточных организмов и растений нет специальных органов, обеспечивающих восприятие и передачу раздражений, поступающих из окружающей среды. У многоклеточных животных имеются органы чувств и нервная система, благодаря которым они воспринимают раздражения, а ответы на них достигают большой точности и целесообразности.

Раздражимость у одноклеточных организмов. Таксисы.

Наиболее простые формы раздражимости наблюдаются у микроорганизмов (бактерий, одноклеточных грибов, водорослей, простейших).

В примере с амебой мы наблюдали движение амебы в сторону раздражителя (пища). Такая двигательная реакция одноклеточных организмов в ответ на раздражение из внешней среды называется таксисом. Таксис вызван химическим раздражением, поэтому его называют еще хемотаксисом (рис. 51).



Рис. 51. Хемотаксис у инфузорий


Таксисы могут быть положительными и отрицательными. Поместим пробирку с культурой инфузорий-туфелек в закрытую картонную коробочку с единственным отверстием, расположенным против средней части пробирки, и выставим ее на свет.

Через несколько часов все инфузории сконцентрируются в освещенной части пробирки. Это положительный фототаксис.

Таксисы свойственны многоклеточным животным. Например, лейкоциты крови проявляют положительный хемотаксис по отношению к веществам, выделяемым бактериями, концентрируются в местах скопления этих бактерий, захватывают и переваривают их.

Раздражимость у многоклеточных растений. Тропизмы. Хотя у многоклеточных растений нет органов чувств и нервной системы, тем не менее у них отчетливо проявляются различные формы раздражимости. Они заключаются в изменении направления роста растения или его органов (корня, стебля, листьев). Такие проявления раздражимости у многоклеточных растений называются тропизмами.

Стебель с листьями проявляют положительный фототропизм и растут по направлению к свету, а корень – отрицательный фототропизм (рис. 52). Растения реагируют на гравитационное поле Земли. Обратите внимание на деревья, растущие по склону горы. Хотя поверхность почвы имеет наклон, деревья растут вертикально. Реакция растений на земное притяжение называется геотропизмом (рис. 53). Корешок, который появляется из прорастающего семени, всегда направлен вниз к земле – положительный геотропизм. Побег с листьями, развивающийся из семени, всегда направлен вверх от земли – отрицательный геотропизм.

Тропизмы очень разнообразны и играют большую роль в жизни растений. Они ярко выражены в направлении роста у различных вьющихся и лазающих растений, например винограда, хмеля.



Рис. 52. Фототропизм



Рис. 53. Геотропизм: 1 – цветочный горшок с пря-морастущими проростками редиса; 2 – цветочный горшок, положенный набок и содержащийся в темноте для устранения фототропизма; 3 – проростки в цветочном горшке изогнулись в сторону, противоположную действию силы тяжести (стебли обладают отрицательным геотропизмом)


Помимо тропизмов, у растений наблюдаются движения иного типа – настии. Они отличаются от тропизмов отсутствием определенной ориентировки к вызвавшему их раздражителю. Например, если прикоснуться к листьям стыдливой мимозы, они быстро складываются в продольном направлении и опускаются книзу. Через некоторое время листья снова принимают прежнее положение (рис. 54).



Рис. 54. Настии у стыдливой мимозы: 1 – в нормальном состоянии; 2 – при раздражении


Цветки многих растений реагируют на свет и влажность. Например, у тюльпана на свету цветки раскрываются, а в темноте закрываются. У одуванчика соцветие закрывается в пасмурную погоду и открывается в ясную.

Раздражимость у многоклеточных животных. Рефлексы. В связи с развитием у многоклеточных животных нервной системы, органов чувств и органов движения формы раздражимости усложняются и зависят от тесного взаимодействия этих органов.

В простейшем виде такое раздражение возникает уже у кишечнополостных. Если уколоть иглой пресноводную гидру, то она сожмется в комочек. Внешнее раздражение воспринимает чувствительная клетка. Возникшее в ней возбуждение передается нервной клетке. Нервная клетка передает возбуждение кожно-мышечной клетке, которая реагирует на раздражение сокращением. Этот процесс называется рефлексом (отражением).

Рефлекс – это ответная реакция организма на раздражение, осуществляемая нервной системой.

Представление о рефлексе было высказано еще Декартом. Позднее оно было развито в трудах И. М. Сеченова, И. п. Павлова.

Путь, проходимый нервным возбуждением от воспринимающего раздражение органа до органа, выполняющего ответную реакцию, называется рефлекторной дугой.

У организмов с нервной системой существует два типа рефлексов: безусловные (врожденные) и условные (приобретенные). Условные рефлексы формируются на базе безусловных.

Любое раздражение вызывает изменение обмена веществ в клетках, что приводит к возникновению возбуждения и возникает ответная реакция.

§ 48. Жизненный цикл клетки

Период жизнедеятельности клетки, в котором происходят все процессы обмена веществ, называется жизненным циклом клетки.

Клеточный цикл состоит из интерфазы и деления.

Интерфаза – это период между двумя делениями клетки. Она характеризуется активными процессами обмена веществ, синтезом белка, РНК, накоплением питательных веществ клеткой, ростом и увеличением объема. К концу интерфазы происходит удвоение ДНК (репликация). В результате каждая хромосома содержит две молекулы ДНК и состоит из двух сестринских хроматид. Клетка готова к делению.

Деление клетки. Способность к делению – это важнейшее свойство клеточной жизнедеятельности. Механизм самовоспроизведения срабатывает уже на клеточном уровне. Наиболее распространенным способом деления клетки является митоз (рис. 55).



Рис. 55. Интерфаза (А) и фазы митоза (Б): 1 – профаза; 2 – метафаза; 3 – анафаза; 4 – телофаза

Митоз – это процесс образования двух дочерних клеток, идентичных исходной материнской клетке.

Митоз состоит из четырех последовательных фаз, обеспечивающих равномерное распределение генетической информации и органелл между двумя дочерними клетками.

1. В профазе ядерная мембрана исчезает, хромосомы максимально спирализуются, становятся хорошо заметными. Каждая хромосома состоит из двух сестринских хроматид. Центриоли клеточного центра расходятся к полюсам и образуют веретено деления.

2. В метафазе хромосомы располагаются в экваториальной зоне, нити веретена деления соединены с центромерами хромосом.

3. Анафаза характеризуется расхождением сестринских хроматид-хромосом к полюсам клетки. У каждого полюса оказывается столько же хромосом, сколько их было в исходной клетке.

4. В телофазе происходит деление цитоплазмы и органоидов, в центре клетки образуется перегородка из клеточной мембраны и возникают две новые дочерние клетки.

Весь процесс деления длится от нескольких минут до 3 ч в зависимости от типа клеток и организма. Стадия деления клетки по времени в несколько раз короче ее интерфазы. Биологический смысл митоза заключается в обеспечении постоянства числа хромосом и наследственной информации, полной идентичности исходных и вновь возникающих клеток.

§ 49. Формы размножения организмов

В природе существует два типа размножения организмов: бесполое и половое.

Бесполое размножение – это образование нового организма из одной клетки или группы клеток исходного материнского организма. В этом случае в размножении участвует только одна родительская особь, которая передает свою наследственную информацию дочерним особям.

В основе бесполого размножения лежит митоз. Существует несколько форм бесполого размножения.

Простое деление, или деление надвое, характерно для одноклеточных организмов. Из одной клетки путем митоза образуются две дочерние клетки, каждая из которых становится новым организмом.

Почкование – это форма бесполого размножения, при которой от родительской особи отделяется дочерний организм. Такая форма характерна для дрожжей, гидры и некоторых других животных.

У споровых растений (водорослей, мхов, папоротников) размножение происходит с помощью спор, специальных клеток, образующихся в материнском организме. Каждая спора, прорастая, дает начало новому организму.

Вегетативное размножение – это размножение отдельными органами, частями органов или тела. Оно основано на способности организмов восстанавливать недостающие части тела – регенерации. Встречается у растений (размножение стеблями, листьями, побегами), у низших беспозвоночных животных (кишечнополостных, плоских и кольчатых червей).

Половое размножение – это образование нового организма при участии двух родительских особей. Новый организм несет наследственную информацию от обоих родителей.

При половом размножении происходит слияние половых клеток – гамет мужского и женского организма. Половые клетки формируются в результате особого типа деления. В этом случае, в отличие от клеток взрослого организма, которые несут диплоидный (двойной) набор хромосом, образующиеся гаметы имеют гаплоидный (одинарный) набор. В результате оплодотворения парный, диплоидный набор хромосом восстанавливается. Одна хромосома из пары является отцовской, а другая – материнской. Гаметы образуются в половых железах или в специализированных клетках в процессе мейоза.

Мейоз – это такое деление клетки, при котором хромосомный набор клетки уменьшается вдвое (рис. 56). Такое деление называется редукционным.


Рис. 56. Фазы мейоза: А – первое деление; Б – второе деление. 1, 2 – профаза I; 3 – метафаза I; 4 – анафаза I; 5 – телофаза I; 6 – профаза II; 7 – метафаза II; 8 – анафаза II; 9 – телофаза II


Для мейоза характерны те же стадии, что и для митоза, но процесс состоит из двух последовательных делений (мейоз I и мейоз II). В результате образуется не две, а четыре клетки. Биологический смысл мейоза заключается в обеспечении постоянства числа хромосом у вновь образующихся организмов при оплодотворении. Женская половая клеткаяйцеклетка, всегда крупная, содержит много питательных веществ, часто неподвижная.

Мужские половые клетки – сперматозоиды, мелкие, часто подвижные, имеют жгутики, их образуется значительно больше, чем яйцеклеток. У семенных растений мужские гаметы неподвижны и называются спермиями.

Оплодотворение – процесс слияния мужских и женских половых клеток, в результате которого образуется зигота.

Из зиготы развивается зародыш, который дает начало новому организму.

Оплодотворение бывает наружным и внутренним. Наружное оплодотворение характерно для обитателей вод. Половые клетки выходят во внешнюю среду и сливаются вне организма (рыбы, земноводные, водоросли). Внутреннее оплодотворение характерно для наземных организмов. Оплодотворение происходит в женских половых органах. Зародыш может развиваться как в теле материнского организма (млекопитающие), так и вне его – в яйце (птицы, пресмыкающиеся, насекомые).

Биологическое значение оплодотворения состоит в том, что при слиянии гамет восстанавливается диплоидный набор хромосом, а новый организм несет наследственную информацию и признаки двух родителей. Это увеличивает разнообразие признаков организмов, повышает их жизнестойкость.

Наука, изучающая строение и функции клеток, называется цитология .

Клетка - элементарная структурная и функциональная единица живого.

Клетки, несмотря на свои малые размеры, устроены очень сложно. Внутреннее полужидкое содержимое клетки получило название цитоплазмы .

Цитоплазма является внутренней средой клетки, где проходят различные процессы и расположены компоненты клетки - органеллы (органоиды).

Клеточное ядро

Клеточное ядро - это важнейшая часть клетки.
От цитоплазмы ядро отделено оболочкой, состоящей из двух мембран. В оболочке ядра имеются многочисленные поры для того, чтобы различные вещества могли попадать из цитоплазмы в ядро, и наоборот.
Внутреннее содержимое ядра получило название кариоплазмы или ядерного сока . В ядерном соке расположены хроматин и ядрышко .
Хроматин представляет собой нити ДНК. Если клетка начинает делиться, то нити хроматина плотно накручиваются спиралью на особые белки, как нитки на катушку. Такие плотные образования хорошо видны в микроскоп и называются хромосомами .

Ядро содержит генетическую информацию и управляет жизнедеятельностью клетки.

Ядрышко представляет собой плотное округлое тело внутри ядра. Обычно в ядре клетки бывает от одного до семи ядрышек. Они хорошо видны между делениями клетки, а во время деления - разрушаются.

Функция ядрышек - синтез РНК и белков, из которых формируются особые органоиды - рибосомы .
Рибосомы участвуют в биосинтезе белка. В цитоплазме рибосомы чаще всего расположены на шероховатой эндоплазматической сети . Реже они свободно взвешены в цитоплазме клетки.

Эндоплазматическая сеть (ЭПС) участвует в синтезе белков клетки и транспортировке веществ внутри клетки.

Значительная часть синтезируемых клеткой веществ (белков, жиров, углеводов) не расходуется сразу, а по каналам ЭПС поступает для хранения в особые полости, уложенные своеобразными стопками, “цистернами”, и отграниченные от цитоплазмы мембраной. Эти полости получили название аппарат (комплекс) Гольджи . Чаще всего цистерны аппарата Гольджи расположены вблизи от ядра клетки.
Аппарат Гольджи принимает участие в преобразовании белков клетки и синтезирует лизосомы - пищеварительные органеллы клетки.
Лизосомы представляют собой пищеварительные ферменты, “упаковываются” в мембранные пузырьки, отпочковываются и разносятся по цитоплазме.
В комплексе Гольджи также накапливаются вещества, которые клетка синтезирует для нужд всего организма и которые выводятся из клетки наружу.

Митохондрии - энергетические органоиды клеток. Они преобразуют питательные вещества в энергию (АТФ), участвуют в дыхании клетки.

Митохондрии покрыты двумя мембранами: наружная мембрана гладкая, а внутренняя имеет многочисленные складки и выступы - кристы.

Плазматическая мембрана

Чтобы клетка представляла собой единую систему, необходимо, чтобы все ее части (цитоплазма, ядро, органоиды) удерживались вместе. Для этого в процессе эволюции развилась плазматическая мембрана , которая, окружая каждую клетку, отделяет ее от внешней среды. Наружная мембрана защищает внутреннее содержимое клетки - цитоплазму и ядро - от повреждений, поддерживает постоянную форму клетки, обеспечивает связь клеток между собой, избирательно пропускает внутрь клетки необходимые вещества и выводит из клетки продукты обмена.

Строение мембраны одинаково у всех клеток. Основу мембраны составляет двойной слой молекул липидов, в котором расположены многочисленные молекулы белков. Некоторые белки находятся на поверхности липидного слоя, другие - пронизывают оба слоя липидов насквозь.

Специальные белки образуют тончайшие каналы, по которым внутрь клетки или из нее могут проходить ионы калия, натрия, кальция и некоторые другие ионы, имеющие маленький диаметр. Однако более крупные частицы (молекулы пищевых веществ - белки, углеводы, липиды) через мембранные каналы пройти не могут и попадают в клетку при помощи фагоцитоза или пиноцитоза:

  • В том месте, где пищевая частица прикасается к наружной мембране клетки, образуется впячивание, и частица попадает внутрь клетки, окруженная мембраной. Этот процесс называется фагоцитозом (клетки растений поверх наружной клеточной мембраны покрыты плотным слоем клетчатки (клеточной оболочкой) и не могут захватывать вещества при помощи фагоцитоза).
  • Пиноцитоз отличается от фагоцитоза лишь тем, что в этом случае впячивание наружной мембраны захватывает не твердые частицы, а капельки жидкости с растворенными в ней веществами. Это один из основных механизмов проникновения веществ в клетку.

Разработки уроков (конспекты уроков)

Презентации к урокам

Основное общее образование

Линия УМК В. В. Пасечника. Биология (5-9)

Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

Победитель конкурса "Электронный учебник на уроке".

Цель: обобщить и систематизировать знания о строении растительной клетки и протекающих в ней жизненно важных процессах.

Планируемые результаты:

  • личностные: формирование коммуникативной компетентности в общении с учащимися и учителем в процессе образовательной деятельности;
  • метапредметные: умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности, оценивать результаты деятельности;
  • коммуникативные: умение работать в группе;
  • регулятивные: умение высказывать предположение и его доказывать;
  • познавательные: выбирать основания для сравнения, построения логической цепочки
  • предметные: выявления отличительных признаков грибов, сравнение биологических объектов, умение делать выводы.

Вид урока: обобщающий урок.

Оснащенность урока: таблицы “Растительная клетка”, “Митоз”, конверты с заданиями, микроскопы, чашки Петри с кусочками репчатого лука, предметные и покровные стекла, препаровальные иглы, пипетки, стаканы с водой, салфетки. Задания в конвертах.

Используемые на уроке ЭФУ: электронное приложение к учебнику Биология. Бактерии, грибы, растения В.В.Пасечник Издательство “Дрофа”.

Вид используемых на уроке средств ИКТ: компьютер, проектор, экран. ноутбук учителя, ноутбуки для учащихся (20 шт). Наушники (для работы со звуковыми источниками информации). Мультимедиа презентация.

Кабинет подготовлен для работы обучающихся в трех группах. Распределение по группам происходит независимо. Жетоны трех цветов по количеству обучающихся. Обучающиеся вытаскивают жетон определенного цвета и объединяются по цвету, формируя три группы.

Ход урока

Организационный этап. Приветствие

Постановка проблемы

У: Разгадав головоломку, вы узнаете тему урока.

КОП ПРО НЗВ ВЛТ БСО ИКР ЛАЕ ЮДН ГХИ ТНЕ

Актуализация знаний

У : Клетка – это структурная и функциональная единица всех живых организмов. Кроме того, клетка и сама живая. Все живые организмы представляют собой или одну свободноживущую клетку, или объединение какого-то количества клеток. Слайд №2

?: Вспомните, какими свойствами обладают все живые организмы?..

О: Питание, дыхание, выделение, рост и развитие, обмен веществ и энергии и др.

У : Клетка фактически является самовоспроизводящейся химической системой. Она физически отделена от своего окружения, но обладает способностью обмена с этим окружением, т. е. способна поглощать вещества, которые необходимы ей в качестве “пищи” и выводить наружу накопившиеся “отходы”. Клетки способны размножаться при помощи деления.

?: Поставьте цель урока

О: Повторить, закрепить знания, полученные при изучении темы: “Клеточное строение организмов”.

У: Какие вопросы мы должны повторить?

О: Строение клетки, процессы жизнедеятельности в клетке.

Основной этап. Обобщение и систематизация

У : Вы поделены на три группы. Выберите капитана в своей группе. Приглашаются капитаны для получения конвертов с заданиями. Подготовка длится в течение 7 минут.

Деятельность обучающихся: внутри каждой группы распределяют роли для выполнения задания и защиты своего проекта. Изучают материал, анализируют информацию, делают записи в тетрадях. Готовят отчет работы группы.

  • I группа “Строение растительной клетки”. Пользуясь информацией электронного учебника и используя интерактивный режим составить “портрет клетки” (интерактивный контент стр. 36; рис. 20 “Строение растительной клетки”).
  1. Систематизируйте знания о строении и функции органоидов для этого наведите мышкой на курсор на название каждого из элементов ее строения и кликните мышкой.
  2. Приготовьте микропрепарат кожицы чешуи лука и рассмотрите его под микроскопом. Слайд №3
  • II группа “Устройство микроскопа и правила работы с ним” (интерактивный контент стр. 32-33; рис. 17 “Световой микроскоп”).
  1. Перетяните с помощью мыши названия элементов строения светового микроскопа.
  2. Перетяните с помощью мыши увеличение, которое дает соответствующая комбинация “Объектив – окуляр”. Слайд №4
  • III группа “Жизнедеятельность клетки. Деление и рост клеток” (интерактивный контент стр. 44; рис. 24 “Взаимодействие соседних клеток”).
  1. Используя интерактивный режим, обобщите знания о значении движения цитоплазмы в клетке.
  2. Используя интерактивный режим, обобщите знания о делении клетки. Слайд №5

Каждая группа, выполняя задание, использует разные источники информации: электронное приложение к учебнику, текст и рисунки учебника, презентация к уроку. Формы: фронтальная, групповая, индивидуальная. Методы: словесные (рассказ, беседа); наглядные (демонстрация таблиц и слайдов); практические (поиск информации из разных источников, мини-проект); дедуктивные (анализ, обобщение). Учащиеся по окончании работы представляют результаты работы группы.

После ответов на вопросы, учащиеся получают другие задания. Самым активным учащимся учитель предлагает пересесть за другой стол. Они получают задание по сложнее – прочитать текст, озаглавить его и вставить пропущенные слова (в тексте сейчас они выделены курсивом).

Задания повышенной трудности

Вставь пропущенные термины:

... – структурная и функциональная единица всех живых организмов. Все клетки друг от друга отделены клеточной.... На внешней стороне, которой находится особая плотная оболочка, состоящая из.... .Живое содержимое клетки представлено.... – бесцветным вязким полупрозрачным веществом. В цитоплазме располагаются многочисленные.... Важнейшим органоидом клетки является... . Оно хранит наследственную информацию, регулирует процессы обмена внутри клетки. В ядре находится одно или несколько... . В растительной клетке имеется три вида... . ... имеют зеленую окраску, ... красную, а... – белую. В старых клетках хорошо заметны полости, содержащие клеточный сок. Эти образования называются... .

Правильный ответ: Клетка – структурная и функциональная единица всех живых организмов. Все клетки друг от друга отделены клеточной оболочкой. На внешней стороне, которой находится особая плотная оболочка, состоящая из клетчатки . Живое содержимое клетки представлено цитоплазмой бесцветным вязким полупрозрачным веществом. В цитоплазме располагаются многочисленные органоиды . Важнейшим органоидом клетки является ядро . Оно хранит наследственную информацию, регулирует процессы обмена внутри клетки. В ядре находится одно или несколько ядрышек . В растительной клетке имеется три вида пластид . Хлоропласты имеют зеленую окраску, хромопласты красную, а лейкопласты – белую. В старых клетках хорошо заметны полости, содержащие клеточный сок. Эти образования называются (вакуоли ).

Остальные обучающиеся рисуют общую схему строения клетки, обозначив все ее части, пользуясь цветными карандашами.

У: К сожалению клетки, как и все живое, гибнут. Наши тела тоже состоят из клеток. Особенно разрушительно действуют на клетки организма курение табака и употребление алкоголя.

Табачный дым содержит ядовитые вещества, например никотин, бензопирен, которые губят клетки и способствуют развитию злокачественных опухолей.

Подведение итогов

Мы повторили сегодня с вами особенности строения и жизнедеятельность растительной клетки. Какой же вывод можно сделать в конце нашего урока? Слайд №6

О: Клетка – элементарная живая система, основа строения и жизнедеятельности всех живых организмов. Несмотря на великое разнообразие растительных и животных клеток все клетки имеют одинаковые части клеточную оболочку, цитоплазму и ядро. Во всех клетках протекают сходные процессы жизнедеятельности: питание, дыхание, рост, развитие, размножение, обмен веществ. Слайд №7

Учащиеся подходят с жетонами и получают оценки.

Домашнее задание на выбор учащегося:

  • Создать модель растительной клетки, используя разные материалы (пластилин, цветную бумагу и т.д.)
  • Составить рассказ-сказку о жизни растительной клетки
  • Подготовить сообщение об открытии Р.Гука
  • Посети школьную лабораторию и приготовь “исторический” препарат Р.Гука*

Используемая литература:

  • А.А.Калинина. Поурочные разработки по биологии. 6(7) класс.– М.: Вако, 2005.

Все живые существа и организмы на состоят из клеток: растения, грибы, бактерии, животные, люди. Несмотря на минимальный размер, все функции целого организма выполняет клетка. Внутри нее протекают сложные процессы, от которых зависит жизнеспособность тела и работа его органов.

Вконтакте

Структурные особенности

Учёные занимаются изучением особенности строения клетки и принципов ее работы. Детально рассмотреть особенности структуры клетки можно только при помощи мощного микроскопа.

Все наши ткани — кожные покровы, кости, внутренние органы состоят из клеток, которые являются строительным материалом , бывают разных форм и размеров, каждая разновидность выполняет определённую функцию, но основные особенности их строения сходны.

Сначала выясним, что лежит в основе структурной организации клеток . В ходе проведенных исследований ученые установили, что клеточным фундаментом является мембранный принцип. Получается, что все клетки образованы из мембран, которые состоят из двойного слоя фосфолипидов, куда с наружной и внутренней стороны погружены молекулы белков.

Какое свойство характерно для всех типов клеток: одинаковое строение, а также функционал — регулирование процесса обмена веществ, использование собственного генетического материала (наличие и РНК ), получение и расход энергии.

В основе структурной организации клетки выделяются следующие элементы, выполняющие определенную функцию:

  • мембрана клеточная оболочка, состоит из жиров и протеинов. Ее основная задача – отделять вещества, находящиеся внутри, от внешней среды. Структуру имеет полупроницаемую: способна пропускать и оксид углерода;
  • ядро – центральная область и главный компонент, отделяется от других элементов мембраной. Именно внутри ядра находится информация о росте и развитии, генетический материал, представленный в виде молекул ДНК, входящих в состав ;
  • цитоплазма — это жидкая субстанция, образующая внутреннюю среду, где происходят разнообразные жизненно важные процессы, содержит в себе очень много важных компонентов.

Из чего состоит клеточное содержимое, каковы функции цитоплазмы и ее основных компонентов:

  1. Рибосома — важнейший органоид, который необходим для процессов биосинтеза белков из аминокислот, белки выполняют огромное количество жизненно важных задач.
  2. Митохондрии – ещё один компонент, находящийся внутри цитоплазмы. Его можно описать одним словосочетанием – энергетический источник. Их функция заключается в обеспечении компонентов питанием для дальнейшего производства энергии.
  3. Аппарат Гольджи состоит из 5 – 8 мешочков, которые соединены между собой. Основная задача этого аппарата – передача протеинов в другие части клетки для обеспечения энергетического потенциала.
  4. Очистку от повреждённых элементов производят лизосомы .
  5. Транспортировкой занимается эндоплазматическая сеть, по которой белки перемещают молекулы полезных веществ.
  6. Центриоли отвечают за воспроизводство.

Ядро

Поскольку — клеточный центр, поэтому следует уделить его строению и функциям особое внимание. Данный компонент является важнейшим элементом для всех клеток: содержит наследственные признаки. Без ядра стали бы невозможными процессы размножения и передачи генетической информации . Посмотрите на рисунок, изображающий строение ядра.

  • Ядерная оболочка, которая выделена сиреневым цветом, пропускает внутрь нужные веществам и выпускает обратно через поры — маленькие отверстия.
  • Плазма представляет собой вязкую субстанцию, в ней находятся все остальные ядерные компоненты.
  • ядро размещается в самом центре, имеет форму сферы. Его главная функция – образование новых рибосом.
  • Если рассмотреть центральную часть клетки в разрезе, то можно увидеть малозаметные синие переплетения — хроматин, главное вещество, который состоит из комплекса белков и длинных нитей ДНК, несущих в себе необходимую информацию.

Клеточная мембрана

Давайте подробнее рассмотрим работу, строение и функции этого компонента. Ниже представлена таблица, наглядно показывающая важность внешней оболочки.

Хлоропласты

Это ещё один наиважнейший компонент. Но почему о хлоропластах не было упомянуто раньше, спросите вы. Да потому, что этот компонент содержится только в клетках растений. Главное различие между животными и растениями заключается в способе питания: у животных оно гетеротрофное, а у растений автотрофное. Это означает, что животные не способны создавать, то есть синтезировать органические вещества из неорганических – они питаются готовыми органическими веществами. Растения же, напротив, способны осуществлять процесс фотосинтеза и содержат особые компоненты — хлоропласты. Это пластиды зеленого оттенка, содержащие вещество хлорофилл. С его участием энергия света преобразуется в энергию химических связей органических веществ.

Интересно! Хлоропласты в большом объеме сосредоточены главным образом в надземной части растений — зелёных плодах и листьях.

Если вам зададут вопрос: назовите важную особенность строения органических соединений клетки, то ответ можно дать следующий.

  • многие из них содержат атомы углерода, которые обладают различными химическими и физическими свойствами, а также способны соединяться друг с другом;
  • являются носителями, активными участниками разнообразных процессов, протекающих в организмах, либо являются их продуктами. Имеются ввиду гормоны, разные ферменты, витамины;
  • могут образовывать цепи и кольца, что обеспечивает многообразие соединений;
  • разрушаются при нагревании и взаимодействии с кислородом;
  • атомы в составе молекул объединяются друг с другом с помощью ковалентных связей, не разлагаются на ионы и потому медленно взаимодействуют, реакции между веществами протекают очень долго — по нескольку часов и даже дней.

Строение хлоропласт

Ткани

Клетки могут существовать по одной, как в одноклеточных организмах, но чаще всего они объединяются в группы себе подобных и образуют различные тканевые структуры, из которых и состоит организм. В теле человека существует несколько видов тканей:

  • эпителиальная – сосредоточена на поверхности кожных покровов, органов, элементов пищеварительного тракта и дыхательной системы;
  • мышечная — мы двигаемся благодаря сокращению мышц нашего тела, осуществляем разнообразные движения: от простейшего шевеления мизинцем, до скоростного бега. Кстати, биение сердца тоже происходит за счёт сокращения мышечной ткани;
  • соединительная ткань составляет до 80 процентов массы всех органов и играет защитную и опорную роль;
  • нервная — образует нервные волокна. Благодаря ей по организму проходят различные импульсы.

Процесс воспроизводства

На протяжении всей жизни организма происходит митоз – так называют процесс деления, состоящий из четырёх стадий:

  1. Профаза . Две центриоли клетки делятся и направляются в противоположные стороны. Одновременно с этим хромосомы образуют пары, а оболочка ядра начинает разрушаться.
  2. Вторая стадия получила название метафазы . Хромосомы располагаются между центриолями, постепенно внешняя оболочка ядра полностью исчезает.
  3. Анафаза является третьей стадией, на протяжении которой продолжается движение центриолей в противоположном друг от друга направлении, а отдельные хромосомы также следуют за центриолями и отодвигаются друг от друга. Начинает сжиматься цитоплазма и вся клетка.
  4. Телофаза – окончательная стадия. Цитоплазма сжимается до тех пор, пока не появятся две одинаковые новые клетки. Формируется новая мембрана вокруг хромосом и появляется одна пара центриолей у каждой новой клетки.

Интересно! Клетки у эпителия делятся быстрее, чем у костной ткани. Все зависит от плотности тканей и других характеристик. Средняя продолжительность жизни основных структурных единиц составляет 10 дней.

Строение клетки. Строение и функции клетки. Жизнь клетки.

Вывод

Вы узнали каково строение клетки — самой важной составляющей организма. Миллиарды клеток составляют удивительно мудро организованную систему, которая обеспечивает работоспособность и жизнедеятельность всех представителей животного и растительного мира.

Клетка — это основная структурная и функциональная единица всех живых организмов, кроме вирусов. Она имеет специфическое строение, включающее множество составляющих, которые выполняют определенные функции.

Какая наука изучает клетку?

Всем известно, что наука о живых организмах - биология. Строение клетки изучает ее отрасль - цитология.

Из чего состоит клетка?

Данная структура состоит из мембраны, цитоплазмы, органоидов, или органелл, и ядра (в прокариотических клетках отсутствует). Строение клеток организмов, относящихся к разным классам, немного различается. Существенные отличия наблюдаются между структурой клеток эукариотов и прокариотов.

Плазматическая мембрана

Мембрана играет очень важную роль — она отделяет и защищает содержимое клетки от внешней среды. Она состоит из трех слоев: двух белковых и среднего фосфолипидного.

Клеточная стенка

Еще одна структура, защищающая клетку от воздействия внешних факторов, расположена поверх плазматической мембраны. Присутствует в клетках растений, бактерий и грибов. У первых она состоит из целлюлозы, у вторых — из муреина, у третьих — из хитина. В животных клетках поверх мембраны расположен гликокаликс, который состоит из гликопротеидов и полисахаридов.

Цитоплазма

Она представляет собой все пространство клетки, ограниченное мембраной, за исключением ядра. Цитоплазма включает органоиды, которые выполняют основные функции, отвечающие за жизнедеятельность клетки.

Органеллы и их функции

Строение клетки живого организма подразумевает ряд структур, каждая из которых выполняет определенную функцию. Они называются органеллами, или органоидами.

Митохондрии

Их можно назвать одними из самых важных органелл. Митохондрии отвечают за синтез энергии, необходимой для жизнедеятельности. Кроме того, они участвуют в процессе синтеза некоторых гормонов и аминокислот.

Энергия в митохондриях вырабатывается вследствие окисления молекул АТФ, которое происходит при помощи специального фермента под названием АТФ-синтаза. Митохондрии представляют собой округлые или палочковидные структуры. Их количество в животной клетке, в среднем, составляет 150-1500 штук (это зависит от ее предназначения). Они состоят из двух мембран и матрикса — полужидкой массы, заполняющей внутреннее пространство органеллы. Основной составляющей оболочек являются белки, также в их структуре присутствуют фосфолипиды. Пространство между мембранами заполнено жидкостью. В матриксе митохондрий находятся зерна, которые накапливают определенные вещества, такие как ионы магния и кальция, необходимые для выработки энергии, и полисахариды. Также эти органеллы имеют собственный аппарат биосинтеза белка , похожий на таковой у прокариотов. Он состоит из митохондриальной ДНК, набора ферментов, рибосом и РНК. Строение клетки прокариотов имеет свои особенности: митохондрий в ней нет.

Рибосомы

Эти органеллы состоят из рибосомальной РНК (рРНК) и белков. Благодаря им осуществляется трансляция — процесс синтеза белков на матрице иРНК (информационной РНК). В одной клетке может содержаться до десяти тысяч данных органоидов. Рибосомы состоят из двух частей: маленькой и большой, которые объединяются непосредственно в присутствии иРНК.

Рибосомы, которые участвуют в синтезе белков, необходимых для самой клетки, сконцентрированы в цитоплазме. А те, с помощью которых вырабатываются белки, транспортируемые за пределы клетки, располагаются на плазматической мембране.

Комплекс Гольджи

Он присутствует только в клетках эукариотов. Данная органелла состоит из диктосом, количество которых обычно составляет приблизительно 20, но может доходить и до нескольких сотен. Аппарат Гольджи входит в строение клетки только эукариотических организмов. Он расположен около ядра и выполняет функцию синтеза и хранения определенных веществ, к примеру, полисахаридов. В нем образуются лизосомы, о которых пойдет речь ниже. Также эта органелла является частью выделительной системы клетки. Диктосомы представлены в виде стопок из сплющенных цистерн дискообразной формы. На краях этих структур образуются пузырьки, где находятся вещества, которые необходимо вывести из клетки.

Лизосомы

Эти органоиды представляют собой маленькие пузырьки с набором ферментов. Их структура имеет одну мембрану, покрытую сверху слоем белка. Функция, которую выполняют лизосомы, заключается во внутриклеточном переваривании веществ. Благодаря ферменту гидролазе с помощью указанных органоидов расщепляются жиры, белки, углеводы, нуклеиновые кислоты.

Эндоплазматическая сеть (ретикулум)

Строение клетки всех эукариотических клеток подразумевает и наличие ЭПС (эндоплазматической сети). Эндоплазматический ретикулум состоит из трубочек и сплющенных полостей, имеющих мембрану. Этот органоид бывает двух видов: шероховатая и гладкая сеть. Первая отличается тем, что к ее мембране крепятся рибосомы, вторая такой особенности не имеет. Шероховатая эндоплазматическая сеть выполняет функцию синтеза белков и липидов, которые требуются для формирования клеточной мембраны или для других целей. Гладкая принимает участие в выработке жиров, углеводов, гормонов и других веществ, кроме белков. Также эндоплазматический ретикулум выполняет функцию транспортировки веществ по клетке.

Цитоскелет

Он состоит из микротрубочек и микрофиламентов (актиновых и промежуточных). Составляющие цитоскелета представляют собой полимеры белков, в основном, актина, тубулина или кератина. Микротрубочки служат для поддержания формы клетки, они формируют органы движения у простейших организмов, таких как инфузории, хламидомонады, эвглены и т. д. Актиновые микрофиламенты также играют роль каркаса. Кроме того, они участвуют в процессе перемещения органелл. Промежуточные в разных клетках построены из различных белков. Они поддерживают форму клетки, а также закрепляют ядро и другие органеллы в постоянном положении.

Клеточный центр

Состоит из центриолей, которые имеют форму полого цилиндра. Его стенки образованы из микротрубочек. Эта структура участвует в процессе деления, обеспечивая распределение хромосом между дочерними клетками.

Ядро

В клетках эукариотов это один из важнейших органоидов. В нем хранится ДНК, в которой зашифрована информация обо всем организме, о его свойствах, о белках, которые должны синтезироваться клеткой, и т. д. Оно состоит из оболочки, которая защищает генетический материал, ядерного сока (матрикса), хроматина и ядрышка. Оболочка сформирована из двух пористых мембран, расположенных на некотором расстоянии друг от друга. Матрикс представлен белками, он образует внутри ядра благоприятную среду для хранения наследственной информации. В ядерном соке содержатся нитчатые белки, служащие опорой, а также РНК. Также здесь присутствует хроматин — интерфазная форма существования хромосом. Во время деления клетки из глыбок он превращается в палочковидные структуры.

Ядрышко

Это обособленная часть ядра, отвечающая за формирование рибосомальной РНК.

Органеллы, присущие только растительным клеткам

Клетки растений имеют некоторые органоиды, которые не свойственны больше ни для каких организмов. К ним относятся вакуоли и пластиды.

Вакуоль

Это своеобразный резервуар, где хранятся запасные питательные вщеества, а также продукты жизнедеятельности, которые не могут быть выведены наружу из-за плотной клеточной стенки. Она отделяется от цитоплазмы специфической мембраной, которая называется тонопластом. По мере того как функционирует клетка, отдельные небольшие вакуоли сливаются в одну большую — центральную.

Пластиды

Эти органоиды делятся на три группы: хлоропласты, лейкопласты и хромопласты.

Хлоропласты

Это важнейшие органоиды растительной клетки. Благодаря им осуществляется фотосинтез, в процессе которого клетка получает нужные ей питательные вещества. Хлоропласты имеют две мембраны: внешнюю и внутреннюю; матрикс — вещество, которым заполнено внутреннее пространство; собственную ДНК и рибосомы; зерна крахмала; граны. Последние состоят из стопок тилакоидов с хлорофиллом, окруженных мембраной. Именно в них и происходит процесс фотосинтеза.

Лейкопласты

Эти структуры состоят из двух мембран, матрикса, ДНК, рибосом и тилакоидов, но последние не содержат хлорофилл. Лейкопласты выполняют запасную функцию, накапливая питательные вещества. В них содержатся специальные ферменты, позволяющие получать из глюкозы крахмал, который, собственно, и служит запасным веществом.

Хромопласты

Данные органоиды имеют такую же структуру, как и описанные выше, однако в них нет тилакоидов, но есть каротиноиды, которые имеют специфическую окраску и расположены непосредственно возле мембраны. Именно благодаря этим структурам лепестки цветов окрашены в определенный цвет, позволяющий привлекать насекомых-опылителей.