Open
Close

Шпаргалка: Строение и функции коры больших полушарий мозга. Проекционные зоны коры головного мозга

Локализация функций в больших полушариях. Кора больших полушарий головного мозга делится на основные зоны, состоящие из нескольких корковых полей. Каждая из этих зон выполняет определенную общую функцию, а составляющие ее поля специализированно участвуют в реализации отдельных элементов этой функции. Однако благодаря проводящим путям в осуществлении отдельных звеньев высшей и низшей нервной деятельности участвует несколько зон больших полушарий, определенные подкорковые центры, ядра мозгового ствола и сегменты спинного мозга.

При тонкой и точной специализации определенных групп нейронов головной и спинной мозг функционируют как единое целое. Психические функции головного мозга также не ограничены отдельными участками коры, а являются результатом совместной деятельности обширных зон больших полушарий и подкорковых центров.

Рис. 123. Индивидуальные изменения основных полей новой коры больших полушарий у трех взрослых (А, Б, В). Цифры- поля по Бродману

Моторная зона (поле 4) расположена в передней центральной извилине вдоль центральной борозды. В верхней четверти зоны находятся двигательные центры для мышц ног.

Сверху расположены нейроны, иннервирующие мышцы пальцев ног, а снизу - бедра и туловища. Две средние четверти заняты центрами для рук, выше - центр мышц лопатки, а ниже - мышц пальцев. И, наконец, в нижней четверти передней центральной извилины находятся центры мышц лица и речевого аппарата.

В результате исторического развития головного мозга человека в процессе труда и речи особенно большое место занимают группы нейронов, которые вызывают сокращение мышц кисти руки, главным образом большого пальца, и мышц лица, языка и гортани. К ним поступают центростремительные волокна из проприорецепторов, входящие по задним корешкам в спинной мозг, где они поднимаются в составе заднего столба той же стороны до ядер нежного и клиновидного пучков продолговатого мозга. Из этих ядер выходят волокна вторых нейронов, образующие медиальную петлю и после перекреста достигающие ядер зрительного бугра противоположной стороны. Отсюда большая часть центростремительных волокон третьих нейронов достигает задней центральной извилины и далее поступает в переднюю центральную извилину, а меньшая часть входит в нее прямым путем. Таким образом, передняя центральная извилина посредством волокон, проходящих в проводящих путях коры, связана с задней центральной извилиной. Из моторной зоны выходят центробежные двигательные волокна пирамидных нейронов, которые составляют пирамидные проводящие пути; они достигают нейронов передних рогов спинного мозга. Моторная зона вызывает координированные движения скелетных мыщц, преимущественно на противоположной стороне тела. Она функционирует совместно с подкорковыми центрами - полосатыми телами, а также люисовым телом, красным ядром и черным веществом.


При поражениях определенных участков передней центральной извилины нарушаются произвольные движения отдельных групп мышц. Неполное поражение зоны вызывает нарушение движений- парез, а полное ее разрушение - паралич.

Зона кожно-мышечной чувствительности (поля 1, 2, 3, 43 и частично 5 и 7) расположена в задней центральной извилине вдоль задней центральной борозды. В этой зоне особенно сильно развиты зернистые слои коры, к которым подходят центростремительные волокна из рецепторов кожи, идущие в составе тех же проводящих путей, как и волокна из проприорецепторов. Расположение воспринимающих групп нейронов такое же, как в моторной зоне. Наибольшую поверхность занимают нейроны, воспринимающие импульсы из рецепторов кисти руки, лица, языка и гортани. Поле 7 больше других полей связано с чувствительностью руки. Зона кожно-мышечной чувствительности не полностью отграничена от моторной зоны, так как в полях 3, 4 и 5 происходит сочетание зернистых нейронов с гигантскими пирамидными нейронами. В моторной зоне находится примерно 80% двигательных нейронов, а в зоне кожно-мышечной чувствительности - 20%. В каждое полушарие поступают импульсы главным образом из рецепторов противоположной стороны тела, но также и из рецепторов той же стороны. В эту зону поступают центростремительные импульсы преимущественно из бокового и полулунного ядер зрительного бугра.

При поражениях определенных участков задней центральной извилины нарушается чувствительность в отдельных участках кожи. Потеря способности узнавать предметы при их осязании обозначается как тактильная агнозия. При нарушениях функций зоны наблюдаются расстройства осязания, болевых и температурных ощущений кожи и мышечно-суставной чувствительности. Неполное поражение зоны вызывает понижение рецепции - гипостезию, а полное - ее потерю - анестезию.

Лобная зона (поля 6, 5, 9, 10, 11, 44, 45, 46, 47) расположена в лобной доле впереди моторной. Она делится на премоторную и речедвигательную. Премоторная зона (поля 6, 8, 9, 10, 11) регулирует тонус скелетных мышц и координированные движения тела, ориентирующие его в пространстве. С полем 10, которое участвует в выполнении двигательных условных рефлексов, функционально связано поле 46. В премоторную зону поступают центростремительные импульсы из внутренних органов и из нее исходит значительная часть центробежных вегетативных волокон. Поэтому поражение премоторной зоны вызывает нарушение координации движений - атаксию и расстройства функций сердечнососудистой, дыхательной, пищеварительной и других систем внутренних органов.

Зрительная зона (поля 17, 18, 19) расположена на внутренней поверхности затылочной доли по обеим сторонам шпорной борозды. У человека она занимает 12% общей поверхности коры. Поле 17 находится на затылочном полюсе; оно окружено полем 18, которое окружает поле 19, граничащее с задним отделом лимбической области, верхней и нижней теменными областями. В поле 17 - центральном поле зрительной зоны в 16 раз больше нейронов, чем в центральном поле слуховой зоны (поле 41), и в 10 раз больше нейронов, чем в центральном поле моторной зоны (поле 4). Это указывает на ведущее в историческом и индивидуальном развитии человека значение зрения.

Из сетчатки 900 тыс.- 1 млн. центростремительных волокон зрительных нервов доходит до наружного коленчатого тела, в котором точно проецируются отдельные части сетчатки. Центростремительные волокна нейронов наружного коленчатого тела направляются в зрительную зону, преимущественно в основное зрительное поле 17. Другими промежуточными зрительными центрами, участвующими в передаче не зрительных импульсов, а глазодвигательных, являются подушка зрительного бугра и передние бугры четверохолмия.

До поступления в наружное коленчатое тело волокна зрительного нерва перекрещиваются. Благодаря этому перекресту в составе зрительного пути, направляющегося в зрительную зону каждого полушария, 50% волокон своей стороны и 50% волокон противоположной стороны. В зрительную зону левого полушария поступают зрительные импульсы из левых половин сетчаток обоих глаз, а в зону правого полушария - из правых половин сетчаток обоих глаз. Поэтому разрушение одной из зрительных зон вызывает слепоту в одноименных половинах сетчаток в обоих глазах - гемианопсию. В зрительных нервах, кроме центростремительных волокон, проходят и несколько более толстые центробежные волокна к мышцам радужной оболочки и центробежные тонкие симпатические волокна из нейронов подкорковых центров. Небольшая часть центростремительных волокон зрительного нерва не прерывается в подкорковых образованиях, а прямо направляется в мозжечок и зрительные зоны больших полушарий.

Разрушение обоих полей 17 вызывает полную корковую слепоту, разрушение поля 18 приводит к потере зрительной памяти при сохранении зрения, что обозначается как зрительная агнозия, а разрушение поля 19 - к потере ориентации в непривычной обстановке.

Слуховая зона (поля 41, 42, 21, 22, 20, 37) расположена на поверхности височной доли, преимущественно передней поперечной височной извилины и верхней височной извилины. Поле 41, расположенное в верхней височной извилине и в передней части поперечной извилины, является проекцией кортиева органа улитки. Из органа Корти центростремительные импульсы проходят через спиральный узел по улиточному нерву, состоящему примерно из 30 тыс. волокон. В этом узле находятся первые биполярные нейроны слухового пути. Далее волокна первых нейронов передают слуховые импульсы в ядра слухового нерва в продолговатом мозге, где находятся вторые нейроны. Волокна ядер слухового нерва связываются с ядрами лицевого нерва в продолговатом мозге и глазодвигательного нерва в передних буграх среднего мозга. Поэтому при сильных звуках рефлекторно сокращаются мышцы лица, век, ушной раковины и вызываются движения глаз.

Большая часть волокон ядер слухового нерва перекрещивается в варолиевом мосту, а меньшая проходит на своей стороне. Затем волокна слухового пути поступают в боковую лемнисковую петлю, которая заканчивается в задних буграх четверохолмия и во внутреннем коленчатом теле, где находятся третьи нейроны - их волокна проводят центростремительные импульсы в слуховую зону. Существуют также прямые пути, связывающие ядра слуховых нервов с мозжечком и слуховой зоной. Большая часть прямых мозжечковых путей образуется вестибулярным нервом, а меньшая- улитковым нервом, составляющими вместе общий ствол слухового нерва. Вестибулярный аппарат проецируется также в слуховой зоне.

Разрушение поля 41 на одной стороне вызывает глухоту на противоположной стороне и ослабление слуха на своей стороне, а разрушение полей 41 на обеих сторонах ведет к полной корковой глухоте. Разрушение поля 22 в передней трети верхней височной извилины приводит к музыкальной глухоте - теряется восприятие интенсивности тона, тембра и ритма звуков - слуховая агнозия. Разрушение полей 21 и 20 в средней и нижней височных извилинах вызывает атаксию - расстройство равновесия и координации движений.

В слуховой зоне расположен также рече-слуховой центр.

Обонятельная и вкусовая зоны. Обонятельная зона находится в древней коре, в которую поступают центростремительные импульсы из обонятельных клеток. Кроме обонятельной функции, она выполняет также вкусовую и участвует в деятельности пищеварительной, выделительной и половой систем. Раньше считали, что гиппокамп выполняет обонятельную функцию. В настоящее время полагают, что вместе с лимбической системой, гипоталамической областью промежуточного мозга и гипофизом, средним и продолговатым мозгом и особенно ретикулярной формацией гиппокамп участвует в общих двигательных реакциях и вегетативных рефлексах при эмоциях. Собственно вкусовая зона, вероятно, расположена в поле 43, которое находится в нижнем отделе задней центральной извилины.

Лимбическая извилина (заднее поле 23 и переднее поле 24) и кора островка (поля 13 и 14) участвуют в высшей нервной деятельности.

Все зоны коры не обособлены, а связаны между собой проводящими путями.

Центры речи (поля 44, 45, 46, 39, 40, 42, 22,37). Двигательный центр речи расположен в нижней части передней центральной извилины в поле 44. У большинства правшей площадь поля 44 в левом полушарии больше, чем в правом полушарии. Поле 44 вызывает сложные сокращения речевой мускулатуры, необходимые для произнесения слов. При разрушении этого поля человек не может говорить, но может производить простейшие сокращения речевой мускулатуры - кричать и петь. Это моторная, двигательная афазия, которая в некоторых случаях проявляется в отсутствии сокращений мышц языка и остальной речевой мускулатуры. Так как в этих случаях слуховой центр речи не поврежден, то понимание речи окружающих сохраняется. При поражении поля 44 часто нарушается не только устная речь, но и внутренняя речь или способность формулировать мысли словами без их произнесения, на основе накопленных звуковых образов, имеющих определенное смысловое содержание. При этом затруднено чтение про себя, расстроена способность писать произвольно и под диктовку, но сохранено копирование букв при письме. У правшей моторная афазия наблюдается при поражении левого полушария, а левшей - правого.

Рис. 129. Локализация центров речи:
1 - двигательный, 2 - слуховой, 3 - зрительный

Впереди поля 44 расположено поле 45, которое регулирует построение грамматически правильных сочетаний слов и пение. При поражении этого поля вследствие потери памяти на приемы произношения пение расстраивается. Мимика и жестикуляция, придающие речи ее выразительность, осуществляются благодаря импульсам, поступающим из поля 46 в поля 44 и 45, в поля премоторной области и в подкорковые центры.

Слуховой, или сенсорный, центр речи расположен в заднем отделе левой верхней височной извилины в поле 42, которое осуществляет понимание слова при слышании его. Если поле разрушается, теряется способность понимания смысла слов, но сохраняется их восприятие как звуков - сенсорная афазия, или речевая глухота. При этом вследствие отсутствия понимания собственной речи, иногда наблюдается чрезмерная говорливость - логоррея, или словесный понос. В задней части поля 22 фиксируются связи звуковых образов слов со всеми воспринимающими зонами, в которых возникают представления о предметах и явлениях. Поэтому поражение этого поля также вызывает сенсорную афазию.

Поля 39 и 40, расположенные в теменной доле рядом с полем 22, осуществляют понимание смысла сочетаний слов или фраз. Поэтому их поражение приводит к расстройству речи, которое называется семантической (смысловой) афазией. При поражении поля 39, вследствие потери способности узнавать буквы и цифры и понимать смысл видимых письменных образов слов и цифр, теряется способность читать вслух, писать и считать. Поражение поля 40 вызывает потерю способности писать, так как отсутствует ориентация движений в пространстве и нарушена их последовательность. Это отсутствие способности производить системные, целенаправленные движения (апраксия) не исключает возможности правильно совершать отдельные движения руки, не связанные с письмом. Следовательно, процесс письма у правшей осуществляется, височной, нижнетеменной и нижнелобной областями левого полушария. При поражении поля 37 вызывается потеря памяти на слова - амнестическая афазия.

Таким образом, в осуществлении функции речи участвуют большие полушария головного мозга в целом, но особенная роль выполняется отдельными полями коры. У правшей в результате преимущественного развития функций правой руки и правой половины тела особенно развиты сложнейшие психические функции левого полушария головного мозга.

Похожие материалы:

Кора больших полушарий головного мозга , слой серого вещества толщиной 1-5 мм, покрывающий полушария большого мозга млекопитающих животных и человека. Эта часть головного мозга, развившаяся на поздних этапах эволюции животного мира, играет исключительно важную роль в осуществлении психической, или высшей нервной деятельности, хотя эта деятельность является результатом работы мозга как единого целого. Благодаря двусторонним связям с нижележащими отделами нервной системы, кора может участвовать в регуляции и координации всех функций организма. У человека кора составляет в среднем 44% от объёма всего полушария в целом. Её поверхность достигает 1468-1670 см2.

Строение коры . Характерной особенностью строения коры является ориентированное, горизонтально-вертикальное распределение составляющих её нервных клеток по слоям и колонкам; таким образом, корковая структура отличается пространственно упорядоченным расположением функционирующих единиц и связей между ними. Пространство между телами и отростками нервных клеток коры заполнено нейроглией и сосудистой сетью (капиллярами). Нейроны коры подразделяются на 3 основных типа: пирамидные (80-90% всех клеток коры), звездчатые и веретенообразные. Основные функциональный элемент коры - афферентно-эфферентный (т. е. воспринимающий центростремительные и посылающий центробежные стимулы) длинноаксонный пирамидный нейрон. Звездчатые клетки отличаются слабым развитием дендритов и мощным развитием аксонов, которые не выходят за пределы поперечника коры и охватывают своими разветвлениями группы пирамидных клеток. Звездчатые клетки выполняют роль воспринимающих и синхронизирующих элементов, способных координировать (одновременно тормозить или возбуждать) пространственно близкие группы пирамидных нейронов. Корковый нейрон характеризуется сложным субмикроскопическим строением.Различные по топографии участки коры отличаются плотностью расположения клеток, их величиной и другими характеристиками послойной и колончатой структуры. Все эти показатели определяют архитектуру коры, или её цитоархитектонику Наиболее крупные подразделения территории коры - древняя (палеокортекс), старая (архикортекс), новая (неокортекс) и межуточная кора. Поверхность новой коры у человека занимает 95,6%, старой 2,2%, древней 0,6%, межуточной 1,6%.

Если представить себе кору мозга в виде единого покрова (плаща), одевающего поверхность полушарий, то основная центральная часть его составит новая кора, в то время как древняя, старая и межуточная займут место на периферии, т. е. по краям этого плаща. Древняя кора у человека и высших млекопитающих состоит из одного клеточного слоя, нечетко отделённого от нижележащих подкорковых ядер; старая кора полностью отделена от последних и представлена 2-3 слоями; новая кора состоит, как правило, из 6-7 слоев клеток; межуточные формации - переходные структуры между полями старой и новой коры, а также древней и новой коры - из 4-5 слоев клеток. Неокортекс подразделяется на следующие области: прецентральную, постцентральную, височную, нижнетеменную, верхнетеменную, височно-теменно-затылочную, затылочную, островковую и лимбическую. В свою очередь, области подразделяются на подобласти и поля. Основной тип прямых и обратных связей новой коры - вертикальные пучки волокон, приносящие информацию из подкорковых структур к коре и посылающие её от коры в эти же подкорковые образования. Наряду с вертикальными связями имеются внутрикортикальные - горизонтальные - пучки ассоциативных волокон, проходящие на различных уровнях коры и в белом веществе под корой. Горизонтальные пучки наиболее характерны для I и III слоев коры, а в некоторых полях для V слоя.

Горизонтальные пучки обеспечивают обмен информацией как между полями, расположенными на соседних извилинах, так и между отдалёнными участками коры (например, лобной и затылочной).

Функциональные особенности коры обусловливаются упомянутым выше распределением нервных клеток и их связей по слоям и колонкам. На корковые нейроны возможна конвергенция (схождение) импульсов от различных органов чувств. Согласно современным представлениям, подобная конвергенция разнородных возбуждений - нейрофизиологический механизм интегративной деятельности головного мозга, т. е. анализа и синтеза ответной деятельности организма. Существенное значение имеет и то, что нейроны сведены в комплексы, по-видимому, реализующие результаты конвергенции возбуждений на отдельные нейроны. Одна из основных морфо-функциональных единиц коры - комплекс, называемый колонкой клеток, который проходит через все корковые слои и состоит из клеток, расположенных на одном перпендикуляре к поверхности коры. Клетки в колонке тесно связаны между собой и получают общую афферентную веточку из подкорки. Каждая колонка клеток отвечает за восприятие преимущественно одного вида чувствительности. Например, если в корковом конце кожного анализатора одна из колонок реагирует на прикосновение к коже, то другая - на движение конечности в суставе. В зрительном анализаторе функции восприятия зрительных образов также распределены по колонкам. Например, одна из колонок воспринимает движение предмета в горизонтальной плоскости, соседняя - в вертикальной и т. п.

Второй комплекс клеток новой коры - слой - ориентирован в горизонтальной плоскости. Полагают, что мелкоклеточные слои II и IV состоят в основном из воспринимающих элементов и являются «входами» в кору. Крупноклеточный слой V - выход из коры в подкорку, а среднеклеточный слой III - ассоциативный, связывающий между собой различные корковые зоны

Локализация функций в коре характеризуется динамичностью в силу того, что, с одной стороны, имеются строго локализованные и пространственно отграниченные зоны коры, связанные с восприятием информации от определенного органа чувств, а с другой - кора является единым аппаратом, в котором отдельные структуры тесно связаны и в случае необходимости могут взаимозаменяться (т. н. пластичность корковых функций). Кроме того, в каждый данный момент корковые структуры (нейроны, поля, области) могут образовывать согласованно действующие комплексы, состав которых изменяется в зависимости от специфических и неспецифических стимулов, определяющих распределение торможения и возбуждения в коре. Наконец, существует тесная взаимозависимость между функциональным состоянием корковых зон и деятельностью подкорковых структур. Территории коры резко различаются по своим функциям. Большая часть древней коры входит в систему обонятельного анализатора. Старая и межуточная кора, будучи тесно связанными с древней корой как системами связей, так и эволюционно, не имеют прямого отношения к обонянию. Они входят в состав системы, ведающей регуляцией вегетативных реакций и эмоциональных состояний. Новая кора - совокупность конечных звеньев различных воспринимающих (сенсорных) систем (корковых концов анализаторов).

Принято выделять в зоне того или иного анализатора проекционные, или первичные, и вторичные, поля, а также третичные поля, или ассоциативные зоны. Первичные поля получают информацию, опосредованную через наименьшее количество переключений в подкорке (в зрительном бугре, или таламусе, промежуточного мозга). На этих полях как бы спроецирована поверхность периферических рецепторов.В свете современных данных, проекционные зоны нельзя рассматривать как устройства, воспринимающие раздражения «точку в точку». В этих зонах происходит восприятие определенных параметров объектов, т. е. создаются (интегрируются) образы, поскольку данные участки мозга отвечают на определенные изменения объектов, на их форму, ориентацию, скорость движения и т. п.

Корковые структуры играют первостепенную роль в обучении животных и человека. Однако образование некоторых простых условных рефлексов, главным образом с внутренних органов, может быть обеспечено подкорковыми механизмами. Эти рефлексы могут образовываться и на низших уровнях развития, когда ещё нет коры. Сложные условные рефлексы, лежащие в основе целостных актов поведения, требуют сохранности корковых структур и участия не только первичных зон корковых концов анализаторов, но и ассоциативных - третичных зон. Корковые структуры имеют прямое отношение и к механизмам памяти. Электрораздражение отдельных областей коры (например, височной) вызывает у людей сложные картины воспоминаний.

Характерная особенность деятельности коры - её спонтанная электрическая активность, регистрируемая в виде электроэнцефалограммы (ЭЭГ). В целом кора и её нейроны обладают ритмической активностью, которая отражает происходящие в них биохимические и биофизические процессы. Эта активность имеет разнообразную амплитуду и частоту (от 1 до 60 гц) и изменяется под влиянием различных факторов.

Ритмическая активность коры нерегулярна, однако можно по частоте потенциалов выделить несколько разных типов её (альфа-, бета-, дельта- и тета-ритмы). ЭЭГ претерпевает характерные изменения при многих физиологических и патологических состояниях (различных фазах сна, при опухолях, судорожных припадках и т. и.). Ритм, т. е. частота, и амплитуда биоэлектрических потенциалов коры задаются подкорковыми структурами, которые синхронизируют работу групп корковых нейронов, что и создаёт условия для их согласованных разрядов. Этот ритм связан с апикальными (верхушечными) дендритами пирамидных клеток. На ритмическую деятельность коры накладываются влияния, идущие от органов чувств. Так, вспышка света, щелчок или прикосновение к коже вызывают в соответствующих зонах т. н. первичный ответ, состоящий из ряда позитивных волн (отклонение электронного луча на экране осциллографа вниз) и негативной волны (отклонение луча вверх). Эти волны отражают деятельность структур данного участка коры и меняются в её различных слоях.

Филогенез и онтогенез коры . Кора - продукт длительного эволюционного развития, в процессе которого сначала появляется древняя кора, возникающая в связи с развитием обонятельного анализатора у рыб. С выходом животных из воды на сушу начинает интенсивно развиваться т. н. плащевидная, полностью обособленная от подкорки часть коры, которая состоит из старой и новой коры. Становление этих структур в процессе приспособления к сложным и разнообразным условиям наземного существования связано (совершенствованием и взаимодействием различных воспринимающих и двигательных систем. У земноводных кора представлена древней и зачатком старой коры, у пресмыкающихся хорошо развиты древняя и старая кора и появляется зачаток новой коры. Наибольшего развития новая кора достигает у млекопитающих, а среди них у приматов (обезьяны и человек), хоботных (слоны) и китообразных (дельфины, киты). В связи с неравномерностью роста отдельных структур новой коры её поверхность становится складчатой, покрываясь бороздами и извилинами. Совершенствование коры конечного мозга у млекопитающих неразрывно связано с эволюцией всех отделов центральной нервной системы. Этот процесс сопровождается интенсивным ростом прямых и обратных связей, соединяющих корковые и подкорковые структуры. Т. о., на более высоких этапах эволюции функции подкорковых образований начинают контролироваться корковыми структурами. Данное явление получило название кортиколизации функций. В результате кортиколизации ствол мозга образует с корковыми структурами единый комплекс, а повреждение коры на высших этапах эволюции приводит к нарушению жизненно важных функций организма. Наибольшие изменения и увеличение в процессе эволюции новой коры претерпевают ассоциативные зоны, в то время как первичные, сенсорные поля уменьшаются по относительной величине. Разрастание новой коры приводит к вытеснению старой и древней на нижнюю и срединную поверхности мозга.

Корковая пластинка появляется в процессе внутриутробного развития человека сравнительно рано - на 2-м месяце. Раньше всего выделяются нижние слои коры (VI-VII), затем - более высоко расположенные (V, IV, III и II;)К 6 месяцам у эмбриона уже имеются все цитоархитектонические поля коры, свойственные взрослому человеку. После рождения в росте коры можно выделить три переломных этапа: на 2-3-м месяце жизни, в 2,5-3 года и в 7 лет. К последнему сроку цитоархитектоника коры полностью сформирована, хотя тела нейронов продолжают увеличиваться до 18 лет. Корковые зоны анализаторов завершают своё развитие раньше, и степень их увеличения меньше, чем у вторичных и третичных зон. Отмечается большое разнообразие в сроках созревания корковых структур у разных индивидуумов, что совпадает с разнообразием сроков созревания функциональных особенностей коры. Т. о., индивидуальное (онтогенез) и историческое (филогенез) развитие коры характеризуется сходными закономерностями.

На тему : строение коры головного мозга

Подготовила


30.07.2013

Образована нейронами, представляет собой слой серого вещества, который покрывает полушария большого мозга. Её толщина 1,5 - 4,5 мм, площадь у взрослого 1700 – 2200 см 2 . Миелинизированные волокна, образующие белое вещество конечного мозга, соединяют кору с остальными отделами могза . Приблизительно 95 процентов поверхности полушарий является неокортексом или новой корой, которая филогенетически считается самым поздним образованием головного мозга. Архиокортекс (старая кора) и палеокортекс (древняя кора) имеют более примитивное строение, для них характерно нечёткое разделение на слои (слабая стратификация).

Строение коры.

Неокортекс образован шестью слоями клеток: молекулярной пластинкой, наружной зернистой пластинкой, наружной пирамидной пластинкой, внутренней зернистой и пирамидной пластинками, мультиформной пластинкой. Каждый слой отличается наличием нервных клеток определённого размера и формы.

Первый слой – молекулярная пластинка, которая образована небольшим количеством горизонтально ориентированных клеток. Содержит ветвящиеся дендриты пирамидных нейронов нижележащих слоёв.

Второй слой – наружная зернистая пластинка, состоящая из тел звездчатых нейронов и пирамидных клеток. Сюда же относится и сеть тонких нервных волокон.

Третий слой – наружная пирамидная пластинка состоит из тел пирамидных нейронов и отростков, которые не образуют длинных проводящих путей.

Четвёртый слой – внутренняя зернистая пластинка образована плотно расположенными звездчатыми нейронами. К ним прилегают таламокортикальные волокна. К этому слою относятся пучки миелиновых волокон.

Пятый слой – внутренняя пирамидная пластинка сформирована в основном крупными пирамидными клетками Беца.

Шестой слой – мультиформная пластинка, состоящая из большого числа мелких полиморфных клеток. Данный слой плавно переходит в белое вещество больших полушарий.

Бороздами кора головного мозга каждого из полушарий делится на четыре доли.

Центральная борозда начинается на внутренней поверхности, спускается вниз полушария и отделяет лобную долю от теменной. Латеральная борозда берёт начало от нижней поверхности полушария, косо поднимается к верху и заканчивается на середине верхнелатеральной поверхности. Теменно-затылочная борозда локализуется в задней части полушария.

Лобная доля.

Лобная доля имеет следующие структурные элементы: лобный полюс, предцентральную извилину, верхнюю лобную извилину, среднюю лобную извилину, нижнюю лобную извилину, покрышечную часть, треугольную и глазничную часть. Предцентральная извилина является центром всех двигательных актов: начиная от элементарных функций и заканчивая сложными комплексными действиями. Чем богаче и дифференцированнее действие, тем большую зону занимает данный центр. Интеллектуальная активность контролируется латеральными отделами. Медиальная и орбитальная поверхность отвечают за эмоциональное поведение и вегетативную активность.

Теменная доля.

В её пределах различают постцентральную извилину, внутритеменную борозду, парацентральную дольку, верхнюю и нижнюю теменные дольки, надкраевую и угловую извилины. Соматическая чувствительная кора головного мозга располагается в постцентральной извилине, существенной особенностью расположения функций здесь является соматотопическое расчленение. Всю оставшуюся теменную долю занимает ассоциативная кора. Она отвечает за распознавание соматической чувствительности и её взаимосвязь с различными формами сенсорной информации.

Затылочная доля.

Является самой малой по размерам и включает полулунную и шпорную борозды, поясную извилину и участок клиновидной формы. Здесь располагается корковый центр зрения. Благодаря чему человек может воспринимать зрительные образы, распознавать и оценивать их.

Височная доля.

На боковой поверхности можно выделить три височные извилины: верхнюю, среднюю и нижнюю, также несколько поперечных и две затылочно-височных извилин. Здесь, кроме того, находится извилина гиппокампа, которая считается центром вкуса и обоняния. Поперечные височные извилины являются зоной контролирующей слуховое восприятие и интерпретацию звуков.

Лимбический комплекс.

Объединяет группу структур, которые находятся в краевой зоне коры больших полушарий и зрительного бугра промежуточного мозга. Это лимбическая кора головного мозга, зубчатая извилина, миндалевидное тело, перегородочный комплекс, сосцевидные тела, передние ядра, обонятельные луковицы, пучки соединительных миелиновых волокон. Главная функция этого комплекса – это контроль эмоций, поведения и стимулов, а также функций памяти.

Основные нарушения функций коры.

Основные расстройства, которым подвергается кора головного мозга , делят на очаговые и диффузные. Из очаговых наиболее часто встречаются:

Афазия – расстройство или полная утрата речевой функции;

Аномия – неспособность называть различные объекты;

Дизартрия – расстройство артикуляции;

Просодия – нарушение ритмики речи и расстановки ударений;

Апраксия – неспособность выполнить привычные движения;

Агнозия – утрата способности узнавать предметы при помощи зрения или осязания;

Амнезия – нарушение памяти, которое выражается незначительной или полной неспособности воспроизводить информацию, полученную человеком в прошлом.

К диффузным расстройствам относят: оглушение, сопор, кому, делирий и деменцию.

Ретикулярная формация ствола мозга занимает центральное положение в продолговатом мозге, варолиевом мосту, среднем и промежуточном мозге.

Нейроны ретикулярной формации не имеют непосредственных контактов с рецепторами организма. Нервные импульсы при возбуждении рецепторов поступают к ретикулярной формации по коллатералям волокон вегетативной и соматической нервной системы.

Физиологическая роль . Ретикулярная формация ствола мозга оказывает восходящее влияние на клетки коры головного мозга и нисходящее на мотонейроны спинного мозга. Оба эти влияния ретикулярной формации могут быть активирующими или тормозными.

Афферентная импульсация к коре головного мозга поступает по двум путям: специфическому и неспецифическому. Специфический нервный путь обязательно проходит через зрительные бугры и несет нервные импульсы к определенным зонам коры головного мозга, в результате осуществляется какая-либо специфическая деятельность. Например, при раздражении фоторецепторов глаз импульсы через зрительные бугры поступают в затылочную область коры головного мозга и у человека возникают зрительные ощущения.

Неспецифический нервный путь обязательно проходит через нейроны ретикулярной формации ствола мозга. Импульсы к ретикулярной формации поступают по коллатералям специфического нервного пути. Благодаря многочисленным синапсам на одном и том же нейроне ретикулярной формации могут сходиться (конвергировать) импульсы различных значений (световые, звуковые и т. д.), при этом они теряют свою специфичность. От нейронов ретикулярной формации эти импульсы поступают не в какую-то определенную область коры головного мозга, а веерообразно распространяются по ее клеткам, повышая их возбудимость и облегчая тем самым выполнение специфической функции.

В опытах на кошках с вживленными в область ретикулярной формации ствола мозга электродами было показано, что раздражение ее нейронов вызывает пробуждение спящего животного. При разрушении ретикулярной формации животное впадает в длительное сонное состояние. Эти данные свидетельствуют о важной роли ретикулярной формации в регуляции состояния сна и бодрствования. Ретикулярная формация не только оказывает влияние на кору головного мозга, но также посылает в спинной мозг к его двигательным нейронам тормозящие и возбуждающие импульсы. Благодаря этому она участвует в регуляции тонуса скелетной мускулатуры.

В спинном мозге, как уже указывалось, также имеются нейроны ретикулярной формации. Полагают, что они поддерживают на высоком уровне активность нейронов спинного мозга. Функциональное состояние самой ретикулярной формации регулируется корой головного мозга.

Мозжечок

Особенности строения мозжечка . Связи мозжечка с другими отделами центральной нервной системы . Мозжечок - это непарное образование; он располагается позади продолговатого мозга и варолиева моста, граничит с четверохолмиями, сверху прикрыт затылочными долями больших полушарий, В мозжечке различают среднюю часть - червь и расположенные по бокам от него два полушария . Поверхность мозжечка состоит из серого вещества, называемого корой, которая включает тела нервных клеток. Внутри мозжечка располагается белое вещество , представляющее собой отростки этих нейронов.

Мозжечок имеет обширные связи с различными отделами центральной нервной системы за счет трех пар ножек. Нижние ножки соединяют мозжечок со спинным и продолговатым мозгом, средние - с варолиевым мостом и через него с двигательной областью коры головного мозга, верхние -со средним мозгом и гипоталамусом.

Функции мозжечка были изучены на животных, у которых мозжечок удаляли частично или полностью, а также путем регистрации его биоэлектрической активности в покое и при раздражении.

При удалении половины мозжечка отмечается повышение тонуса мышц-разгибателей, поэтому конечности животного вытягиваются, наблюдаются изгиб туловища и отклонение головы в оперированную сторону, иногда качательные движения головой. Часто движения совершаются по кругу в оперированную сторону («манежные движения»). Постепенно отмеченные нарушения сглаживаются, однако сохраняется некоторая неловкость движений.

При удалении всего мозжечка наступают более выраженные двигательные расстройства. В первые дни после операции животное лежит неподвижно с запрокинутой головой и вытянутыми конечностями. Постепенно тонус мышц-разгибателей ослабевает, появляется дрожание мышц, особенно шейных. В дальнейшем двигательные функции частично восстанавливаются. Однако до конца жизни животное остается двигательным инвалидом: при ходьбе такие животные широко расставляют конечности, высоко поднимают лапы, т. е. у них нарушена координация движений.

Двигательные расстройства при удалении мозжечка были описаны известным итальянским физиологом Лючиани. Основными из них являются: а т о н и я - исчезновение или ослабление мышечного тонуса; а с т е н и я -снижение силы мышечных сокращений. Для такого животного характерно быстро наступающее мышечное утомление; а с т а з и я - потеря способности к слитным тетаническим сокращениям, У животных наблюдаются дрожательные движения конечностей и головы. Собака после удаления мозжечка не может сразу поднять лапы, животное делает ряд колебательных движений лапой, перед тем как ее поднять. Если поставить такую собаку, то тело ее и голова все время качаются из стороны в сторону.

В результате атонии, астении и астазии у животного нарушается координация движений: отмечаются шаткая походка, размашистые, неловкие, неточные движения. Весь комплекс двигательных расстройств при поражении мозжечка получил название мозжечковой атаксии .

Подобные нарушения наблюдаются и у человека при поражении мозжечка.

Через некоторое время после удаления мозжечка, как уже указывалось, все двигательные расстройства постепенно сглаживаются. Если у таких животных удалить моторную область коры головного мозга, то двигательные нарушения вновь усиливаются. Следовательно, компенсация (восстановление) двигательных расстройств при поражении мозжечка осуществляется при участии коры головного мозга, ее моторной области.

Исследованиями Л. А. Орбели было показано, что при удалении мозжечка наблюдается не только падение мышечного тонуса (атония), но и неправильное его распределение (дистония). Л. Л. Орбели установил, что мозжечок влияет и на состояние рецепторного аппарата, а также на вегетативные процессы. Мозжечок оказывает адаптационно-трофическое влияние на все отделы мозга через симпатическую нервную систему, он регулирует обмен веществ в головном мозге и тем самым способствует приспособлению нервной системы к изменяющимся условиям существования.

Таким образом, основными функциями мозжечка являются координация движений, нормальное распределение мышечного тонуса и регуляция вегетативных функций. Свое влияние мозжечок реализует через ядерные образования среднего и продолговатого мозга, через двигательные нейроны спинного мозга. Большая роль в этом влиянии принадлежит двусторонней связи мозжечка с моторной зоной коры головного мозга и ретикулярной формацией ствола мозга.

Особенности строения коры больших полушарий головного мозга.

Кора больших полушарий головного мозга в филогенетическом отношении является высшим и наиболее молодым отделом центральной нервной системы.

Кора мозга состоит из нервных клеток, их отростков и нейроглии. У взрослого человека толщина коры в большинстве областей составляет около 3 мм. Площадь коры больших полушарий благодаря многочисленным складкам и бороздам составляет 2500 см 2 . Для большинства участков коры головного мозга характерно шестислойное расположение нейронов. Кора больших полушарий состоит из 14-17 млрд. клеток. Клеточные структуры коры головного мозга представлены пирамидными, веретенообразными и звездчатыми нейронами.

Звездчатые клетки выполняют главным образом афферентную функцию. Пирамидные и веретенообразные клетки - это преимущественно эфферентные нейроны.

В коре больших полушарий имеются высокоспециализированные нервные клетки, воспринимающие афферентные импульсы от определенных рецепторов (например, от зрительных, слуховых, тактильных и т. д.). Имеются также нейроны, которые возбуждаются нервными импульсами, идущими от разных рецепторов организма. Это так называемые полисенсорные нейроны.

Отростки нервных клеток коры головного мозга связывают ее различные отделы между собой или устанавливают контакты коры больших полушарий с нижележащими отделами центральной нервной системы. Отростки нервных клеток, соединяющие между собой различные участки одного и того же полушария называются ассоциативными , связывающие чаще всего одинаковые участки двух полушарий - комиссуральными и обеспечивающие контакты коры головного мозга с другими отделами центральной нервной системы и через них со всеми органами и тканями тела - проводящими (центробежными). Схема этих путей приведена на рисунке.

Схема хода нервных волокон в больших полушариях головного мозга.

1 - короткие ассоциативные волокна; 2 - длинные ассоциативные волокна; 3 - комиссуральные волокна; 4 - центробежные волокна.

Клетки нейроглии выполняют ряд важных функций: они являются опорной тканью, участвуют в обмене веществ головного мозга, регулируют кровоток внутри мозга, выделяют нейросекрет, который регулирует возбудимость нейронов коры головного мозга.

Функции коры головного мозга.

1) Кора головного мозга осуществляет взаимодействие организма с окружающей средой за счет безусловных и условных рефлексов;

2) она является основой высшей нервной деятельности (поведения) организма;

3) за счет деятельности коры головного мозга осуществляются высшие психические функции: мышление и сознание;

4) кора головного мозга регулирует и объединяет работу всех внутренних органов и регулирует такие интимные процессы, как обмен веществ.

Таким образом, с появлением коры головного мозга она начинает контролировать все процессы, протекающие в организме, а также всю деятельность человека, т. е. происходит кортиколизация функций. И. П. Павлов, характеризуя значение коры головного мозга, указывал, что она является распорядителем и распределителем всей деятельности животного и человеческого организма.

Функциональное значение различных областей коры головного мозга . Локализация функций в коре головного мозга . Роль отдельных областей коры головного мозга впервые была изучена в 1870 г. немецкими исследователями Фричем и Гитцигом. Они показали, что раздражение различных участков передней центральной извилины и собственно лобных долей вызывает сокращение определенных групп мышц на противоположной раздражению стороне. В дальнейшем была выявлена функциональная неоднозначность различных областей коры. Было обнаружено, что височные доли коры головного мозга связаны со слуховыми функциями, затылочные - со зрительными функциями и т.д. Эти исследования позволили сделать вывод, что разные участки коры больших полушарий ведают определенными функциями. Было создано учение о локализации функций в коре головного мозга.

По современным представлениям, различают три типа зон коры головного мозга: первичные проекционные зоны, вторичные и третичные (ассоциативные).

Первичные проекционные зоны - это центральные отделы ядер анализаторов. В них расположены высокодифференцированные и специализированные нервные клетки, к которым поступают импульсы от определенных рецепторов (зрительных, слуховых, обонятельных и др.). В этих зонах происходит тонкий анализ афферентных импульсов различного значения. Поражение указанных зон ведет к расстройствам чувствительных или двигательных функций.

Вторичные зоны - периферические отделы ядер анализаторов. Здесь происходит дальнейшая обработка информации, устанавливаются связи между различными по характеру раздражителями. При поражении вторичных зон возникают сложные расстройства восприятий.

Третичные зоны (ассоциативные ) . Нейроны этих зон могут возбуждаться под влиянием импульсов, идущих от рецепторов различного значения (от рецепторов слуха, фоторецепторов, рецепторов кожи и т. д.). Это так называемые полисенсорные нейроны, за счет которых устанавливаются связи между различными анализаторами. Ассоциативные зоны получают переработанную информацию от первичных и вторичных зон коры больших полушарий. Третичные зоны играют большую роль в формировании условных рефлексов, они обеспечивают сложные формы познания окружающей действительности.

Значение различных областей коры головного мозга . В коре большого мозга выделяют сенсорные, моторные области

Сенсорные области коры . (проекционная кора, корковые отделы анализаторов). Это зоны, в которые проецируются сенсорные раздражители. Они расположены преимущественно в теменной, височной и затылочной долях. Афферентные пути в сенсорную кору поступают преимущественно от релейных сенсорных ядер таламуса – вентральных задних, латерального и медиального. Сенсорные области коры образованы проекционными и ассоциативными зонами основных анализаторов.

Область кожной рецепции (мозговой конец кожного анализатора) представлена в основном задней центральной извилиной. Клетки этой области воспринимают импульсы от тактильных, болевых и температурных рецепторов кожи. Проекция кожной чувствительности в пределах задней центральной извилины аналогична таковой для двигательной зоны. Верхние участки задней центральной извилины связаны с рецепторами кожи нижних конечностей, средние - с рецепторами туловища и рук, нижние - с рецепторами кожи головы и лица. Раздражение этой.области у человека во время нейрохирургических операций вызывает ощущения прикосновения, покалывания, онемения, при этом никогда не наблюдается выраженных болевых ощущений.

Область зрительной рецепции (мозговой конец зрительного анализатора) расположена в.затылочных долях коры головного мозга обоих полушарий. Эту область следует рассматривать как проекцию сетчатой оболочки глаза.

Область слуховой рецепции (мозговой конец слухового анализатора) локализуется в височных долях коры головного мозга. Сюда поступают нервные импульсы от рецепторов улитки внутреннего уха. При повреждении этой зоны может возникнуть музыкальная и словесная глухота, когда человек слышит, но не понимает значения слов; Двустороннее поражение слуховой области приводит к полной глухоте.

Область вкусовой рецепции (мозговой конец вкусового анализатора) расположена в нижних долях центральной извилины. Эта область получает нервные импульсы от вкусовых рецепторов слизистой оболочки полости рта.

Область обонятельной рецепции (мозговой конец обонятельного анализатора) располагается в передней части грушевидной доли коры головного мозга. Сюда поступают нервные импульсы от обонятельных рецепторов слизистой оболочки носа.

В коре больших полушарий обнаружено несколько зон, ведающих функцией речи (мозговой конец речедвигательного анализатора). В лобной области левого полушария (у праворуких) располагается моторный центр речи (центр Брока). При его поражении речь затруднена или даже невозможна. В височной области находится сенсорный центр речи (центр Вернике). Повреждение этой области приводит к расстройствам восприятия речи: больной не понимает значение слов, хотя способность произносить слова сохранена. В затылочной доле коры головного Мозга имеются зоны, обеспечивающие восприятие письменной (зрительной) речи. При поражении этих областей больной не понимает написанного.

В теменной области коры больших полушарий не обнаружены мозговые концы анализаторов, ее относят к ассоциативным зонам. Среди нервных клеток теменной области найдено большое количество полисенсорных нейронов, которые способствуют установлению связей между различными анализаторами и играют большую роль в формировании рефлекторных дуг условных рефлексов

Моторные области коры Представление о роли двигательной коры большого мозга двояко. С одной стороны, было показано, что электрическое раздражение некоторых корковых зон у животных вызывает движение конечностей противоположной стороны тела, что говорило о том, что кора непосредственно участвует в реализации двигательных функций. В то же время признано, что двигательная область является анализаторной, т.е. представляет собой корковый отдел двигательного анализатора.

Мозговой отдел двигательного анализатора представлен передней центральной извилиной и расположенными вблизи нее участками лобной области. При ее раздражении возникают разнообразные сокращения скелетной мускулатуры на противоположной стороне. Установлено соответствие между определенными зонами передней центральной извилины и скелетной мускулатурой. В верхних участках этой зоны проецируется мускулатура ног, в средних - туловища, в нижних - головы.

Особый интерес представляет собственно лобная область, которая достигает у человека наибольшего развития. При поражении лобных областей у человека нарушаются сложные двигательные функции, обеспечивающие трудовую деятельность и речь, а также приспособительные, поведенческие реакции организма.

Любая функциональная зона коры головного мозга находится и в анатомическом, и в функциональном контакте с другими зонами коры больших полушарий, с подкорковыми ядрами, с образованиями промежуточного мозга и ретикулярной формации, что обеспечивает совершенство выполняемых ими функций.

1. Структурно-функциональные особенности ЦНС в антенатальном периоде.

У плода количество нейронов ДНС достигает максимума к 20-24-й неделе и остается в постнатальном периоде без резкого снижения до пожилого возраста. Нейроны имеют малые размеры и суммарную площадь синаптической мембраны.

Аксоны развиваются раньше дендритов, отростки нейронов интенсивно растут и ветвятся. Наблюдается увеличение длины, диаметра и миелинизации аксонов к концу антенатального периода.

Филогенетически старые пути миелинизируются раньше, чем филогенетически новые; например, вестибулоспинал ьные пути с 4-го месяца внугриугробного развития, руброспинальные пути с 5-8-го месяца, пирамидные пути после рождения.

Nа- и К-каналы равномерно распределены в мембране миелиновых и немиелиновых волокон.

Возбудимость, проводимость, лабильность нервных волокон значительно ниже, чем у взрослых людей.

Синтез большинства медиаторов начинается в период внутриутробного развития. Гамма-аминомасляная кислота в антенатальном периоде является возбуждающим медиатором и через Са2-механизм оказывает морфогенные эффекты - ускоряет рост аксонов и дендрвтов, синаптогенез, экспрессию питорецепторов.

К моменту рождения заканчивается процесс дифференциации нейронов ядер продолговатого и среднего мозга, моста.

Имеется структурно-функциональная незрелость глиальных клеток.

2. Особенности ЦНС в периоде новорожденности.

> Возрастает степень миелинизации нервных волокон, их количество составляет 1/з уровня взрослого организма (например, полностью миелинизирован руброспинальный путь).

> Уменьшается проницаемость клеточных мембран для ионов. Нейроны имеют более низкую амплитуду МП - около 50 мВ (у взрослых примерно 70 мВ).

> На нейронах синапсов меньше, чем у взрослых, мембрана нейрона имеет рецепторы к синтезируемым медиаторам (ацетилхолину, ГАМ К, серотонину, норадреналину в дофамину). Содержание медиаторов в нейронах мозга новорожденных низкое в составляет 10-50% медиаторов у взрослых.

> Отмечается развитие шипикового аппарата нейронов и аксошипиковых синапсов; ВПСП и ТПСП имеют большую длительность и меньшую амплитуду, чем у взрослых. Количество тормозных синапсов на нейронах меньше, чем у взрослых.

> Повышается возбудимость корковых нейронов.

> Исчезает (точнее, резко уменьшается) митотическая активность и возможность регенерации нейронов. Продолжается пролиферация и функциональное созревание глиоцитов.

З. Особенности ЦНС в грудном возрасте.

Созревание ЦНС быстро прогрессирует. Наиболее интенсивная миелинизация нейронов ЦНС происходит в конце первого года после рождения (например, к 6 мес завершается миелинизация нервных волокон полушарий мозжечка).

Возрастает скорость проведения возбуждения по аксонам.

Наблюдается уменьшение продолжительности ПД нейронов, укорачиваются абсолютная и относительная рефрактерные фазы (длительность абсолютной рефрактерности 5-8 мс, относительной 4О-бО мс в раннем постнатальном онтогенезе, у взрослых соответственно 0,5-2,О и 2-10 мс).

Кровоснабжение мозга у детей относительно больше, чем у взрослых.

4. Особенности развития ЦНС в другие возрастные периоды.

1) Структурно-функциональные изменения в нервных волокнах:

Увеличение диаметров осевых цилиндров (к 4-9 годам). Миелинизация во всех периферических нервных волокнах близка к завершению к 9 годам, а пирамидных путей заканчивается к 4 годам;

Ионные каналы концентрируются в области перехватов Ранвье, расстояние между перехватами увеличивается. Непрерывное проведение возбуждения сменяется сальтаторным, скорость его проведения после 5-9 лет почти не отличается от скорости у взрослых (50-70 м/с);

Отмечается низкая лабильность нервных волокон у детей первых лет жизни; с возрастом она увеличивается (у детей 5- 9 лет приближается к норме взрослых - 300- 1 000 импульсов).

2) Структурно-функциональные изменения в синапсах:

Значительное созревание нервных окончаний (нервно-мышечных синапсов) происходит к 7-8 годам;

Увеличиваются терминальные разветвления аксона и суммарная площадь его окончаний.

Профильный материал для студентов педиатрического факультета

1. Развитие головного мозга в постнатальном периоде.

В постнатальном периоде ведущую роль в развитии головного мозга играют потоки афферентной импульсации по различным сенсорным системам (роль информационно обогащенной внешней среды). Отсутствие этих внешних сигналов, особенно в критические периоды, может приводить замедлению соэреваняя, недоразвитию функции или даже к ее отсутствию

Критический период в постнатального развитии характеризуется интенсивным морфофункциональным созреванием головного мозга и пиком образования НОВЫХ связей между нейронами.

Общей закономерностью развития мозга человека является гетерохронность созрсвания: фвлогенетически более старые отделы развиваются раньше, чем более молодые.

Продолговатый мозг новорожденного в функциональном отношении развит больше, чем другие отделы: действуют ПОЧТИ все его центры - дыхания, регуляции сердца и сосудов, сосания, глотания, кашля, чиханья, несколько позже начинает Функционировать Центр жевания В регуляции мышечного тонуса снижена активность вестибулярных ядер (снижен тонус Разгибателей) К 6 годам в этих Центрах завершаются дифференцировка нейронов миелинизация волокон, совершенствуется координационная деятельность Центров

Средний мозг у новорожденных в функциональном отношении является менее созревшим. Например, ориентировочный рефлекс и деятельность центров, управляющих движением глаз и ИХ осуществляются в грудном возрасте. Функция Черного вещества в составе стриопаллидарной системы достигает совершенства к 7 годам.

Мозжечок у новорожденного в структурно-функциональном отношении развит недостаточно в течение грудного возраста происходит его усиленный рост и дифференцировка нейронов, увеличиваются связи Мозжечка с другими моторными центрами. Функциональное созревание Мозжечка в основном начинается с 7 лет и завершается к 16 годам.

Созревание промежуточного мозга включает развитие сенсорных ядер таламуса и центров гипоталамуса

Функция сенсорных ядер таламуса осуществляется уже у Новорожденного, что Позволяет Ребенку различать вкусовые, температурные, тактильные и болевые ощущения. Функции неспецифических ядер таламуса и восходящей активирующей ретикулярной формации ствола мозга в первые месяцы жизни развиты слабо, что обусловливает короткое время его бодрствования в течение суток. Ядра таламуса окончательно функционально развиваются к 14 годам.

Центры гипоталамуса у новорожденного развиты слабо, что приводит к несовершенству процессов терморегуляции, регуляции водно-электролитного и других видов обмена, потребностно-мотивационной сферы. Большинство гипоталамических центров функционально созревают к 4 годам. Наиболее поздно (к 16 годам) начинают функционировать половые гипоталамические центры.

К моменту рождения базальные ядра имеют разную степень функциональной активности. Филогенетически более старая структура - бледный шар - функционально хорошо сформирована, тогда как функция полосатого тела проявляется к концу 1 года. В связи с этим движения новорожденных и грудных детей генерализованы, плохо координированы. По мере развития стриопалидарной системы ребенок выполняет все более точные и координированные движения, создает двигательные программы произвольных движений. Структурно-функциональное созревание базальных ядер завершается к 7 годам.

Кора больших полушарий в раннем онтогенезе в структурно-функциональном отношении созревает более поздно. Наиболее рано развивается моторная и сенсорная кора, созревание которых заканчивается на З-м году жизни (слуховой и зрительной коры несколько позже). Критический период в развитии ассоциативной коры наступает в возрасте 7 лет в продолжается до пубертатного периода. В это же время интенсивно формируются корково-подкорковые взаимосвязи. Кора больших полушарий обеспечивает кортикализацию функций организма, регуляцию произвольных движений, создание в реализацию двигательных стереотипов, высшие психофизиологические процессы. Подробно созревание и реализация функций коры больших полушарий изложены в профильных материалах для студентов педиатрического факультета в теме 11, т. 3, темах 1-8.

Гематоликворный и гематоэнцефалический барьеры в постнатальном периоде имеют ряд особенностей.

В раннем постнатальном периоде в сосудистых сплетениях желудочков головного мозга формируются крупные вены, Которые могут депонировать значительное количество крови 14 тем самым участвовать в регуляции внутричерепного давления.

Кора большого мозга представлена равномерным слоем серого вещества толщиною 1,3-4,5 мм, состоящим более чем из 14 млрд. нервных клеток. Благодаря складчатости коры ее поверхность достигает больших размеров - около 2200 см 2 .

Толща коры состоит из шести слоев клеток, которые различают при специальной окраске и исследовании под микроскопом. Клетки слоев различны по форме и размерам. От них в глубь мозга отходят отростки.

Было установлено, что разные участки - поля коры полушарий различаются по строению и функциям. Таких полей (называемых еще зонами, или центрами) выделяют от 50 до 200. Строгих границ между зонами коры большого мозга не существует. Они составляют аппарат, обеспечивающий прием, переработку приходящих сигналов и ответную реакцию на поступившие сигналы.

В задней центральной извилине, позади от центральной борозды, располагается зона кожной и суставно-мышечной чувствительности . Здесь воспринимаются и анализируются сигналы, возникающие при касании к нашему телу, при воздействии на него холода или тепла, болевых воздействиях.


В противоположность этой зоне - в передней центральной извилине, спереди от центральной борозды, расположена двигательная зона . В ней выявлены участки, которые обеспечивают движения нижних конечностей, мышц туловища, рук, головы. При раздражении этой зоны электротоком возникают сокращения соответствующих групп мышц. Ранения или другие повреждения коры двигательной зоны влекут за собой паралич мышц тела.

В височной доле находится слуховая зона . Сюда поступают и здесь анализируются импульсы, возникающие в рецепторах улитки внутреннего уха. Раздражения участков слуховой зоны вызывают ощущения звуков, а при поражении их болезнью утрачивается слух.

Зрительная зона расположена в коре затылочных долей полушарий. При ее раздражении электрическим током во время операций на мозге человек испытывает ощущения вспышек света и темноты. При поражении ее какой-либо болезнью ухудшается и теряется зрение.

Вблизи боковой борозды расположена вкусовая зона , где анализируются и формируются ощущения вкуса на основании сигналов, возникающих в рецепторах языка. Обонятельная зона расположена в так называемом обонятельном мозге, у основания полушарий. При раздражении этих зон во время хирургических операций или при воспалении люди ощущают запах или вкус каких-либо веществ.

Чисто речевой зоны не существует. Она представлена в коре височной доли, нижней лобной извилине слева, участках теменной доли. Их поражения болезнями сопровождаются расстройствами речи.

Первая и вторая сигнальные системы

Неоценима роль коры большого мозга в совершенствовании первой сигнальной системы и развитии второй. Эти понятия разработаны И.П.Павловым. Под сигнальной системой в целом понимают всю совокупность процессов нервной системы, осуществляющих восприятие, переработку информации и ответную реакцию организма. Она связывает организм с внешним миром.

Первая сигнальная система

Первая сигнальная система обусловливает восприятие посредством органов чувств чувственно-конкретных образов. Она является основой для образования условных рефлексов. Эта система существует как у животных, так и у человека.

В высшей нервной деятельности человека развилась надстройка в виде второй сигнальной системы. Она свойственна только человеку и проявляется словесным общением, речью, понятиями. С появлением этой сигнальной системы стали возможными отвлеченное мышление, обобщение бесчисленных сигналов первой сигнальной системы. По И.П.Павлову, слова превратились в «сигналы сигналов».

Вторая сигнальная система

Возникновение второй сигнальной системы стало возможным благодаря сложным трудовым взаимоотношениям между людьми, так как эта система является средством общения, коллективного труда. Словесное общение не развивается вне общества. Вторая сигнальная система породила отвлеченное (абстрактное) мышление, письмо, чтение, счет.

Слова воспринимаются и животными, но совершенно отлично от людей. Они воспринимают их как звуки, а не их смысловое значение, как люди. Следовательно, у животных нет второй сигнальной системы. Обе сигнальные системы человека взаимосвязаны. Они организуют поведение человека в широком смысле слова. Причем вторая изменила первую сигнальную систему, так как реакции первой стали в значительной мере зависеть от социальной среды. Человек стал в состоянии управлять своими безусловными рефлексами, инстинктами, т.е. первой сигнальной системой.

Функции коры мозга

Знакомство с наиболее важными физиологическими функциями коры большого мозга свидетельствует о необычайном ее значении в жизнедеятельности. Кора вместе с ближайшими к ней подкорковыми образованиями является отделом центральной нервной системы животных и человека.

Функции коры головного мозга - осуществление сложных рефлекторных реакций, составляющих основу высшей нервной деятельности (поведения) человека. Не случайно у него она получила наибольшее развитие. Исключительным свойством коры являются сознание (мышление, память), вторая сигнальная система (речь), высокая организация труда и жизни в целом.