Open
Close

Прохождение звуковой волны в ухе. Последовательность прохождения звука через орган слуха

Процесс получения звуковой информации включает восприятие, передачу и интерпретацию звука. Ухо улавливает и превращает слуховые волны в нервные импульсы, которые получает и интерпретирует мозг.

В ухе есть много такого, что не видно глазу. То, что мы наблюдаем, только часть внешнего уха – мясисто-хрящевой вырост, иначе говоря, ушная раковина. Внешнее ухо состоит из раковины и ушного канала, заканчивающегося у барабанной перепонки, которая обеспечивает связь между наружным и средним ухом, где располагается слуховой механизм.

Ушная раковина направляет звуковые волны в слуховой канал, наподобие того, как старинная слуховая труба направляла звук в ушную раковину. Канал усиливает звуковые волны и направляет их на барабанную перепонку. Звуковые волны, ударяясь о барабанную перепонку, вызывают вибрацию, передающуюся дальше через три маленькие слуховые косточки: молоточек, наковальню и стремечко. Они вибрируют по очереди, предавая звуковые волны через среднее ухо. Самая внутренняя из этих косточек, стремечко, – самая маленькая кость в организме.

Стремечко, вибрируя, ударяет мембрану, называемую овальным окном. Звуковые волны через нее идут во внутреннее ухо.

Что происходит во внутреннем ухе?

Там идет сенсорная часть слухового процесса. Внутреннее ухо состоит их двух основных частей: лабиринта и улитки. Часть, начинающаяся у овального окна и изгибающаяся наподобие настоящей улитки, действует как переводчик, превращая звуковые колебания в электрические импульсы, которые можно передать в мозг.

Как устроена улитка?

Улитка заполнена жидкостью, в которой как бы подвешена базилярная (основная) мембрана, напоминающая резиновую ленту, прикрепленную концами к стенкам. Мембрана покрыта тысячами крошечных волосков. У основания этих волосков расположены маленькие нервные клетки. Когда вибрации стремечка задевают овальное окно, жидкость и волоски приходят в движение. Движение волосков стимулирует нервные клетки, которые посылают сообщение, уже в виде электроимпульса, в мозг через слуховой, или акустический, нерв.

Лабиринт – это группа трех взаимосвязанных полукружных каналов, контролирующих чувство равновесия. Каждый канал заполнен жидкостью и расположен под прямым углом к остальным двум. Так что, как бы вы ни двигали головой, один или больше каналов фиксируют это движение и передают информацию в мозг.

Если вам случалось застудить ухо или сильно высморкаться, так что в ухе "щелкает", то появляется догадка – ухо каким-то образом связано с горлом и носом. И это верно. Евстахиева труба напрямую соединяет среднее ухо с ротовой полостью. Ее роль – пропускать воздух внутрь среднего уха, уравновешивая давление по обе стороны барабанной перепонки.

Нарушения и расстройства в любой части уха могут ухудшить слух, если они влияют на прохождение и интерпретацию звуковых колебаний.

Как работает ухо?

Давайте проследим путь звуковой волны. Она попадает в ухо через ушную раковину и направляется по слуховому каналу. Если раковина деформирована или канал перекрыт, затрудняется путь звука к барабанной перепонке и снижается слуховая способность. Если звуковая волна благополучно добралась до барабанной перепонки, а она повреждена, звук может не достичь слуховых косточек.

Любое расстройство, не дающее косточкам вибрировать, помешает звуку попасть во внутреннее ухо. Во внутреннем ухе звуковые волны вызывают пульсацию жидкости, приводящую в движение крошечные волоски в улитке. Повреждение волосков или нервных клеток, с которыми они соединены, помешает превращению звуковых колебаний в электрические. Но, когда звук благополучно превратился в электрический импульс, он еще должен достичь мозга. Понятно, что повреждение слухового нерва или мозга скажется на способности слышать.

Слуховой анализатор воспринимает колебания воздуха и трансформирует механическую энергию этих колебаний в импульсы, которые в коре головного мозга воспринимаются как звуковые ощущения.

Воспринимающая часть слухового анализатора включает - наружное, среднее и внутреннее ухо (рис. 11.8.). Наружное ухо представлена ушной раковиной (звукоуловитель) и наружным слуховым проходом, длина которого составляет 21-27 мм, а диаметр 6-8 мм. Наружное и среднее ухо разделяет барабанная перепонка - мало податливая и слабо растягивающаяся мембрана.

Среднее ухо состоит из цепи соединенных между собой косточек: молоточек, наковальня и стремечко. Рукоятка молоточка прикрепляется к барабанной перепонке, основание стремечка - к овальному окну. Это своеобразный усилитель который в 20 раз усиливает колебания. В среднем ухе, кроме того, имеется две маленькие мышцы, прикрепляющиеся к косточкам. Сокращение этих мышц приводит к уменьшению колебаний. Давление в среднем ухе выравнивается за счет евстахиевой трубы, которая открывается в ротовую полость.

Внутреннее ухо соединено со средним при помощи овального окна, к которому прикрепляется стремечко. Во внутреннем ухе находится рецепторный аппарат двух анализаторов - воспринимающего и слухового (рис. 11.9.). Рецепторный аппарат слуха представлен улиткой . Улитка, длиной 35 мм и имеющая 2,5 завитка, состоит из костной и перепончатой части. Костная часть разделена двумя мембранами: основной и вестибулярной (рейснеровой) на три канала (верхний - вестибулярный, нижний - тимпанический, средний - барабанный). Средняя часть, называется улиточный ход (перепончатый). У верхушки - верхние и нижние каналы связаны геликотремой. Верхние и нижние каналы улитки заполнены перилимфой, средние - эндолимфой. Перилимфа по ионному составу напоминает плазму, эндолимфа - внутриклеточную жидкость (в 100 раз больше ионов К и в 10 раз ионов Nа).

Основная мембрана состоит из слабо натянутых эластических волокон, поэтому может колебаться. На основной мембране - в среднем канале расположены звуковоспринимающие рецепторы - кортиев орган (4 ряда волосковых клеток - 1 внутренний (3,5 тыс. клеток) и 3 наружных - 25-30 тыс. клеток). Сверху - тектореальная мембрана.

Механизмы проведения звуковых колебаний . Звуковые волны пройдя через наружный слуховой проход колеблют барабанную перепонку, последняя приводит в движение косточки и мембрану овального окна. Колеблется перилимфа и к вершине колебания затухают. Колебания перилимфы передаются на вестибулярную мембрану, а последняя начинает колебать эндолимфу и основную мембрану.

В улитке регистрируется: 1) Суммарный потенциал (между кортиевым органом и средним каналом - 150 мВ). Он не связан с проведением звуковых колебаний. Он обусловлен уравнем окислительно-восстановительных процессов. 2) Потенциал действия слухового нерва. В физиологии также известен и третий - микрофонный - эффект заключающий в следующем: если в улитку ввести электроды и соединить с микрофоном, предварительно усилив его, и произносить в ухо кошке различные слова, то микрофон воспроизводит эти же слова. Микрофонный эффект генерируется поверхностью волосковых клеток, т. к. деформация волосков приводит к появлению разности потенциалов. Однако, этот эффект превосходит энергию вызвавших его звуковых колебаний. Отсюда микрофонный потенциал - непростое преобразование механической энергии в электрическую, а связан с обменными процессами в волосковых клетках. Местом возникновения микрофонного потенциала является область корешков волосков волосковых клеток. Звуковые колебания, действующие на внутреннее ухо, накладывают возникающий микрофонный эффект на эндокохлеарный потенциал.


Суммарный потенциал отличается от микрофонного тем, что отражает не форму звуковой волны, а ее огибающую и возникает при действии на ухо высокочастотных звуков (рис. 11.10.).

Потенциал действия слухового нерва генерируется в результате электрического возбуждения, возникающего в волосковых клетках в виде микрофонного эффекта и суммарного потенциала.

Между волосковыми клетками и нервными окончаниями имеются синапсы, при этом имеет место и химический и электрический механизмы передачи.

Механизм передачи звука различной частоты. В течение длительного времени в физиологии господствовала резонаторная теория Гельмгольца : на основной мембране натянуты струны различной длины, подобно арфе они имеют разную частоту колебаний. При действии звука начинает колебаться та часть мембраны, которая настроена в резонанс данной частоте. Колебания натянутых нитей раздражают соответствующие рецепторы. Однако, эта теория критикуется, т. к. струны не натянуты и их колебания в каждый данный момент включают слишком много волокон мембраны.

Заслуживает внимания теория Бекеше . В улитке имеется явление резонанса, однако, резонирующим субстратом являются не волокна основной мембраны, а столб жидкости определенной длины. По данным Бекеше, чем больше частота звука, тем меньше длина колеблющегося столба жидкости. При действии звуков низкой частоты длина колеблющегося столба жидкости увеличивается, захватывая большую часть основной мембраны, причем колеблются не отдельные волокна, а значительная их часть. Каждой высоте тона соответствует определенное количество рецепторов.

В настоящее время наиболее распространенной теорией восприятия звука разной частоты является “теория места ”, согласно которой не исключается участие воспринимающих клеток в анализе слуховых сигналов. Предполагается что волосковые клетки, расположенные на различных участках основной мембраны обладают различной лабильностью, что оказывает влияние на звуковые восприятия, т. е. речь идет о настройке волосковых клеток на звуки разной частоты.

Повреждения в различных участках основной мембраны приводит к ослаблению электрических явлений, возникающих при раздражении звуков разной частоты.

Согласно резонансной теории, различные участки основной пластинки реагируют колебанием своих волокон на звуки разной высоты. Сила звука зависит от величины колебаний звуковых волн, которые воспринимаются барабанной перепонкой. Звук будет тем сильнее, чем больше величина колебаний звуковых волн и соответственно барабанной перепонки, Высота звука зависит от частоты колебаний звуковых волн, Большая частота колебаний в единицу времени будет. восприниматься органом слуха в виде более высоких тонов (тонкие, высокие звуки голоса) Меньшая частота колебаний звуковых волн воспринимается органом слуха в виде низких тонов (басистые, грубые звуки и голоса) .

Восприятие высоты, силы звука и локализации источника звука начинается с попадания звуковых волн в наружное ухо, где они приводят в движение барабанную перепонку. Колебания барабанной перепонки через систему слуховых косточек среднего уха передаются на мембрану овального окна, что вызывает колебание перилимфы вестибулярной (верхней) лестницы. Эти колебания через геликотрему передаются перилимфе барабанной (нижней) лестницы и доходят до круглого окна, смещая его мембрану по направлению к полости среднего уха. Колебания перилимфы передаются также на эндолимфу перепончатого (среднего) канала, что приводит в колебательные дви­жения основную мембрану, состоящую из отдельных волокон, натянутых, как струны рояля. При действии звука волокна мембраны приходят в колебательные движения вместе с рецепторны-ми клетками кортиева органа, расположенными на них. При этом волоски рецепторных клеток контактируют с текториальной мембраной, реснички волосковых клеток деформируются. Возникает вначале рецепторный потенциал, а затем потенциал действия (нервный импульс), который далее проводится по слуховому нерву и передается в другие отделы слухового анализатора.

Орган слуха состоит из трех отделов - наружного, среднего и внутреннего уха. Наружное и среднее ухо-это вспомогательные сенсорные структуры, обеспечивающие проведение звука к слуховым рецепторам в улитке (внутреннее ухо). Во внутреннем ухе содержатся два типа рецепторов - слуховые (в улитке) и вестибулярные (в структурах вестибулярного аппарата).

Ощущение звука возникает, когда волны сжатия, вызванные колебаниями молекул воздуха в продольном направлении, попадают на слуховые органы. Волны из чередующихся участков
сжатия (высокой плотности) и разрежения (низкой плотности) молекул воздуха распространяются от источника звука (например, камертона или струны) наподобие ряби на поверхности воды. Звук характеризуется двумя основными параметрами -силой и высотой.

Высота звука определяется его частотой, или числом волн за одну секунду. Частота измеряется в герцах (Гц). 1 Гц соответствует одному полному колебанию в секунду. Чем больше частота звука, тем выше этот звук. Человеческое ухо различает звуки в пределах от 20 до 20000 Гц. Наибольшая чувствительность уха приходится на диапазон 1000 - 4000 Гц.

Сила звука пропорциональна амплитуде колебаний звуковой волны и измеряется в логарифмических единицах - децибелах. Один децибел равен 10 lg I/ls, где ls - пороговая сила звука. За стандартную пороговую силу принимается 0,0002 дин/см2 - величина, весьма близкая к пределу слышимости у человека.

Наружное и среднее ухо

Ушная раковина служит как бы рупором, направляющим звук в слуховой канал. Для того чтобы попасть на барабанную перепонку, отделяющую наружное ухо от среднего, звуковые волны должны пройти через этот канал. Колебания барабанной перепонки передаются через заполненную воздухом полость среднего уха по цепи из трех маленьких слуховых косточек: молоточка, наковальни и стремечка. Молоточек соединяется с барабанной перепонкой, а стремечко - с перепонкой овального окна улитки внутреннего уха. Таким образом, колебания барабанной перепонки передаются через среднее ухо на овальное окно по цепи из молоточка, наковальни и стремечка.

Среднее ухо играет роль согласующего устройства, обеспечивающего передачу звука от среды низкой плотности (воздух) к более плотной (жидкость внутреннего уха). Энергия, требующаяся для сообщения какой-либо перепонке колебательных движений, зависит от плотности окружающей эту перепонку среды. Колебания в жидкости внутреннего уха требуют в 130 раз больших затрат энергии, чем в воздухе.

При передаче звуковых волн от барабанной перепонки к овальному окну по цепи слуховых косточек звуковое давление увеличивается в 30 раз. Это связано, прежде всего, с большой разницей в площади барабанной перепонки (0,55 см2) и овального окна (0,032 см2). Звук от большой барабанной перепонки передается по слуховым косточкам к маленькому овальному окну. В результате звуковое давление на единицу площади овального окна по сравнению с барабанной перепонкой возрастает.

Колебания слуховых косточек уменьшаются (гасятся) при сокращении двух мышц среднего уха: мышцы, напрягающей барабанную перепонку, и мышцы стремечка. Эти мышцы присоединяются соответственно к молоточку и стремечку. Их сокращение приводит к увеличению ригидности в цепи слуховых косточек и к уменьшению способности этих косточек проводить звуковые колебания в улитке. Громкий звук вызывает рефлекторное сокращение мышц среднего уха. Благодаря этому рефлексу слуховые рецепторы улитки предохраняются от повреждающего воздействия громких звуков.

Внутреннее ухо

Улитка образована тремя спиральными каналами, заполненными жидкостью, - вестибулярная лестница (лестница преддверия), средняя лестница и барабанная лестница. Вестибулярная и барабанная лестницы соединяются в области дистального конца улитки посредством отверстия -геликотремы, а средняя лестница расположена между ними. Средняя лестница отделена от вестибулярной лестницы тонкой рейснеровой мембраной, а от барабанной - основной (базилярной) мембраной.

Улитка заполнена двумя видами жидкости: в барабанной и вестибулярной лестницах содержится перилимфа, в средней лестнице - эндолим-фа. Состав этих жидкостей различен: в перилимфе много натрия, но мало калия, в эндолимфе мало натрия, но много калия. Из-за этих различий в ионном составе между эндолимфой средней лестницы и перилимфой барабанной и вестибулярной лестниц возникает эндокохлеарный потенциал величиной около +80 мВ. Поскольку потенциал покоя волосковых клеток равен примерно -80 мВ, между эндолимфой и рецепторными клетками создается разность потенциала в 160 мВ, что имеет большое значение для поддержания возбудимости волосковых клеток.

В области проксимального конца вестибулярной лестницы расположено овальное окно. При низкочастотных колебаниях перепонки овального окна в перилимфе вестибулярной лестницы возникают волны давления. Колебания жидкости, порожденные э тими волнами, передаются вдоль вестибулярной лестницы и затем через геликотрему в барабанную лестницу, на проксимальном конце которой находится круглое окно. В результате распространения волн давления в барабанную лестницу колебания перилимфы передаются на круглое окно. При движениях круглого окна, играющего роль демпфирующего устройства, энергия волн давления поглощается.

Кортиев орган

Слуховыми рецепторами являются волосковые клегки. Эти клетки связаны с основной мембраной; в улитке человека их около 20 тыс. С базальной поверхностью каждой волосковой клетки образуют синапсы окончания кохлеарного нерва, образуя вестибулокохлеарный нерв (VIII п.). Слуховой нерв образован волокнами кохлеарного нерва. Волосковые клегки, окончания кохлеарного нерва, покровная и основная мембраны образуют кортиев орган.

Возбуждение рецепторов

При распространении звуковых волн в улитке покровная мембрана смещается, и ее колебания приводят к возбуждению волосковые клетки. Это сопровождается изменением ионной проницаемости и деполяризацией. Возникающий при этом рецепторный потенциал возбуждает окончания кохлеарного нерва.

Различение высоты звука

Колебания основной мембраны зависят от высоты (частоты) звука. Эластичность этой мембраны постепенно возрастает по мере удаления от овального окна. У проксимального конца улитки (в области овального окна) основная мембрана уже (0,04 мм) и жестче, а ближе к геликотреме - шире и более эластична. Поэтому колебательные свойства основной мембраны постепенно изменяются по длине улитки: проксимальные участки более восприимчивы к звукам высокой частоты, а дистальные реагируют лишь на низкие звуки.

Согласно пространственной теории различения высоты звука, основная мембрана действует как анализатор частоты звуковых колебаний. От высоты звука зависит, какой участок основной мембраны будет отвечать на этот звук колебаниями наибольшей амплитуды. Чем звук ниже, тем больше и расстояние от овального окна до участка с максимальной амплитудой колебаний. Вследствие этого та частота, к которой наиболее чувствительна какая-либо волосковая клетка, определяется ее расположением клетки, реагирующие преимущественно на высокие тона, локализуются на узкой, туго натянутой основной мембране близ овального окна; рецепторы же, воспринимающие низкие звуки, расположены на более широких и менее туго натянутых дистальных участках основной мембраны.

Информация о высоте низких звуков кодируется также параметрами разрядов в волокнах кохлеарного нерва; согласно «залповой теории», частота нервных импульсов соответствует частоте звуковых колебаний. Частота потенциалов действия в волокнах кохлеарного нерва, реагирующих на звук ниже 2000 Гц, близка к частоте этих звуков; т.к. в волокне, возбуждающемся при действии тона в 200 Гц, возникает 200 импульсов в 1 с.

Центральные слуховые пути

Волокна кохлеарного нерва идут в составе вестибуло-кохлеарного нерва к продолговатому мозгу и заканчиваются в его кохлеарном ядре. От этого ядра импульсы передаются в слуховую кору по цепи вставочных нейронов слуховой системы, расположенных в продолговатом мозгу (кох-леарные ядра и ядра верхних олив), в среднем мозгу (нижнее двухолмие) и таламусе (медиальное коленчатое тело). «Конечный пункт назначения» слуховых каналов - это дорсолатеральный край височной доли, где расположена первичная слуховая область. Эту область в виде полосы окружает ассоциативная слуховая зона.

Слуховая кора отвечает за распознавание сложных звуков. Здесь соотносятся их частота и сила. В ассоциативной слуховой области интерпретируется смысл услышанных звуков. Нейроны нижележащих отделов-средней части оливы, нижнего двухолмия и медиального коленчатого тела осуществляют и (влечение и переработку информации о высаге и локализации звука.

Вестибулярная система

Лабиринт внутреннего уха, содержащий слуховые рецепторы и рецепторы равновесия, расположен в пределах височной кости и образован плоскостей. Степень смещения купулы и, следовательно, частота импульсации в вестибулярном нерве, иннервирующем волосковые клетки, зависит от величины ускорения.

Центральные вестибулярные пути

Волосковые клетки вестибулярного аппарата иннервируются волокнами вестибулярного нерва. Эти волокна идут в составе вестибулокохле-арного нерва к продолговатому мозгу, где и заканчиваются в вестибулярных ядрах. Отростки нейронов этих ядер идут к мозжечку, ретикулярной формации и спинному мозгу - двигательным центрам, управляющим положением тела при движениях благодаря информации от вестибулярного аппарата, проприорецепторов шеи и органов зрения.

Поступление вестибулярных сигналов к зрительным центрам имеет первостепенное значение для важного глазодвигательного рефлекса - нистагма. Благодаря нистагму взор при движениях головы фиксируется на неподвижном предмете. Во время вращения головы глаза медленно поворачиваются в обратную сторону, и поэтому взор фиксирован на определенной точке. Если угол вращения головы больше, чем тот, на который могут повернуться глаза, то они быстро перемещаются в направлении врашения и взор фиксируется на новой точке. Это быстрое движение и есть нистагм. При повороте головы глаза попеременно совершают медленные движения в направлении поворота и быстрые в противоположном настроении.

Функция органа слуха базируется на двух принципиально различающихся процессах - механоакустическом, определяемом как механизм звукопроведения , и нейрональном, определяемом как механизм звуковосприятия . Первый основан на ряде акустических закономерностей, второй - на процессах рецепции и трансформации механической энергии звуковых колебаний в биоэлектрические импульсы и их трансмиссии по нервным проводникам к слуховым центрам и корковым слуховым ядрам. Орган слуха получил название слухового, или звукового, анализатора, в основе функции которого лежат анализ и синтез невербальной и вербальной звуковой информации, содержащей природные и искусственные звуки в окружающей среде и речевые символы - слова, отражающие материальный мир и мыслительную деятельность человека. Слух как функция звукового анализатора - важнейший фактор в интеллектуальном и социальном развитии личности человека, ибо восприятие звука является основой его языкового развития и всей его сознательной деятельности.

Адекватный раздражитель звукового анализатора

Под адекватным раздражителем звукового анализатора понимают энергию слышимого диапазона звуковых частот (от 16 до 20 000 Гц), носителем которых являются звуковые волны. Скорость распространения звуковых волн в сухом воздухе составляет 330 м/с, в воде - 1430, в металлах - 4000-7000 м/с. Особенность звукового ощущения заключается в том, что оно экстраполируется во внешнюю среду в направлении источника звука, это определяет одно из основных свойств звукового анализатора - ототопику , т. е. способность пространственного различения локализации источника звука.

Основными характеристиками звуковых колебаний являются их спектральный состав и энергия . Спектр звука бывает сплошным , когда энергия звуковых колебаний равномерно распределена по составляющим его частотам, и линейчатым , когда звук состоит из совокупности дискретных (прерывистых) частотных составляющих. Субъективно звук со сплошным спектром воспринимается как шум без определенной тональной окраски, например как шелест листвы или «белый» шум аудиометра. Линейчатым спектром с кратными частотами обладают звуки, издаваемые музыкальными инструментами и человеческим голосом. В таких звуках доминирует основная частота , которая определяет высоту звука (тон), а набор гармонических составляющих (обертонов) определяет тембр звука .

Энергетической характеристикой звуковых колебаний является единица интенсивности звука, которая определяется как энергия, переносимая звуковой волной через единицу поверхности в единицу времени . Интенсивность звука зависит от амплитуды звукового давления , а также от свойств самой среды, в которой распространяется звук. Под звуковым давлением понимают давление, возникающее при прохождении звуковой волны в жидкой или газообразной среде. Распространяясь в среде, звуковая волна образует сгущения и разряжения частиц среды.

Единицей измерения звукового давления в системе СИ является ньютон на 1 м 2 . В некоторых случаях (например, в физиологической акустике и клинической аудиометрии) для характеристики звука применяют понятие уровень звукового давления , выражаемый в децибелах (дБ), как отношение величины данного звукового давления Р к сенсорному пороговому значению звукового давления Ро = 2,10 -5 Н/м 2 . При этом число децибел N = 20lg (Р/Ро ). В воздушной среде звуковое давление в пределах слышимого диапазона частот меняется в пределах от 10 -5 Н/м 2 вблизи порога слышимости до 10 3 Н/м 2 при самых громких звуках, например при шуме, производимом реактивным двигателем. С интенсивностью звука связана субъективная характеристика слуха - громкость звука и многие другие качественные характеристики слухового восприятия.

Носителем звуковой энергии является звуковая волна. Под звуковыми волнами понимают циклические изменения состояния среды или ее возмущения, обусловленные упругостью данной среды, распространяющиеся в этой среде и несущие с собой механическую энергию. Пространство, в котором распространяются звуковые волны, называется звуковым полем.

Основными характеристиками звуковых волн являются длина волны, ее период, амплитуда и скорость распространения. Со звуковыми волнами связаны понятия излучения звука и его распространения. Для излучения звуковых волн необходимо в среде, в которой они распространяются, произвести некоторое возмущение за счет внешнего источника энергии, т. е. источника звука. Распространение звуковой волны характеризуется в первую очередь скоростью звука, которая, в свою очередь, определяется упругостью среды, т. е. степенью ее сжимаемости, и плотностью.

Распространяющиеся в среде звуковые волны обладают свойством затухания , т. е. снижением амплитуды. Степень затухания звука зависит от его частоты и упругости среды, в которой он распространяется. Чем ниже частота, тем меньше степень затухания, тем дальше распространяется звук. Поглощение звука средой заметно возрастает с увеличением его частоты. Поэтому ультразвук, особенно высокочастотный, и гиперзвук распространяются на очень малые расстояния, ограниченные несколькими сантиметрами.

Законы распространения звуковой энергии присущи механизму звукопроведения в органе слуха. Однако, чтобы звук начал распространяться по цепи слуховых косточек, необходимо, чтобы барабанная перепонка пришла в колебательное движение. Колебания последней возникают в результате ее способности резонировать , т. е. поглощать энергию падающих на нее звуковых волн.

Резонанс - это акустическое явление, в результате которого падающие на какое-либо тело звуковые волны вызывают вынужденные колебания этого тела с частотой приходящих волн. Чем ближе собственная частота колебаний облучаемого объекта к частоте падающих волн, тем больше звуковой энергии этот объект поглощает, тем выше становится амплитуда его вынужденных колебаний, в результате чего этот объект сам начинает издавать собственный звук с частотой, равной частоте падающего звука. Барабанная перепонка благодаря своим акустическим свойствам обладает способностью резонировать на широкий спектр звуковых частот практически с одинаковой амплитудой. Такой тип резонирования называется тупым резонансом .

Физиология звукопроводящей системы

Анатомическими элементами звукопроводящей системы являются ушная раковина, наружный слуховой проход, барабанная перепонка, цепь слуховых косточек, мышцы барабанной полости, структуры преддверия и улитки (перилимфа, эндолимфа, рейснерова, покровная и базилярная мембраны, волоски чувствительных клеток, вторичная барабанная перепонка (мембрана окна улитки). На рис. 1 представлена общая схема системы звукопроведения.

Рис. 1. Общая схема системы звукопроведения. Стрелками показано направление звуковой волны: 1 - наружный слуховой проход; 2 - надбарабанное пространство; 3 - наковальня; 4 - стремя; 5 - головка молоточка; 6, 10 - лестница преддверия; 7, 9 - улитковый проток; 8 - улитковая часть преддверно-улиткового нерва; 11 - барабанная лестница; 12 - слуховая труба; 13 - окно улитки, прикрытое вторичной барабанной перепонкой; 14 - окно преддверия, с подножной пластинкой стремени

Каждому из этих элементов свойственны специфические функции, которые в совокупности обеспечивают процесс первичной обработки звукового сигнала - от его «поглощения» барабанной перепонкой до разложения на частоты структурами улитки и подготовки его к рецепции. Изъятие из процесса звукопроведения любого из этих элементов или повреждение какого-либо из них приводит к нарушению передачи звуковой энергии, проявляющемуся явлением кондуктивной тугоухости .

Ушная раковина человека сохранила в редуцированном виде некоторые полезные акустические функции. Так, интенсивность звука на уровне наружного отверстия слухового прохода на 3-5 дБ выше, чем в свободном звуковом поле. Определенную роль ушные раковины играют в реализации функции ототопики и бинаурального слуха. Ушные раковины играют также и защитную роль. Благодаря особой конфигурации и рельефу при обдувании их воздушным потоком образуются разбегающиеся вихревые потоки, препятствующие попаданию в слуховой проход воздуха и пылевых частиц.

Функциональное значение наружного слухового прохода следует рассматривать в двух аспектах - клинико-физиологическом и физиолого-акустическом. Первый определяется тем, что в коже перепончатой части наружного слухового прохода имеются волосяные луковицы, сальные и потовые железы, а также специальные железы, вырабатывающие ушную серу. Указанные образования играют трофическую и защитную роль, препятствуя проникновению в наружный слуховой проход инородных тел, насекомых, пылевых частиц. Ушная сера , как правило, выделяется в небольших количествах и является естественной смазкой для стенок наружного слухового прохода. Будучи в «свежем» состоянии липкой, она способствует прилипанию к стенкам перепончато-хрящевой части наружного слухового прохода пылевых частиц. Высыхая, она во время акта жевания фрагментируется под влиянием движений в височно-нижнечелюстном суставе и вместе со слущивающимися частицами рогового слоя кожного покрова и прилипшими к ней посторонними включениями выделяется наружу. Ушная сера обладает бактерицидным свойством, в результате чего на коже наружного слухового прохода и барабанной перепонке не обнаруживается микроорганизмов. Длина и изогнутость наружного слухового прохода способствуют защите барабанной перепонки от прямого повреждения инородным телом.

Функциональный (физиолого-акустический) аспект характеризуется ролью, которую играет наружный слуховой проход в проведении звука к барабанной перепонке. На этот процесс влияет не диаметр имеющегося или возникающего в результате патологического процесса сужения слухового прохода, а протяженность этого сужения. Так, при длинных узких рубцовых стриктурах потеря слуха на разных частотах может достигать 10-15 дБ.

Барабанная перепонка является приемником-резонатором звуковых колебаний, обладающим, как уже было отмечено выше, свойством резонировать в широком диапазоне частот без существенных энергетических потерь. Колебания барабанной перепонки передаются рукоятке молоточка, далее - наковальне и стремени. Колебания подножной пластинки стремени передаются перилимфе вестибулярной лестницы, что вызывает колебания основной и покровной мембран улитки. Их колебания передаются волосковому аппарату слуховых рецепторных клеток, в которых происходит трансформация механической энергии в нервные импульсы. Колебания перилимфы в вестибулярной лестнице передаются через вершину улитки к перилимфе барабанной лестницы и далее приводят в колебание вторичную барабанную перепонку окна улитки, подвижность которой обеспечивает протекание колебательного процесса в улитке и защищает рецепторные клетки от чрезмерного механического воздействия при громких звуках.

Слуховые косточки объединены в сложную рычажную систему, обеспечивающую повышение силы звуковых колебаний, необходимое для преодоления инерции покоя перилимфы и эндолимфы улитки и силы трения перилимфы в протоках улитки. Роль слуховых косточек заключается также и в том, что они путем непосредственной передачи жидким средам улитки энергии звука предотвращают отражение звуковой волны от перилимфы в области вестибулярного окна.

Подвижность слуховых косточек обеспечивается тремя суставами, два из которых (наковальне-молоточковый и наковальне-стременной ) устроены типичным образом. Третье сочленение (подножная пластинка стремени в окне преддверия) - это лишь сустав по функции, на самом деле это сложно устроенная «заслонка», выполняющая двоякую роль: а) обеспечение подвижности стремени, необходимой для передачи звуковой энергии структурам улитки; б) герметизация ушного лабиринта в области вестибулярного (овального) окна. Элементом, обеспечивающим эти функции, является кольцевая соединительнотканная связка.

Мышцы барабанной полости (мышца, натягивающая барабанную перепонку, и стременная мышца) выполняют двойную функцию - защитную в отношении сильных звуков и адаптационную при необходимости адаптации звукопроводящей системы к слабым звукам. Они иннервируются двигательными и симпатическими нервами, что при некоторых заболеваниях (миастения, рассеянный склероз, различного рода вегетативные нарушения) нередко отражается на состоянии этих мышц и может проявляться не всегда идентифицируемыми нарушениями слуха.

Известно, что мышцы барабанной полости рефлекторно сокращаются в ответ на звуковое раздражение. Этот рефлекс исходит из рецепторов улитки. Если воздействовать звуком на одно ухо, то в другом ухе возникает содружественное сокращение мышц барабанной полости. Эта реакция получила название акустического рефлекса и используется в некоторых методиках исследования слуха.

Различают три вида звукопроведения: воздушный, тканевый и тубарный (т. е. посредством слуховой трубы). Воздушный тип - это естественное звукопроведение, обусловленное поступлением звука к волосковым клеткам спирального органа из воздушной среды посредством ушной раковины, барабанной перепонки и всей остальной системы звукопроведения. Тканевое , или костное , звукопроведение реализуется в результате проникновения звуковой энергии к подвижным звукопроводящим элементам улитки через ткани головы. Примером реализации костного звукопроведения может служить методика камертонального исследования слуха, при которой рукоятка звучащего камертона прижимается к сосцевидному отростку, темени или другой части головы.

Различают компрессионный и инерционный механизм тканевого звукопроведения. При компрессионном типе возникает сжатие и разряжение жидких сред улитки, что вызывает раздражение волосковых клеток. При инерционном типе элементы звукопроводящей системы, благодаря силам инерции, развиваемым их массой, отстают в своих колебаниях от остальных тканей черепа, в результате чего возникают колебательные движения в жидких средах улитки.

К функциям внутриулиткового звукопроведения относится не только дальнейшая передача звуковой энергии к волосковым клеткам, но и первичный спектральный анализ звуковых частот, и распределение их по соответствующим сенсорным элементам , находящимся на базилярной мембране. При этом распределении соблюдается своеобразный акустико-топический принцип «кабельной» передачи нервного сигнала к высшим слуховым центрам, позволяющий осуществлять высший анализ и синтез информации, содержащейся в звуковых сообщениях.

Слуховая рецепция

Под слуховой рецепцией понимают трансформацию механической энергии звуковых колебаний в электрофизиологические нервные импульсы, являющиеся закодированным выражением адекватного раздражителя звукового анализатора. Рецепторы спирального органа и другие элементы улитки служат генератором биотоков, именуемых улитковыми потенциалами . Существует несколько типов этих потенциалов: токи покоя, токи действия, микрофонный потенциал, суммационный потенциал.

Токи покоя регистрируются в отсутствие звукового сигнала и делятся на внутриклеточный и эндолимфатический потенциалы. Внутриклеточный потенциал регистрируется в нервных волокнах, в волосковых и опорных клетках, в структурах базилярной и рейснеровой (ретикулярной) мембран. Эндолимфатический потенциал регистрируется в эндолимфе улиткового протока.

Токи действия - это интерферированные пики биоэлектрических импульсов, генерируемые только волокнами слухового нерва в ответ на звуковое воздействие. Информация, содержащаяся в токах действия, находится в прямой пространственной зависимости от места раздражаемых на основной мембране нейронов (теории слуха Гельмгольца, Бекеши, Дэвиса и др.). Волокна слухового нерва группируются по каналам, т. е. по признаку их частотной пропускной способности. Каждый канал способен передавать только сигнал определенной частоты; таким образом, если в данный момент на улитку действуют низкие звуки, то в процессе передачи информации участвуют только «низкочастотные» волокна, а высокочастотные в это время находятся в состоянии покоя, т. е. в них регистрируется только спонтанная активность. При раздражении улитки длительным однотонным звуком частота разрядов в отдельных волокнах уменьшается, что связано с феноменом адаптации или утомлением.

Микрофонный эффект улитки является результатом ответа на звуковое воздействие только наружных волосковых клеток. Действие ототоксических веществ и гипоксия приводят к угнетению или исчезновению микрофонного эффекта улитки. Однако в метаболизме этих клеток присутствует и анаэробный компонент, поскольку микрофонный эффект сохраняется на протяжении нескольких часов после смерти животного.

Суммационный потенциал обязан своим происхождением реакции на звук внутренних волосковых клеток. При нормальном гомеостатическом состоянии улитки суммационный потенциал, регистрируемый в улитковом протоке, сохраняет оптимальный отрицательный знак, однако незначительная гипоксия, действие хинина, стрептомицина и ряда других факторов, нарушающих гомеостаз внутренних сред улитки, нарушают соотношение величин и знаков улитковых потенциалов, при котором суммационный потенциал становится положительным.

К концу 50-х гг. XX в. было установлено, что в ответ на звуковое воздействие в различных структурах улитки возникают определенные биопотенциалы, которые дают начало сложному процессу восприятия звуков; при этом акционные потенциалы (токи действия) возникают в рецепторных клетках спирального органа. В клиническом отношении представляется весьма важным факт высокой чувствительности этих клеток к дефициту кислорода, изменению уровня углекислоты и сахара в жидких средах улитки, нарушению ионного равновесия. Указанные изменения могут приводить к парабиотическим обратимым или необратимым патоморфологическим изменениям рецепторного аппарата улитки и к соответствующим нарушениям слуховой функции.

Отоакустическая эмиссия . Рецепторные клетки спирального органа помимо своей основной функции обладают еще одним удивительным свойством. В покое или при действии звука они приходят в состояние высокочастотной вибрации, в результате чего образуется кинетическая энергия, распространяющаяся как волновой процесс через ткани внутреннего и среднего уха и поглощающаяся барабанной перепонкой. Последняя под влиянием этой энергии начинает излучать наподобие диффузора громкоговорителя очень слабый звук в полосе 500-4000 Гц. Отоакустическая эмиссия является не процессом синаптического (нервного) происхождения, а результатом механических колебаний волосковых клеток спирального органа.

Психофизиология слуха

Психофизиология слуха рассматривает две основные группы проблем: а) измерение порога ощущения , под которым понимают минимальный предел чувствительности сенсорной системы человека; б) построение психофизических шкал , отражающих математическую зависимость или отношение в системе «стимул/ реакция» при различных количественных значениях ее компонентов.

Существуют две формы порога ощущения - нижний абсолютный порог ощущения и верхний абсолютный порог ощущения . Под первым понимают минимальную величину стимула, вызывающего ответную реакцию, при которой впервые возникает осознанное ощущение данной модальности (качества) раздражителя (в нашем случае - звука). Под вторым подразумевают величину раздражителя, при которой ощущение данной модальности раздражителя исчезает или качественно изменяется . Например, мощный звук вызывает искаженное восприятие его тональности или даже экстраполируется в область болевого ощущения («порог боли»).

Величина порога ощущения зависит от того, при какой степени адаптации слуха он измерен. При адаптации к тишине порог понижается, при адаптации к определенному шуму - повышается.

Подпороговыми стимулами называются те, величина которых не вызывает адекватного ощущения и не формирует чувственного восприятия. Однако, по некоторым данным, подпороговые стимулы при достаточно длительном их действии (минуты и часы) могут вызывать «спонтанные реакции» типа беспричинных воспоминаний, импульсивных решений, внезапных озарений.

С порогом ощущения связаны так называемые пороги различения : дифференциальный порог интенсивности (силы) (ДПИ или ДПС) и дифференциальный порог качества или частоты (ДПЧ). Оба этих порога измеряются как при последовательном , так и при одновременном предъявлении стимулов. При последовательном предъявлении стимулов порог различения может быть установлен в том случае, если сравниваемые интенсивности и тональности звука различаются не менее чем на 10%. Пороги одновременного различения, как правило, устанавливаются при пороговом обнаружении полезного (тестирующего) звука на фоне помехи (шумовой, речевой, гетеромодальной). Метод определения порогов одновременного различения применяют для исследования помехоустойчивости звукового анализатора.

В психофизике слуха рассматриваются также пороги пространства , местоположения и времени . Взаимодействие ощущений пространства и времени дает интегральное чувство движения . Чувство движения основано на взаимодействии зрительного, вестибулярного и звукового анализаторов. Порог местоположения определяется пространственно-временной дискретностью возбуждаемых рецепторных элементов. Так, на базальной мембране звук в 1000 Гц отображается примерно в области ее средней части, а звук 1002 Гц сдвинут в сторону основного завитка настолько, что между участками этих частот находится одна невозбужденная клетка, для которой «не нашлось» соответствующей частоты. Следовательно, теоретически порог звукового местоположения идентичен порогу различения частоты и составляет 0,2% в частотном измерении. Этот механизм обеспечивает экстраполированный в пространство порог ототопики в горизонтальной плоскости в 2-3-5°, в вертикальной плоскости этот порог в несколько раз выше.

Психофизические законы восприятия звука формируют психофизиологические функции звукового анализатора. Под психофизиологическими функциями любого органа чувств понимают процесс возникновения ощущения, специфического для данной рецепторной системы при действии на нее адекватного раздражителя. В основе психофизиологических методов лежит регистрация субъективного ответа человека на тот или иной раздражитель.

Субъективные реакции органа слуха делятся на две большие группы - спонтанные и вызванные . Первые по своему качеству приближаются к ощущениям, вызванным реальным звуком, хотя и возникают «внутри» системы, чаще всего при утомлении звукового анализатора, интоксикациях, различных местных и общих заболеваниях. Вызванные ощущения обусловлены в первую очередь действием адекватного раздражителя в заданных физиологических пределах. Однако они могут быть спровоцированы внешними патогенными факторами (акустическая или механическая травма уха или слуховых центров), тогда эти ощущения по своей сути приближаются к спонтанным.

Звуки делятся на информационные и индифферентные . Нередко вторые служат помехой для первых, поэтому в слуховой системе существует, с одной стороны, механизм селекции полезной информации, с другой - механизм подавления помех. Вместе они обеспечивают одну из важнейших физиологических функций звукового анализатора - помехоустойчивость .

В клинических исследованиях используется лишь небольшая часть психофизиологических методов исследования слуховой функции, в основе которых лежат лишь три: а) восприятие интенсивности (силы) звука, отражающееся в субъективном ощущении громкости и в дифференцировке звуков по силе; б) восприятие частоты звука, отражающееся в субъективном ощущении тона и тембра звука, а также и в дифференцировке звуков по тональности; в) восприятие пространственной локализации источника звука, отражающееся в функции пространственного слуха (ототопика). Все указанные функции в естественных условиях обитания человека (и животных) взаимодействуют, изменяя и оптимизируя процесс восприятия звуковой информации.

Психофизиологические показатели функции слуха, как и любого другого органа чувств, основываются на одной из важнейших функций сложных биологических систем - адаптации .

Адаптация - это биологический механизм, при помощи которого организм или отдельные его системы приспосабливаются к энергетическому уровню действующих на них внешних или внутренних раздражителей для адекватного функционирования в процессе своей жизнедеятельности . Процесс адаптации органа слуха может реализовываться в двух направлениях: повышение чувствительности при слабых звуках или их отсутствии и понижение чувствительности при чрезмерно сильных звуках . Повышение чувствительности органа слуха в тишине называют физиологической адаптацией. Восстановление чувствительности после ее снижения, возникающего под влиянием длительно действующего шума, называют обратной адаптацией. Время, в течение которого чувствительность органа слуха возвращается к исходному, более высокому уровню, называют временем обратной адаптации (BOA).

Глубина адаптация органа слуха к звуковому воздействию зависит от интенсивности, частоты и времени действия звука, а также от времени тестирования адаптации и соотношения частот воздействующего и тестирующего звуков. Степень слуховой адаптации оценивают по величине потери слуха над порогом и по BOA.

Маскировка - психофизиологический феномен, основанный на взаимодействии тестирующего и маскирующего звуков . Сущность маскировки заключается в том, что при одновременном восприятии двух звуков разной частоты более интенсивный (более громкий) звук будет маскировать более слабый. В объяснении этого феномена конкурируют две теории. Одна из них отдает предпочтение нейрональному механизму слуховых центров, находя подтверждение в том, что при воздействии шума на одно ухо наблюдается повышение порога чувствительности на другое ухо. Другая точка зрения основана на особенностях биомеханических процессов, происходящих на базилярной мембране, а именно при моноауральной маскировке, когда тестирующий и маскирующий звуки подаются в одно ухо, более низкие звуки маскируют более высокие звуки. Этот феномен объясняют тем, что «бегущая волна», распространяющаяся по базилярной мембране от низких звуков к вершине улитки, поглощает аналогичные волны, образующиеся от более высоких частот в нижних участках базилярной мембраны, и лишает таким образом способности последнюю резонировать на высокие частоты. Вероятно, оба указанных механизма имеют место. Рассмотренные физиологические функции органа слуха лежат в основе всех существующих методов его исследования.

Пространственное восприятие звука

Пространственное восприятие звука (ототопика по В. И. Воячеку) является одной из психофизиологических функций органа слуха, благодаря которой животные и человек обладают способностью определять направление и пространственное положение источника звука. Основу этой функции составляет двуушный (бинауральный) слух. Лица с выключенным одним ухом не способны по звуку ориентироваться в пространстве и определять направление источника звука. В клинике ототопика имеет значение при дифференциальной диагностике периферических и центральных поражений органа слуха. При поражении полушарий головного мозга возникают различные нарушения ототопики. В горизонтальной плоскости функция ототопики осуществляется с большей точностью, чем в вертикальной плоскости, что подтверждает теорию о ведущей роли в этой функции бинаурального слуха.

Теории слуха

Вышеперечисленные психофизиологические свойства звукового анализатора в той или иной степени объяснимы рядом теорий слуха, разработанных в конце XIX - начале XX в.

Резонансная теория Гельмгольца объясняет возникновение тонального слуха явлением резонирования так называемых струн основной перепонки на различные частоты: на высокие звуки резонируют короткие волокна основной мембраны, расположенные в нижнем завитке улитки, на средние частоты резонируют волокна, расположенные в среднем завитке улитки, и на низкие частоты - в верхнем завитке, где расположены наиболее длинные и расслабленные волокна.

Теория бегущей волны Бекеши основана на гидростатических процессах в улитке, обусловливающих при каждом колебании подножной пластинки стремени деформацию основной мембраны в виде волны, бегущей по направлению к вершине улитки. При низких частотах бегущая волна достигает участка основной мембраны, находящегося в верхушке улитки, где расположены длинные «струны», при высоких частотах волны вызывают изгиб основной мембраны в основном завитке, где расположены короткие «струны».

Теория П. П. Лазарева объясняет пространственное восприятие отдельных частот вдоль основной мембраны неодинаковой чувствительностью волосковых клеток спирального органа к разным частотам. Эта теория нашла свое подтверждение в трудах К. С. Равдоника и Д. И. Насонова, согласно которым живые клетки организма независимо от их принадлежности реагируют биохимическими изменениями на облучение звуком.

Теории о роли основной мембраны в пространственном различении звуковых частот нашли подтверждение в исследованиях с условными рефлексами в лаборатории И. П. Павлова. В этих исследованиях вырабатывался условный пищевой рефлекс на разные частоты, который исчезал после разрушения разных участков основной мембраны, ответственных за восприятие тех или иных звуков. В. Ф. Ундриц исследовал биотоки улитки, которые исчезали при разрушении различных участков основной мембраны.

Оториноларингология. В.И. Бабияк, М.И. Говорун, Я.А. Накатис, А.Н. Пащинин

РОСЖЕЛДОР

Сибирский государственный университет

путей сообщения.

Кафедра: «Безопасность жизнедеятельности».

Дисциплина: «Физиология человека».

Курсовая работа.

Тема: «Физиология слуха».

Вариант № 9.

Выполнил: студент Проверил: доцент

гр. БТП-311 Рублев М. Г.

Осташев В. А.

Новосибирск 2006

Введение.

Наш мир наполнен звуками, самыми разнообразными.

всё это мы слышим, все эти звуки воспринимаются нашим ухом. В ухе звук превращается в «пулемётную очередь»

нервных импульсов, которые по слуховому нерву передаются в мозг.

Звук, или звуковая волна – это чередующиеся разряжения и сгущения воздуха, распространяющиеся во все стороны от колеблющегося тела. Такие колебания воздуха с частотой от 20 до 20000 в секунду мы слышим.

20000 колебаний в секунду – это самый высокий звук самого маленького инструмента в оркестре – флейты-пикколо, а 24 колебания – звук самой низкой струны – контрабаса.

О том, что звук «влетает в одно ухо, а вылетает в другое» - абсурд. Оба уха выполняют одну и ту же работу, но друг с другом не сообщаются.

Например: звон часов «влетел» в ухо. Ему предстоит мгновенное, но довольно сложное путешествие к рецепторам, то есть к тем клеткам, в которых при действии звуковых волн рождается звуковой сигнал. «Влетев» в ухо, звон ударится в барабанную перепонку.

Перепонка на конце слухового хода натянута сравнительно туго и закрывает проход наглухо. Звон, ударяя в барабанную перепонку, заставляет ее колебаться, вибрировать. Чем сильнее звук, тем сильнее колеблется перепонка.

Человеческое ухо – уникальный по чувствительности слуховой прибор.

Цели и задачи данной курсовой работы состоят в том, чтобы ознакомить человека с органами чувств – слухом.

Рассказать о строении, функциях уха, а также как сохранить слух, как бороться с заболеваниями органа слуха.

Также о разных вредных факторах на производстве, которые могут повредить слух, и о мерах защиты от таких факторов, так как различные заболевания органа слуха могут привести к более тяжелым последствиям – потере слуха и болезни всего организма человека.

I. Значение знаний по физиологии слуха для инженеров по технике безопасности.

Физиология – наука, изучающая функции целостного организма, отдельных систем и органов чувств. Одним из органов чувств является слух. Инженер по технике безопасности обязан знать физиологию слуха, так как на своем предприятии по долгу службы он соприкасается с профессиональным отбором лиц, определяя их годность к тому или иному виду труда, к той или иной профессии.

На основании данных о строении и функции верхних дыхательных путей и уха решается вопрос, в каком виде производства человек может работать, а в каком нет.

Рассмотрим примеры нескольких специальностей.

Хороший слух необходим лицам для контроля работы часовых механизмов, при испытании моторов и различной техники. Также хороший слух необходим врачам, водителям различного вида транспорта – наземного, железнодорожного, воздушного, водного.

Полностью зависит от состояния слуховой функции работа связистов. Радиотелеграфисты, обслуживающие приборы радиосвязи и гидроакустики, занимающиеся выслушиванием подводных звуков или шумоскопией.

Они должны обладать кроме слуховой чувствительности, еще и высоким восприятием разности частоты тона. Радиотелеграфисты должны иметь ритмический слух и память на ритм. Хорошей ритмической чувствительностью считается безошибочное различие всех сигналов или не более трех ошибок. Неудовлетворительной – если различено сигналов меньше половины.

При профессиональном отборе лётчиков, парашютистов, моряков, подводников очень важно определять барофункцию уха и околоносовых пазух.

Барофункция – это способность реагировать на колебания давления внешней среды. А также иметь бинауральный слух, то есть обладать пространственным слухом и определять положение источника звука в пространстве. Это свойство основано на наличии двух симметричных половин слухового анализатора.

Для плодотворной и безаварийной работы, согласно ПТЭ и ПТБ все лица вышеуказанных специальностей должны проходить медицинскую комиссию для определения трудоспособности на данном участке, а также для охраны труда и здоровья.

II . Анатомия органов слуха.

Органы слуха разделены на три отдела:

1. Наружное ухо. В наружном ухе располагаются наружный слуховой проход и ушная раковина с мышцами и связками.

2. Среднее ухо. В среднем ухе находится барабанная перепонка, сосцевидные придатки и слуховая труба.

3. Внутреннее ухо. Во внутреннем ухе находятся перепончатый лабиринт, располагающийся в костном лабиринте внутри пирамиды височной кости.

Наружное ухо.

Ушная раковина – эластичный хрящ сложной формы, покрытый кожей. Ее вогнутая поверхность обращена вперед, нижняя часть – долька ушной раковины – мочка, лишена хряща и заполнена жиром. На вогнутой поверхности расположен противозавиток, спереди от него углубление – раковина уха, на дне которого находится наружное слуховое отверстие ограниченное спереди козелком. Наружный слуховой проход состоит из хрящевого и костного отделов.

Барабанная перепонка отделяет наружное ухо от среднего. Она представляет собой пластинку, состоящую из двух слоев волокон. В наружном волокна расположены радиально, во внутреннем циркулярно.

В центре барабанной перепонки вдавление – пупок – место прикрепления к перепонке одной из слуховых косточек – молоточка. Барабанная перепонка вставлена в борозду барабанной части височной кости. В перепонке различают верхнюю(меньшую) свободную ненатянутую и нижнюю(большую) натянутую части. Перепонка расположена косо по отношению к оси слухового прохода.

Среднее ухо.

Барабанная полость – воздухоносная, расположена в основании пирамиды височной кости, слизистая оболочка выстлана однослойным плоским эпителием, который переходит в кубический или цилиндрический.

В полости находятся три слуховые косточки, сухожилия мышц, натягивающих барабанную перепонку и стремя. Здесь же проходит барабанная струна – ветвь промежуточного нерва. Барабанная полость переходит в слуховую трубу, которая открывается в носовой части глотки глоточным отверстием слуховой трубы.

Полость имеет шесть стенок:

1. Верхняя – покрышечная стенка отделяет барабанную полость от полости черепа.

2. Нижняя – яремная стенка отделяет барабанную полость от яремной вены.

3. Медианальная – лабиринтная стенка отделяет барабанную полость от костного лабиринта внутреннего уха. В ней имеются окно преддверия и окно улитки, ведущие в отделы костного лабиринта. Окно преддверия закрыто основанием стремени, окно улитки закрыто вторичной барабанной перепонкой. Над окном преддверия в полость выступает стенка лицевого нерва.

4. Литеральная – перепончатая стенка образована барабанной перепонкой и окружающими ее отделами височной кости.

5. Передняя – сонная стенка отделяет барабанную полость от канала внутренней сонной артерии, на ней открывается барабанное отверстие слуховой трубы.

6. В области задней сосцевидной стенки расположен вход в сосцевидную пещеру, ниже его имеется пирамидальное возвышение, внутри которого начинается стременная мышца.

Слуховые косточки – стремя, наковальня и молоточек.

Они названы так благодаря своей форме – самые мелкие в человеческом организме, составляют цепь, соединяющую барабанную перепонку с окном преддверия, ведущим во внутреннее ухо. Косточки передают звуковые колебания от барабанной перепонки окну преддверия. Рукоятка молоточка сращена с барабанной перепонкой. Головка молоточка и тело наковальни соединены между собой суставом и укреплены связками. Длинный отросток наковальни сочленяется с головкой стремечка, основание которого входит в окно преддверия, соединяясь с его краем посредством кольцевой связки стремени. Косточки покрыты слизистой оболочкой.

Сухожилие мышцы, напрягающей барабанную перепонку, прикрепляется к рукоятке молоточка, стременной мышцы - к стремени рядом с его головкой. Указанные мышцы регулируют движение косточек.

Слуховая труба (Евстахиева) длиной около 3.5 см. выполняет очень важную функцию – способствует выравниванию давления воздуха внутри барабанной полости по отношению к наружной среде.

Внутреннее ухо.

Внутреннее ухо расположено в височной кости. В костном лабиринте, изнутри выстланном надкостницей, залегает перепончатый лабиринт, повторяющий формы костного лабиринта. Между обоими лабиринтами имеется щель, заполненная перилимфой. Стенки костного лабиринта образованы компактной костной тканью. Он расположен между барабанной полостью и внутренним слуховым проходом и состоит из преддверия, трех полукружных каналов и улитки.

Костное преддверие – овальная полость, сообщающаяся с полукружными каналами, на ее стенке имеется окно преддверия, у начала улитки – окно улитки.

Три костных полукружных канала лежат в трех взаимно-перпендикулярных плоскостях. Каждый полукружный канал имеет по две ножки, одна из которых перед впадением в преддверие расширяется, образуя ампулу. Соседние ножки переднего и заднего каналов соединяются, образуя общую костную ножку, поэтому три канала открываются в преддверие пятью отверстиями. Костная улитка образует 2.5 завитка вокруг горизонтально лежащего стержня – веретена, вокруг которого наподобие винта закручена костная спиральная пластинка, пронизанная тонкими канальцами, где проходят волокна улитковой части преддверно-улиткового нерва. В основании пластинки расположен спиральный канал, в котором лежит спиральный узел – кортиев орган. Он состоит из множества натянутых, словно струны, волокон.

Рис. 5.18. Звуковая волна.

р - звуковое давление; t - время; л- длина волны.

слуха является звук, поэтому для освещения основных функ­циональных особенностей системы необходимо знакомство с некоторыми понятиями акустики.

Основные физические понятия акустики. Звук представляет собой механические колебания упругой среды, распространяю­щиеся в виде волн в воздухе, жидкости и твердых телах. Ис­точником звука может быть любой процесс, вызывающий местное изменение давления или механическое напряжение в среде. С точки зрения физиологии под звуком понимают такие механические колебания, которые, воздействуя на слуховой рецептор, вызывают в нем определенный физиологический процесс, воспринимаемый как ощущение звука.

Звуковая волна характеризуется синусоидальными, т.е. пе­риодическими, колебаниями (рис. 5.18). При распространении в определенной среде звук представляет собой волну с фазами сгущения (уплотнения) и разрежения. Различают волны по­перечные - в твердых телах, и продольные - в воздухе и жид­ких средах. Скорость распространения звуковых колебаний в воздухе составляет 332 м/с, в воде - 1450 м/с. Одинаковые состояния звуковой волны - участки сгущения или разреже­ния - называются фазами. Расстояние между средним и край­ним положением колеблющегося тела называется амплитудой колебаний, а между одинаковыми фазами - длиной волны. Чис­ло колебаний (сжатий или разрежений) в единицу времени определяется понятием частоты звука. Единицей измерения частоты звука является герц (Гц), обозначающий число коле­баний в секунду. Различают высокочастотные (высокие) и низ­кочастотные (низкие) звуки. Низкие звуки, при которых фазы далеко отстоят друг от друга, имеют большую длину волны, высокие звуки с близким расположением фаз - маленькую (короткую).

Фаза и длина волны имеют важное значение в физиологии слуха. Так, одним из условий оптимального слуха является приход звуковой волны к окнам преддверия и улитки в разных фазах и это анатомически обеспечивается звукопроводящей системой среднего уха. Высокие звуки с малой длиной волны приводят в колебание небольшой (короткий) столб лабиринт­ной жидкости (перилимфы) в основании улитки (здесь они


воспринимаются), низкие - с большой длиной волны - рас­пространяются до верхушки улитки (здесь они воспринимают­ся). Это обстоятельство важно для уяснения современных тео­рий слуха.

По характеру колебательных движений различают:

Чистые тоны;

Сложные тоны;

Гармонические (ритмичные) синусоидальные колебания со­здают чистый, простой звуковой тон. Примером может быть звук камертона. Негармонический звук, отличающийся от про­стых звуков сложной структурой, называется шумом. Частоты разнообразных колебаний, создающих шумовой спектр, отно­сятся к частоте основного тона хаотично, как различные дроб­ные числа. Восприятие шума часто сопровождается неприят­ными субъективными ощущениями.


Способность звуковой волны огибать препятствия называ­ется дифракцией. Низкие звуки с большой длиной волны об­ладают лучшей дифракцией, чем высокие с короткой длиной волны. Отражение звуковой волны от встречающихся на ее пути препятствий называется эхом. Многократное отражение звука в закрытых помещениях от различных предметов носит название реверберации. Явление наложения отраженной звуко­вой волны на первичную звуковую волну получило название "интерференция". При этом может наблюдаться усиление или ослабление звуковых волн. При прохождении звука через на­ружный слуховой проход происходит его интерференция и звуковая волна усиливается.

Явление, когда звуковая волна одного колеблющегося пред­мета вызывает соколебательные движения другого предмета, называется резонансом. Резонанс может быть острым, когда собственный период колебаний резонатора совпадает с перио­дом воздействующей силы, и тупым, если периоды колебаний не совпадают. При остром резонансе колебания затухают мед­ленно, при тупом - быстро. Важно, что колебания структур уха, проводящих звуки, затухают быстро; это устраняет иска­жение внешнего звука, поэтому человек может быстро и пос­ледовательно принимать все новые и новые звуковые сигналы. Некоторые структуры улитки обладают острым резонансом, и это способствует различению двух близкорасположенных частот.

Основные свойства слухового анализатора. К ним относится способность различать высоту звука, громкость и тембр. Ухо человека воспринимает звуковые частоты от 16 до 20 000 Гц, что составляет 10,5 октавы. Колебания с частотой менее 16 Гц называются инфразвуком, а выше 20 000 Гц - Ультразвуком. Инфразвук и ультразвук в обычных условиях

Существует 2 пути, проведения звука:

Основан на способности звуковой волны распространяться в твердых телах. Ксоти черепа хорошо проводят звук. Но значение этого пути для здорового человека не велико. Но если воздушный путь нарушен, то этот путь не заменим. С помощью звукового аппарата раздражение рецепторов достигается минуя, воздушный порог.

2) Воздушный

При этом пути, звук проходит через:

· Ушную раковину – наружно слуховой проход - барабанная перепонка – слуховые косточки – овальное окно – улитка – жидкость каналов – нервный аппарат – круглое окно.

Периферический отдел анализатора. Представлен органом слуха – ухом. Выделяют:

Наружное ухо (ушная раковина, наружный слуховой проход.

· Ушные раковины являются рупором и способствуют концентрации звуков, исходящих из разных участков пространства в направлении наружного слухового прохода.

· Ограничивают поток звуковых сигналов, поступающих с тыльной стороны.

· Выполняют защитную функцию, охраняют барабанную перепонку от термических и механических воздействий. Обеспечивают постоянную температуры и влажность в этой области.

Границей между наружной и средней частью уха является барабанная перепонка .

Имеет форму конуса с вершиной направленной в полость среднего уха.

Функции:

· Обеспечивает передачу колебаний в среднее ухо, по системе слуховых косточек.

Среднее ухо. Представлено барабанной полостью и системой слух косточек

Функции:

· Проводящая – проведение звука. Молоточек, наковальня и стремечко образуют рычаг, который в 20 раз увеличивает давление, падающее на барабанную перепонку.

· Защитная, обеспечивающая 2 мышцами

1) Мышца, натягивающая барабанную перепонку

2) Ста педиальная мышца, при сокращении фиксирует стремечко ограничивая его движение

Функция этих мышц состоит в том, что, сокращаясь они уменьшают амплитуду колебаний барабанной перепонки и косточек и тем самым снижают коэффициент передачи звукового давления во внутреннее ухо. Сокращение возникает при звуке более 90 дБ, однако сокращение имеют слишком большой латентный период 10 миллисекунд.

При действии, мгновенных сильных раздражителей этот механизм не срабатывает. При действии длительных звуков, имеет важную роль. Сокращение стипендиальной мышцы наблюдается при действии нового раздражителя, зевании, глотании и речевой деятельности.

Среднее ухо соединяется с задней частью глотки узким каналом – евстахиевой трубой. Функция заключается в уравновешении давления в среднем ухе и наружной средой.

Внутреннее ухо. Орган слуха. Расположен в улитке, спирально закрученной формы. Улитка разделена на три канала:

В среднем канала на базилярной мембране расположен гордиев орган. Гордиев орган – система поперечных волокон, основной мембраны и чувствительных полосковых клеток, расположенной на этой мембране. Колебание волокон, основной мембраны, передаются на волосковые клетки, в которых соприкосновение с нависающей на них текториальной мембраной вызывает рецепторный потенциал. Нервные импульсы, генерируемые волосковыми клетками, передаются по улитковому нерву, к высшим центрам звуковым анализам.

Изменяется количество рецепторов, настроенных на определенную частоту.

Слуховые проводящие пути.

по аксону нервных клеток спирального ганглия подходящим к рецепторным клеткам передается в слуховой центр продолговатого мозга. Кохлиарные ядра. После переключения на клетках кохллиарных ядер электрические импульсы поступают в ядра верхней оливы здесь отмечается первый перекрест слуховых путей: меньшая часть волокон остаётся сторон слухового рецептора, большая часть идет на противоположную сторону. Далее информация проходит через медиальное коленчатое. тело и передается в верхнюю височную извилину. Где и формируется слуховое ощущение.

Билоуральный слух. Обеспечивает локализацию раздражителя за счет не одновременного до хождения звуковой волны до каждого уха.

Взаимодействие с другими органами и системами.

Соматические –сторожевой рефлекс Висцеральное

Вкусовая система, представляет собой хеморецептивную систему, осуществляющую анализ, действующих на уровне вкусов химических раздражителей.

Вкус - это ощущение, возникающее, в результате влияния какого-либо вещества на рецепторы. Расположенного на поверхности языка и слизистой оболочки ротовой полости. Вкус относится к контактам видам чувствительности. Вкус относится к полимодальным видам чувствительности. Выделяют 4 вкуса чувствительности: сладкое, кислое, соленое, горькое. Кончик языка- сладкое, корень – горькое, боковые поверхности- кислое и соленое.

Порог вкусового ощущение зависит от концентрации вещества. Наиболее низкий – горькое, сладкое выше, порог для кислого и соленого близки к сладкому. Интенсивность зависит от величины поверхности языка и температуры. При длительном воздействии на рецепторы происходит адаптация, порог чувствительно увеличивается.

Рецептурный аппарат.

Вкусовые рецепторы, расположены в виде комплексов, вкусовых почек (около 2000). Состоящих из 40-60 рецепторных клеток. В любую вкусовую почку входит около 50 нервных волокон. Вкусовые почки находятся во вкусовых сосочках имеющих различную структуру и расположенных на языке. Выделяют 3 вида сосочков:

1) Грибовидные. Расположены на все поверхности языка

2) Желобовые. Спинка, корень

3) Листовидные. Вдоль задних краев языка.

Вкусовой рецептор возбуждает благодаря взаимодействию раздражителей с рецепторными молекулами, расположенными на мембране раздражителей.

Обонятельная система.

Осуществляет восприятие и анализ химических раздражителей, находящихся во внешней среде и действующие на органы обоняния.

Обоняние – восприятие организмам при помощи органов обоняния определенных свойств веществ.

Классификация запахов.

Выделяют 7 основных запахов:

1) Камфорные-эвкалипт

2) Эфирный - груша

3) Мускусный-мускус

4) Цветочный – роза

5) Гнилостный – тух яйца

6) Едкий – уксус

7) Мятный –мята

Рецепторный аппарат, представлен обонятельным эпителием. Обонятельные рецепторы имеют выросты цитоплазмы – цилий. Что позволяет увеличить площадь обоняние в 100-150 раз. Молекулы пахучего вещества совпадают с ультрамикроскопической структурой обонятельных клеток, как ключ с замком. Это взаимодействие приводит к изменению проницаемости мембраны, ее дефолиации и развитию нервного импульса. Объединённые в пучок аксоны идут к обонятельной луковице оттуда в составе обонятельного тракта ко многим структурам мозга, ядра третьего мозга, лимбическая система гипоталамус.

Вестибулярный анализатор

Сенсорная система, воспринимающая передающая и анализирующая информацию о пространственные ориентировки тела и обеспечивающее осуществление тонических сложно координированных рефлексов.

Ухо - это орган слуха и равновесия. Его составные части обеспечивают прием звуков и сохранение равновесия.

Раздражитель органа слуха – механическая энергия в форме звуковых колебаний, которые представляют собой чередование сгущений и разрежений воздуха, распространяющиеся во все стороны от источника звука со скоростью около 330 м/сек. Звук может распространяться в воздухе, воде и твердых телах. Скорость распространения зависит от упругости и плотности среды.

Слуховой анализатор состоит:

1. Периферический отдел – в него входит наружное, среднее и внутреннее ухо (рис. 25) ;

2. Подкорковый отдел – состоит из полосатого тела варолиева моста (4-й желудочек мозга), нижних бугров четверохолмия среднего мозга, медиального (среднего) коленчатого тела, таламуса.

3. Слуховая зона коры больших полушарий, расположенная в височной области.

Наружное ухо. Функция - улавливание звуков и их проведение к барабанной перепонке. Состоит из ушной раковины, построенной из хрящевой ткани и наружного слухового прохода, идущего до среднего уха и богатого железами, выделяющими ушную серу, которая скапливается в наружном ухе и с которой выводится наружу пыль и грязь. Наружный слуховой проход имеет длину до 2,5 см, ширина около 1 см 3 . На границе между наружным и средним ухом натянута барабанная перепонка. Ее толщина у человека около

Ушная раковина собирает звуковые волны. В связи с тем, что размеры ушной раковины в 3 раза больше, чем барабанной перепонки, на последнюю падает давление звука в 3 раза большее, чем на ушную раковину. Барабанная перепонка обладает упругостью, поэтому она оказывает сопротивление волне давления, что способствует быстрому затуханию ее колебаний, и она прекрасно передает давление звука, почти не искажая форму звуковой волны.

Среднее ухо представлено барабанной полостью неправильной формы и емкостью 0,75 см 3 , расположенную внутри височной кости. Оно сообщается с носоглоткой с помощью слуховой (евстахиевой) трубы и имеет цепь сочлененных маленьких костей - молоточек, наковальню и стремечко, передающих точно и в усиленном виде колебания барабанной перепонки до тонкой овальной пластинки во внутреннем ухе.

Система слуховых косточек увеличивает давление звуковой волны при передаче с барабанной перепонки на перепонку овального окна приблизительно в 60-70 раз. Такое усиление звука происходит в результате того, что поверхность барабанной перепонки (70 мм 2) больше поверхности стремечка (3,2 мм 2), прикрепленного к овальному окну в 22-25 раз, поэтому и звук увеличивается в 22-25 раз. Так как рычажный аппарат косточек уменьшает амплитуду звуковых волн приблизительно в 2,5 раза, то происходит такое же усиление толчков звуковых волн на овальное окно, а общее усиление звука получается при умножении 22-25 на 2,5. Наружное и среднее ухо проводят звуковое давление, уменьшая колебания звуковой волны. Благодаря евстахиевой трубе поддерживается одинаковое давление по обе стороны барабанной перепонки. Это давление выравнивается при глотательных движениях.

Единственный путь для входа и выхода воздуха в среднем ухе - это евстахиева труба - канал, идущий к задней части носовой полости и сообщающийся с носоглоткой. Благодаря этому каналу давление воздуха в среднем ухе уравнивается с атмосферным давлением, и таким образом давление воздуха на барабанную перепонку уравнивается. При полетах на самолете - при наборе высоты или снижении «закладывает» уши. Это связано с резким изменением атмосферного давления, которое вызывает прогиб барабанной перепонки. Тогда зевок или простое глотание слюны приводит к открытию клапана, расположенного в евстахиевой трубе, и давление в среднем ухе уравнивается с атмосферным давлением; одновременно барабанная перепонка возвращается в свое нормальное положение, и уши «открываются».