Open
Close

Сравнение прокариотической и эукариотической клеток. Клеточная теория

Древнейшие на Земле организмы, не имеющие клеточного ядра, появившиеся около четырех миллиардов лет тому назад, называются прокариотами , то есть доядерными. В настоящее время они тоже распространены, обитают в воде, почве, воздухе, на покровах животных и растений, а также внутри них. Прокариоты освоили экстремальные места обитания (Рис. 2): горячие источники (они выживают и живут при температуре 70 0 и выше), моря и соленые озера (галобактерии живут при солености около 30 %).

Рис. 2. Места обитания прокариот ()

Форма бактерий чрезвычайно разнообразна: шаровидная, палочковидная и изогнутая (Рис. 3).

Рис. 3. Формы бактерий ()

Размеры клеток большинства прокариот - от 0,2 до 10 микрометров, встречаются и карлики (нанобактерии и микоплазмы), размер которых - от 0,05 до 0,1 микрометра. Кроме этого, существуют и гиганты (макромонусы) с размерами до 10 микрометров. Средний размер клетки бактерии - около 1 микрометра. Размеры прокариот меньше размеров эукариот.

По сравнению с эукариотической, клетка прокариот выглядит гораздо проще (Рис. 4).

Рис. 4. Клетка прокариот и эукариот ()

У прокариот нет ядра, единственная кольцевая молекула ДНК, находящаяся в клетках прокариот и условно называемая бактериальной хромосомой, находится в центре клетки, однако эта молекула ДНК не имеет оболочки и располагается непосредственно в цитоплазме.

Рассмотрим строение прокариотической клетки (Рис. 5).

Рис. 5. Строение прокариотической клетки ()

Снаружи клетки прокариот, так же как и эукариотические клетки, покрыты плазматической мембраной. Строение мембран у двух этих групп организмов одинаковое. Клеточная мембрана прокариот образует многочисленные впячивания внутрь клетки - мезосомы. На них располагаются ферменты, обеспечивающие реакции обмена веществ в прокариотической клетке. Поверх плазматической мембраны клетки прокариот покрыты оболочкой, состоящей из углеводов, напоминающей клеточную стенку растительных клеток. Однако эта стенка образована не клетчаткой, как у растений, а другими полисахаридами - пектином и муреином. В цитоплазме прокариотических клеток нет мембранных органоидов: митохондрий, пластидов, ЭПС, комплекса Гольджи, лизосом. Их функции выполняют складки и впячивания наружной мембраны - мезосомы. В цитоплазме прокариот беспорядочно располагаются мелкие рибосомы. Цитоскелета в прокариотических клетках тоже нет, но иногда встречаются жгутики, которые способствуют передвижению бактерий. На поверхности бактериальной клетки находятся пили - белковые нити, с помощью которых бактерии присоединяются к субстрату или поверхности. Половые пили служат для обмена генетического материала между различными бактериями.

Фотосинтезирующие бактерии - цианобактерии, имеют в клетках фотосинтезирующие мембраны или тилакоиды, в которых содержатся пигменты, участвующие в процессе фотосинтеза (Рис. 6), такие как хлорофилл.

Рис. 6. Цианобактерия ()

На тилакоидах содержатся пигменты, являющиеся вспомогательными при процессе фотосинтеза - фикобилины: аллофикоцианин, фикоэритрин и фикоцианин. Фикобилины образуют прочные соединения с белками (фикобилинпротеиды). Связь между фикобилинами и белками разрушается только кислотой.

В клетках прокариот откладываются и запасные питательные вещества, отложение или запас происходит в результате избытка питательных веществ, а потребление при недостатке питательных веществ. К запасным питательным веществам относятся полисахариды (крахмал, гликоген, гранулеза), липиды (гранулы или капли жира), полифосфаты (источник фосфора и энергии).

Большинство эукариот являются аэробами, то есть используют в энергетическом обмене кислород воздуха. Напротив, многие прокариоты являются анаэробами, и кислород для них вреден. Некоторые бактерии, называемые азотфиксирующими, способны усваивать азот воздуха, чего эукариоты делать не могут. Те виды прокариот, которые получают энергию благодаря фотосинтезу, содержат особую разновидность хлорофилла, который может располагаться на мезосомах.

В неблагоприятных условиях (холод, жара, засуха) многие бактерии образуют споры. При спорообразовании вокруг бактериальной хромосомы образуется особая плотная оболочка, а остальное содержимое клетки отмирает. Спора может десятилетиями находиться в неактивном состоянии, а в благоприятных условиях из нее снова прорастает активная бактерия (Рис. 7).

Рис. 7. Схема образования спор у бактерий ()

Чаще всего прокариоты размножаются бесполым путем: ДНК удваивается, и далее клетка делится в поперечной плоскости пополам (Рис. 8). В благоприятных условиях бактерии способны делиться каждые 20 минут; при этом потомство от одной клетки через трое суток теоретически имело бы массу 7500 тонн! К счастью, таких условий в принципе быть не может.

Рис. 8. Размножение прокариот ()

Половое размножение у прокариот наблюдается гораздо реже, чем бесполое, однако оно очень важно, так как при обмене генетической информацией бактерии передают друг другу устойчивость к неблагоприятным воздействиям (например, к лекарствам). При половом процессе бактерии могут обмениваться как участками бактериальной хромосомы, так и особыми маленькими кольцевыми двуцепочечными молекулами ДНК - плазмидами. Обмен может происходить через цитоплазматический мостик между двумя бактериями или с помощью вирусов, усваивающих участки ДНК одной бактерии и переносящих их в другие бактериальные клетки, которые они заражают.

Мы рассмотрели прокариотическую клетку, которая организована достаточно просто по сравнению с эукариотической клеткой, основным отличием которой является отсутствие оформленного ядра, кольцевая молекула ДНК располагается в цитоплазме свободно и не окружена ядерной оболочкой. В прокариотической клетке нет мембранных органелл, которые свойственны эукариотическим клеткам.

Список литературы

  1. Беляев Д.К. Общая биология. Базовый уровень. - 11 издание, стереотипное. - М.: Просвещение, 2012.
  2. Пасечник В.В., Каменский А.А., Криксунов Е.А. Общая биология, 10-11 класс. - М.: Дрофа, 2005.
  3. Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010.
  1. Biobib.ru ().
  2. Cat.convdocs.org ().
  3. Bio-faq.ru ().

Домашнее задание

  1. Каково основное различие между прокариотическими и эукариотическими клетками?
  2. Что такое бактериальная хромосома?
  3. Как происходит половое размножение прокариот?

Сценарий анимации О 9 9 – Л- 7

«Сравнение клеток эукариот и прокариот».

Экран 1.

Лабораторная работа:«Сравнение клеток эукариот и прокариот».

(рис. 1) (рис. 2)

Экран 2

Оборудование: стол, на столе:

Микроскоп тканевая салфетка готовые микропрепараты бактерий и клеток эукариот

Таблицы строения клеток эукариот и прокариот

Экран 3 .

(Верхняя строка экрана) Лабораторная работа: «Сравнение клеток эукариот и прокариот».

Цель: Познакомиться с двумя уровнями клеток, изучить строение бактериальной клетки, сравнить строение клеток бактерий и простейших организмов.

Экран 4 . (Верхняя строка экрана) Эукариоты.

Демонстрация текста + озвучивание

(рис. 3) (рис. 4) (рис. 5)

Эукариоты или ядерные (от греч. eu - хорошо и carion - ядро) - организмы, содержащие в клетках четко оформленное ядро. К эукариотам относятся одноклеточные и многоклеточные растения, грибы и животные, то есть все организмы, кроме бактерий. Клетки эукариот разных царств различаются по ряду признаков. Но во многом их строение сходно. Каковы же особенности клеток эукариот? Из предыдущих уроков вы знаете, что в клетках животных нет клеточной оболочки, которая есть у растений и грибов, нет пластид, которые есть у растений и некоторых бактерий. Вакуоли в клетках животных очень малы и непостоянны. Центриоли у высших растений не обнаружены.

Экран 5 . (Верхняя строка экрана) Прокариоты.

Демонстрация текста + озвучивание

(рис. 6)

Клетки прокариот или предъядерные (от лат. pro - вместо, впереди и carion) не имеют оформленного ядра. Ядерное вещество у них расположено в цитоплазме и не отграничено от нее мембраной. Прокариоты - наиболее древние примитивные одноклеточные организмы. К ним относят бактерии и цианобактерии. Размножаются они простым делением. У прокариот в цитоплазме расположена одиночная кольцевая молекула ДНК, которая называется нуклеоидом или бактериальной хромосомой, в которой записана вся наследственная информация бактериальной клетки. Непосредственно в цитоплазме располагаются рибосомы. Клетки прокариот гаплоидны. Они не содержат митохондрий, комплекса Гольджи, ЭПС. Синтез АТФ осуществляется в них на плазматической мембране. Клетки прокариот, так же как и эукариотические клетки, покрыты плазматической мембраной. Поверх которой располагается клеточная стенка и слизистая капсула. Несмотря на относительную простоту, прокариоты являются типичными независимыми клетками.

Экран 6 (

Демонстрация текста + озвучивание: «Перед проведением практической работы необходимо ознакомиться с инструкцией».

Предложения появляются последовательно над рисунком.

1. Рассмотрите под микроскопом готовые микропрепараты эукариотических клеток: амебы обыкновенной, хламидомонады и Мукора.

2. Рассмотрите готовый микропрепарат прокариотической клетки под микроскопом.

3. Рассмотрите таблицы со строением клеток эукариот и прокариот.

4. Заполните таблицу, отметив наличие органоида «+», а отсутствие «-». Напишите, какие организмы относятся к прокариотам и эукариотам.

Сравнительная характеристика прокариот и эукариот

Признаки

Прокариоты

Эукариоты

Наличие оформленного ядра

Цитоплазма

Клеточная оболочка

Митохондрии

Рибосомы

Какие организмы относятся

Экран 7 (Верхняя строка) Лабораторная работа: «Сравнение клеток эукариот и прокариот».

Демонстрация

Озвучивание

    Появляется микроскоп и готовые микропрепараты тканей растений. Рука протирает салфеткой зеркало, затем появляется глаз, смотрящий в окуляр. Руки помещают препарат амебы обыкновенной на предметный столик, затем вращают револьверный столик, останавливается объектив, увеличивается изображение объектива и цифры на нем (х8), объектив возвращается к исходному размеру. Руки вращают зеркало. Увеличение препарата.

    Приблизить и показать микропрепарат амебы

Появляется готовый препарат хламидомонады. Руки помещают препарат на предметный столик. Глаз направляется к окуляру. Приблизить и показать строение клетки.

Препарат снимается, микроскоп удаляется.

Появляется готовый препарат Мукора. Руки помещают препарат на предметный столик. Глаз направляется к окуляру. Приблизить и показать строение клетки.

Препарат снимается, микроскоп удаляется.

Появляется готовый препарат бактериальной клетки. Руки помещают препарат на предметный столик. Глаз направляется к окуляру. Приблизить и показать строение клетки.

    Появляются таблицы со строением клеток эукариот

(рис 12)

(рис. 13)

И прокариот

(рис. 14)

    Появляется тетрадь и ручка. Одна рука берет тетрадь, открывает ее и заполняется таблица.

Признаки

Прокариоты

Эукариоты

Наличие оформленного ядра

Цитоплазма

Клеточная оболочка

Митохондрии

Рибосомы

Какие организмы относятся

бактерии

Грибы, растения, животные

(таблица 1)

    Текст вывода:

Внутри прокариотической клетки отсутствуют органоиды, окруженные мембранами, т.е. в ней нет эндоплазматической сети, нет митохондрий, нет пластид, комплекса Гольджи, нет ядра.

Прокариоты часто имеют органоиды движения – жгутики и реснички.

Эукариоты имеют ядро и органоиды, более сложное строение, которое указывает на процесс эволюции.

    Приготовьте к работе микроскоп.

    Рассмотрите под микроскопом готовые микропрепараты эукариотических клеток.

    Рассмотрите таблицы со строением клеток эукариот и прокариот.

    Заполните таблицу, отметив наличие органоида «+», а отсутствие «-». Напишите, какие организмы относятся к прокариотам и эукариотам.

    Сделайте вывод: Есть ли принципиальные различия между прокариотами и эукариотами? О чём это может говорить?

Признаки Эукариоты Прокариоты
Ядерная оболочка Присутствует Отсутствует
ДНК Находится в фор­ме линейных хро­мосом, где ДНК связана с белками гисто-нами, причем на долю белков при­ходится до 65 % массы хромосомы Обычно одна кольцевая хромосо­ма, всегда связанная с плазмати­ческой мембраной. Суперспирали-зованная «голая» (без белков) ДНК собрана в петли (около 120), от­ходящие от центральной области, в которой они связаны небольшим количеством белковых молекул
Комплекс Гольджи Присутствует Отсутствует
ЭПС Присутствует Отсутствует
Лизосомы Присутствуют Отсутствуют
**Жгутики Покрыты мем­браной, в середи­не две централь­ные микротру­бочки, по перифе­рии - девять двойных микро­трубочек, в осно­вании - базальные тельца Принципиально отличны от жгу­тиков эукариот. В основании базальное тельце с 2 или 4 дисками и крючок. Сам жгутик - микро­трубочка из белка флагеллина
Рибосомы Состоят из двух субъединиц, ко­эффициент седи­ментации 80, со­держат молекулы белка и четыре молекулы рРНК Состоят из двух субъединиц, коэффициент седиментации 70, содержат молекулы белка и три молекулы рРНК
Клеточный центр Присутствует Отсутствует
**Цито-скелет Присутствует Отсутствует
Признаки Эукариоты Прокариоты
Митохонд­рии Присутствуют Отсутствуют
Пластиды у автотрофов Присутствуют Отсутствуют
Способ по­глощения нищи За счет осмоса; путем фагоцито­за и пиноцитоза. Захват пищи ртом у многокле­точных живот­ных За счет осмоса
Пищевари-гсльные вакуоли Присутствуют Отсутствуют

Задание 2.21. Заполните таблицу

Таблица 15

Сравнительная характеристика клеток эукариот

Признаки Царство Животные Царство Растения Царство Грибы
Клеточная стенка Отсутствует, на поверхности мембраны нахо­дится гликока-ликс Образована целлюлозой (клетчаткой) Образована хитином
Резервное питательное вещество Гликоген Крахмал Гликоген
Наличие пластид Как правило, отсутствуют Присутствуют Отсутст­вуют
Пишите митохондрий Присутствуют Присутствуют Присут­ствуют
Центриоли в клеточном центре Присутствуют Отсутствуют у высших расте­ний Отсутст­вуют
Способ поглащения пищи Захват пищи За счет осмоса За счет осмоса

ДЗ№14

Задание 2.22. Тест «Ядро. Эукариоты, прокариоты»

1. Оболочка ядра образована:

1. Мембраной, имеющей 3. Одной мембраной, поры
поры. отсутствуют.

2. Двумя мембранами, 4. Двумя мембранами, поры
имеет поры. отсутствуют.

2. Ядрышки в ядре обеспечивают:

1. Синтез белков. 3. Образование субъединиц

2. Удвоение ДНК. рибосом.

4. Образование центриолей клеточного центра.

3. Наследственную информацию клетки хранят:
1.ДНК. З.Липиды.

2. Белки хромосом. 4. Углеводы.

*4. К прокариотам относятся:

1. Вирусы. 4. Синезеленые.

2. Грибы. 5. Животные.

3. Растения. 6. Бактерии.
*5. К эукариотам относятся:

1. Вирусы. 4. Синезеленые.

2. Грибы. 5. Животные.

3. Растения. 6. Бактерии.

*6. Симбионтами эукариотической клетки считаются:

1. Рибосомы. 3. Митохондрии.

2. Комплекс Гольджи. 4. Пластиды.
*7. У прокариот отсутствуют:

1. Митохондрии. 5. Комплекс Гольджи.

2. Пластиды. 6. ЭПС.

3. Ядро. 7. Лизосомы.

4. Рибосомы. 8. Клеточный центр.

8. Вещество, характерное для клеточной стенки грибов:

1. Целлюлоза (клетчатка). 3. Муреин.

2. Хитин. 4. Такого вещества нет.

9. Запасное питательное вещество, характерное для грибов:

1. Крахмал. 3. Гликоген.

2. Глюкоза. 4. Такого вещества нет.

10. В клеточном центре не имеют центриолей:

1. Низшие растения. 3. Многоклеточные животные.

2. Высшие растения. 4. Простейшие.

Задание 2.23. Определите правильность суждений,

относящихся к теме «Органоиды клетки.

Прокариоты, эукариоты»

1. Лизосомы образуются в комплексе Гольджи.

2. Рибосомы отвечают за синтез белка.

3. Кмембранам шероховатой ЭПС прикреплены рибосомы.

4. Комплекс Гольджи отвечает за выведение продуктов биосинтеза из клетки.

5. Митохондрии присутствуют в растительных и животных клетках.

6. Хромопласты имеют зеленую окраску.

7. Лейкопласты могут превращаться вхлоропласты.

8. Длярастительных клеток характерна центральная вакуоль.

9. В ядрышках синтезируются субъединицы рибосом.

10. Ядро - одномембранный органоид.

11. В ядре происходит синтез рибосомальных белков.
**12. Высшиерастения не имеют центриолей.

13. В клетках грибов встречаются хлоропласты.

14. У растений нет митохондрий.

** 15. У водорослей в клеточном центре есть центриоли.

16. Грибы относятся к эукариотам.

17. Грибы относятся к царству Растения.

18. В состав клеточной стенки грибов входит хитин.

19. Основное запасное вещество грибов - крахмал.

20. В клетках грибов хлоропласты отсутствуют.

21. Прокариоты имеют кольцевую ДНК.

22. Прокариоты имеют одну линейную хромосому.
**23. Бактерии имеют 70S рибосомы.

**24. Бактерии имеют 80S рибосомы.

ЗАЧЕТ 2

Задание 2.24. Вопросы к зачету по теме «Структура и функции клетки»

I. Когда и кем были созданы первые два положения клеточной и теории?

2. Кто доказал, что новые клетки образуются путем деления материнской клетки?

3. Кто показал, что клетка является единицей развития?

4. Чем образована плазмалемма?

5. Из каких слоев состоят оболочки животной и растительной клеток?

6. Перечислите функции клеточной оболочки.

7. Назовите виды транспорта через клеточную мембрану.

8. Что такое фагоцитоз и пиноцитоз?

9. В каком участке клетки образуются субъединицы рибосом?

10. Каковы функции рибосом?

11. ** 11. Каков коэффициент седиментации прокариотических ри­босом и эукариотических?

12. Какие виды эндоплазматической сети вам известны и каковы их функции?

13. Какие функции выполняет комплекс Гольджи?

14. Какие функции выполняют лизосомы?

15. Какие органоиды клетки называют органоидами дыхания?

16. Как происходят взаимопревращения пластид?

17. Как называется внутренняя среда у митохондрий и пластид?

18. Чем образованы центриоли клеточного центра?

19. Какие эукариоты не имеют центриолей?

20. Каковы функции клеточного центра?

21. Перечислите органоиды движения клетки.

22. Перечислите одномембранные органоиды клетки.

23. Перечислите двумембранные органоиды клетки.

24. Перечислите немембранные органоиды клетки.

25. В каких клеточных органоидах имеется ДНК?

26. Каковы функции ядра?

27.Какие органоиды отсутствуют в растительной клетке высших растений?

28. Какое вещество характерно для стенок растительных клеток?

29.Какие органоиды отсутствуют в клетках многоклеточных животных?

30. Какие органоиды эукариотической клетки возникли в резульгате симбиоза?

31. Какие клеточные органоиды способны к самоудвоению?

32. Приведите классификацию эукариот.

33. Какое вещество характерно для стенок клеток грибов?

34. Какое запасное вещество характерно для клеток грибов?

35.Приведите классификацию прокариот

36. Какие органоиды отсутствуют у прокариот?

37. Какое вещество характерно для стенок бактериальных клеток?

38. Как происходит размножение прокариот?

39. В какой форме находится генетический материал у эукариотческой клетки?

40.В какой форме находится генетический материал у прокариотической клетки?

ДЗ№15

Задание 3.1. Заполните таблицу

Таблица 16 Различия в обмене веществ между гетеротрофами и автотрофами

Задание 3.2. Определите правильность суждений, относящихся к теме «Обмен веществ и энергии»

1. Гетеротрофные организмы используют для синтеза органичес­ких соединений неорганический источник углерода - СО 2 .

2. Гетеротрофные организмы, которые в качестве источника энергии используют энергию химических связей органических ве­ществ, относятся к хемогетеротрофам.

3. Первые гетеротрофные организмы Земли были анаэробными организмами.

4. В настоящее время все гетеротрофы используют кислород для дыхания, для окисления органических веществ.

5. Автотрофные организмы способны использовать углеродуглекислого газа для синтеза органических соединений.

6. Хемоавтотрофные организмы в качестве основного источника энергии используют энергию химических связей молекул органичес­их веществ.

7. Фотоавтотрофные организмы в качестве источника энер­гии используют энергию света, в качестве источника углерода – СО 2

8. Наиболее древние фотосинтезирующие организмы Земли (зеленые и пурпурные бактерии) при фотосинтезе выделяют О 2 .

9. Синезеленые (цианобактерии) при фотосинтезе впервые ста­ли выделять кислород в атмосферу.

10. В результате симбиоза бактерий-окислителей с анаэробной клеткой бактерии преобразовались в митохондрии.

11. В результате симбиоза синезеленых с древней эукариотической клеткой появились растения, при этом синезеленые транс­формировались в хлоропласты.

12. Ассимиляция - совокупность реакций обмена веществ в клетке.

13. Диссимиляция - совокупность реакций распада и окисления, протекающих в клетке.

14. Реакции пластического обмена идут с потреблением энергии.

15. Реакции энергетического обмена идут с выделением энергии.

Задание 3.3. Заполните таблицу

Таблица 17 Реакции ассимиляции и диссимиляции

ДЗ№16

Таблица 18 Фотосинтез

Фазы фотосин­теза Процессы, происходящие в данной фазе Результаты процессов
Световая фаза За счет световой энергии происходит окисление хлорофилла. Восстановле­ние его происходит за счет электро­нов, отбираемых у водорода воды. Создается разность потенциалов между внутренней и наружной сто­ронами мембраны тилакоида, и с по­мощью АТФ-синтетазы образуется АТФ, при этом происходит восстанов­ление НАДФ+ доНАДФ Н 2 Происходит фо­толиз воды, при котором выделя­ется О 2 , энергия света превраща­ется в энергию химических связей АТФ иНАДФН 2
Темновая фаза Происходит фиксация СО?. В реак­циях цикла Кальвинапревращается СОг в глюкозу за счет АТФ и вос­становительной силы НАДФ Н^ образованных в световую фазу Образование моносахаридов

Задание 3.8. Тест «Фотосинтез»

*1. Максимально используются в световую фазу фотосинтеза:

1. Красные лучи. 3. Зеленые лучи.

2. Желтые лучи. 4. Синие лучи.

2. Фотосинтетические пигменты располагаются:

3. В строме. пласта.

3. Протоны в световую фазу фотосинтеза накапливаются:

1. В мембранах тилакоидов. 4. В межмембранном

2. В полости тилакоидов. пространстве хлоро-

3. В строме. пласта.

4. Реакции темновой фазы фотосинтеза происходят:

1. В мембранах тилакоидов. 4. В межмембранном

2. В полости тилакоидов. пространстве хлоро-

3. В строме. пласта.
*5. В световую фазу фотосинтеза происходит:

1. Образование АТФ. 3. Выделение О 2

2. Образование НАДФ ■ Н. 4. Образование углеводов.

6. В темновую фазу фотосинтеза происходит:

1. Образование АТФ. 3. Выделение О г

2. Образование НАДФ Н 2 . 4. Образование углеводов.

7. При фотосинтезе происходит выделение О 2 , который образу­ется при разложении:

1.СО 2 . З.СО 2 иН 2 О.

2. (Я 2 О.) 4. С 6 Н, 2 О 6 .

8. Реакции цикла Кальвина происходят:

1. В мембранах тилакоидов. 3. В полостях тилакоидов.

2. В строме. 4. И в тилакоидах, и в строме.
*9. Синтезировать органические вещества, используя неоргани­ческий источник углерода, способны:


10. Синтезировать органические вещества, используя только орга­нический источник углерода, способны:

1. Хемоавтотрофы. 3. Фотоавтотрофы.

2. Хемогетеротрофы. 4. Все вышеперечисленные.

ДЗ№17

Тема: Энергетический обмен

Задание 3.9. Тест «Гликолиз»

*1. На подготовительном этапе энергетического обмена проис­ходит:

1. Гидролиз белков до 2. Гидролиз жиров

аминокислот до глицерина и жирных кислот.

3. Гидролиз углеводов 4. Гидролиз нуклеиновых

до моносахаридов. кислот до нукяеотидов.

2. Обеспечивают гликолиз:

1. Ферменты пищеваритель- 3. Ферменты цикла Кребса.
ного тракта и лизосом.

2. Ферменты цитоплазмы. 4. Ферменты дыхательной цепи.

3. В результате бескислородного окисления в клетках у животных при недостатке О 2 образуется:

1.ПВК. 3. Этиловый спирт.

4. В результате бескислородного окисления в клетках у растений при недостатке О 2 образуется:

1. ПВК. 3. Этиловый спирт

2. Молочная кислота. 4. Ацетил-КоА.

5. Энергия, образующаяся при гликолизе одного моля глюкозы, равна:

1.200кДж. 3. бООкДж.

2. 400 кДж. 4. 800 кДж.

6. Три моля глюкозы подверглось гликолизу в животных клетках при недостатке кислорода. При этом углекислого газа выделилось:

1. 3 моль. 4. Углекислый газ в животных

2. 6 моль. клетках при гликолизе
3.12 моль. не выделяется.

**7. К биологическому окислению относятся:

1. Окисление вещества А в реакции: А + О 2 -» AO 2

2. Дегидрирование вещества А в реакции: АН 2 + В -> А + ВН,.

3. Потеря электронов (например, Fe 2+ в реакции: Fe 2+ -^Fe 3+ + e).

4. Приобретение электронов (например, Fe 3+ в реакции: Fe 2+ ->
-> Fe 3+ + e~).

*8. Реакции подготовительного этапа энергетического обмена происходят:

1. В пищеварительном 3. В цитоплазме.
тракте. 4. В лизосомах.

2. В митохондриях.

9. Энергия, которая выделяется в реакциях подготовительного этапа энергетического обмена:

2. Запасается в форме АТФ.

3. Большая часть рассеивается в форме тепла, меньшая - запасает­ся в форме АТФ.

4. Меньшая часть рассеивается в форме тепла, большая - запасает­ся в форме АТФ.

10. Энергия, которая выделяется в реакциях гликолиза:

1. Рассеивается в форме тепла.

2. Запасается в форме АТФ.

3. 120 кДж рассеивается в форме тепла, 80 кДж запасается в форме АТФ.

4. 80 кДж рассеивается в форме тепла, 120 кДж запасается в форме АТФ.

Задание 3.11. Тест «Кислородное окисление»

1. Реакции кислородного окисления происходят:

1. В цитоплазме клетки. 3. Во всех органоидах и цитоплазме.

2. В ядре клетки. 4. В митохондриях.

2. В результате гликолиза образуется и поступает в митохонд­рию:

1. Глюкоза. 3. Пировиноградная кислота.

2. Молочная кислота. 4. Ацетил-КоА.

3. В цикл Кребса включается:

1.ПВК. 3. Этиловый спирт.

2. Молочная кислота. 4. Ацетильная группа.

*4. В реакциях цикла Кребса происходит:

1. Дегидрирование ацетильной группы.

3. Образуется одна молекула АТФ при разрушении каждой ацетильной группы.

4. В результате работы АТФ-синтетазы образуется 34 моля АТФ.

5. Реакции цикла Кребса происходят:

1. В матриксе митохондрий.

2. В цитоплазме клеток.

3. На внутренней мембране митохондрий на ферментах дыхательной цепи.

4. В межмембранном пространстве митохондрий.

6. При полном разрушении в митохондрии одной молекулы ПВК образуется:

1.12 пар атомов водорода. 3. 6 пар атомов водорода.

7. При полном разрушении одной молекулы глюкозы в дыхательную цепь транспортируется:

1. 12 пар атомов водорода. 3. 6 пар атомов водорода.

2. 10 пар атомов водорода. 4. 5 пар атомов водорода.

8. Протонный резервуар митохондрий находится:

1. В межмембранном пространстве.

2. В матриксе.

3.На внутренней стороне внутренней мембраны

4. В матриксе и на внутренней стороне внутренней мембраны.

9. АТФ-синтетазой при восстановлении 12 пар атомов водорода образуется:

1. 38 молекулы АТФ. 3. 34.молекулы АТФ.

2. 36 молекулы АТФ. 4. 42 молекулы АТФ.

10. При полном окислении одного моля глюкозы образуется:

1. 38 моля АТФ. 3. 34 моля АТФ.

2. 36 молей АТФ. 4. 42 моля АТФ.

ДЗ№18

Задание 3.15. Тест «Код ДНК. Транскрипция»

1. Триплетность генетического кода проявляется в том, что:

1.Одну аминокислоту кодируют не один, не два, а три нуклеотида.

2. Вырожденность генетического кода проявляется в том, что:

3.Одну аминокислоту могут кодировать до 6 кодонов.

4.Рамка считывания всегда равна трем нуклеотидам, один нуклеотид не может входить в состав двух кодонов.

5.У всех организмов Земли генетический код одинаков.

3. Однозначность генетического кода проявляется в том, что:

1. Одну аминокислоту кодируют не один, не два, а три нуклеотида.

2.Один кодон всегда кодирует одну аминокислоту.

3.Одну аминокислоту могут кодировать до 6 кодонов.

4.Рамка считывания всегда равна трем нуклеотидам, один нуклеотид не может входить в состав двух кодонов.

5.У всех организмов Земли генетический код одинаков.

4. Универсальность генетического кода проявляется в том, что:

2. Один кодон всегда кодирует одну аминокислоту.

5. Неперекрываемость генетического кода проявляется в том, что:

1. Одну аминокислоту кодируют не один, не два, а три нуклео­тида.

2. Один кодон всегда кодирует одну аминокислоту.

3. Одну аминокислоту могут кодировать до 6 кодонов.

4. Рамка считывания всегда равна трем нуклеотидам, один нуклеотид не может входить в состав двух кодонов.

5. У всех организмов Земли генетический код одинаков.

6.Транскрипция - это:
1. Удвоение ДНК.

2. Синтез иРНК на ДНК.

3. Синтез полипептидной цепочки на иРНК.

4. Синтез иРНК, затем синтез на ней полипептидной цепочки.
*7. ДНК содержится:

1. В ядре. 5. В комплексе Гольджи.

2. В митохондриях.

3. В пластидах..

4. В лизосомах. 8.

*8. В ДНК может быть зашифрована структура:

1. Полипептидов. 5. рРНК.

2. Полисахаридов. 6. Олигосахаридов.

3. Жиров. 7. Моносахаридов.

4. тРНК. 8. Жирных кислот.

9. Кодовые триплеты ДНК кодируют :

1.10 аминокислот. 3. 26 аминокислот.

2.20 аминокислот. 4. 170 аминокислот.

10. Все многообразие аминокислот, входящих в состав белков, кодируют:

1. 20 кодовых триплетов. 3. 61 кодовый триплет.

2. 64 кодовых триплета. 4. 26 кодовых триплетов.

11. Матрицей при транскрипции являются:

1. Кодирующая цепь ДНК. 3. иРНК.

2. Обе цепи. 4. Цепь ДНК, комплементарная

кодогенной.

*12. Для транскрипции необходимы:
1. АТФ. 5.ТТФ.

2. УТФ. 6. Кодирующая цепь ДНК.

3. ГТФ. 7. Рибосомы.

4. ЦТФ. 8. РНК-полимераза.

13. Участок молекулы ДНК, с которого происходит транскрипция,
содержит 30 000 нуклеотидов. Для транскрипции потребуется:

1. 30 000 нуклеотидов. 3. 60 000 нуклеотидов.

2. 15 000 нуклеотидов. 4. 90 000 нуклеотидов.

14. РНК-полимераза при транскрипции движется:

15. РНК-полимераза способна собирать полинуклеотид:

1. От 5"-конца к З"-концу. 3. Начиная с любого конца.

2.От З"-конца к 5"-концу. 4. В зависимости от фермента.

ДЗ№19

Задание 3.18. Заполните таблицу

Таблица 20 Биосинтез белка

Что происхо­дит на данном этапе Что необходимо
Транскрип­ция: образо­вание иРНК /. Кодирующая цепь ДНК /. Кодирует последовательность аминокислот
2. Фермент РНК-полимераза 2. Образует иРНК
3. АТФ, УТФ, ГТФ, ЦТФ 3. Материал и энергия для синтеза и РНК
Трансляция: синтез па иРНК молипептид-иой цепочки 1. иРНК 1. Переносит информацию о стро­ении белка из ядра в цитоплазму
2. Рибосомы 2. Органоиды, отвечающие за син­тез полипептидов
Что происходит на данном этапе Что необходимо Функции структур, веществ и органоидов, принимающих участие в процессе
Трансляция: синтез на иРНК полипептидной цепочки 3. тРНК 3. Молекулы, транспортирую­щие аминокислоты в рибосомы
4. Аминокислоты 4. Строительный материал
5. Ферменты ами-ноацил-тРНК-синтетазы 5. Присоединяют аминокислоты к соответствующей тРНК за счет энергии АТФ
6. Энергия в фор­ме AT Ф, ГТФ 6. Энергия для присоединения аминокислот к 3 "-концу тРНК, для сканирования, образования пептидных связей, движения рибосомы

Задание 3.19. Тест «Трансляция»

*1. К реакциям матричного синтеза относятся:

1. Репликация ДНК. 3. Трансляция.

2. Транскрипция. 4. Образование нуклеотидов.

2. Если информационная РНК состоит из 156 нуклеотидов (вме­сте с терминальным триплетом), то на ней закодировано:

1. 156 аминокислот. 3. 52 аминокислоты.

2. 155 аминокислот. 4. 51 аминокислота.
**3. Сколько известно различных видов тРНК?

1. 20 различных видов, столько же, сколько и аминокислот.

2.Один вид, который транспортирует все 20 видов аминокислот.

3.61 вид тРНК, столько же, сколько кодовых триплетов.

4.Более 30, так как с одним кодоном могут соединяться не­колько антикодоновразных тРНК, последний нуклеотид в антикодоне не всегда важен.

4. Аминокислота соединяется со своей тРНК:

1.С помощью фермента аминоацил-тРНК-синтетазы без затра­ты АТФ.

2.С помощью фермента аминоацил-тРНК-синтетазы с затратой АТФ.

3.С помощью фермента РНК-полимеразы без затраты АТФ.

4. С помощью фермента РНК-полимеразы с затратой АТФ.
**5. Как происходит инициация трансляции?

1. Рибосома присоединяется к 5"-концу иРНК, в П-участок заходит метиониновая тРНК с метионином.

2. Малая субъединица рибосомы присоединяется к иРНК и ска­нирует ее до инициирующего кодона, затем присоединяется большая субъединица рибосомы и в П-участок заходит метиониновая тРНК с метионином.

3. (Малая субъединица рибосомы присоединяется к иРНК, в П-участок заходит тРНК с метионином, инициаторный комплекс сканирует иРНК до инициирующего кодона, затем присоединяется большая субъединица рибосомы.)

6. Каждая следующая тРНК со своей аминокислотой попадают:

1. В любой, или А-, или Р-участок рибосомы.

2. Только в А-участокрибосомы.

3. Только в Р-участок рибосомы.

4. В зависимости от вида тРНК, некоторые - в А-участок, другие - в Р-участок.

7. В функциональном центре рибосомы имеется:

1.3 нуклеотида. 3.9 нуклеотидов.

2. 6 нуклеотидов. 4. 12 нуклеотидов.

*8. Для трансляции необходимы:

1.Кодирующая цепь ДНК.

2.ДНК-полимераза.

3.РНК-полимераза.

4.Аминоацил-тРНК-синтетазы.

5.Нуклеотиды.

9. Синтез полипептидной цепи на матрице иРНК - это:

1. Репликация. 3. Транскрипция.

2.Трансляция. 4. Процессинг.

10. Рибосома по иРНК может двигаться:

1. От 5"- к 3"-концу. 3. В обоих направлениях.

2. От 3"- к 5"-концу. 4. В зависимости от син-

тезируемого белка.

ЗАЧЕТ 3

Задание 3.2O. Вопросы к зачету по теме «Обмен веществ»

1. Что такое ассимиляция?

2. Что такое диссимиляция?

3. Какие организмы называются автотрофами?

4. На какие группы делятся автотрофы?

5. Какие организмы называются гетеротрофами?

6. Какие три этапа энергетического обмена вам известны?

7. Каковы продукты гидролиза белков, жиров, углеводов, нукле­
иновых кислот на подготовительном этапе?

8. Что происходит с энергией, выделяющейся на подготовитель­
ном этапе энергообмена?

9. Где расположены ферменты бескислородного этапа энергооб­
мена?

10. Какие продукты и сколько энергии образуется при гликолизе?
11. Как называются реакции, связанные с дегидрированием и декарбоксилированием, которые протекают в матриксе митохондрий?
12. Сколько молекул АТФ образуется при дегидрировании и декарбоксилировании ацетильной группы в цикле Кребса?

13. Сколько пар атомов водорода транспортируется на дыхатель­ную цепь при полном дегидрировании 2 молекул ПВК?

14. Какие ферменты перекачивают протоны в протонный резервуар митохондрий?

15. . Напишите общую формулу энергетического обмена.

16. Что может быть закодировано в ДНК?

17. Что означает триплетность генетического кода?

18. Что означает однозначность генетического кода? Сколько триплетов кодируют 20 видов аминокислот?

19. В чем заключается вырожденность генетического кода?

20. Что означает универсальность генетического кода?

21. Что означает неперекрываемость генетического кода?

22. Что такое транскрипция?

23. Что необходимо для транскрипции?

24. Участок ДНК содержит 300 000 нуклеотидов. Сколько нуклеотидов нужно для репликации и для транскрипции?

25. В каком направлении движется РНК-полимераза по кодиру­ющей цепи?

26. иРНК вместе с терминальным триплетом состоит из 156 нуклеотидов. Сколько аминокислот закодировано в этой иРНК?

27. Что такое трансляция?

28. Что необходимо для трансляции?

29. Сколько нуклеотидов в ФЦР рибосомы?

30. В какой участок ФЦР поступает тРНК с новой аминокисло­той?

31. Напишите общую формулу фотосинтеза.

33. Где происходят световые реакции фотосинтеза?

34. Что происходит в световую фазу фотосинтеза?

35. Где находятся протонные резервуары в хлоропласте?

36. Где происходят темновые реакции фотосинтеза?

37. Что происходит в темновую фазу фотосинтеза?

**38. Какая (какие) фотосистема (фотосистемы) есть у фотосинтезирующих серобактерий?

**39. Какая (какие) фотосистема (фотосистемы) есть у синезеле-ных?

40. Кто открыл процесс хемосинтеза?


Похожая информация.


Выберите рубрику Биология Тесты по биологии Биология. Вопрос — ответ. Для подготовки к ЕНТ Учебно-методическое пособие по биологии 2008 г Учебная литература по биологии Биология-репетитор Биология. Справочные материалы Анатомия, физиология и гигиена человека Ботаника Зоология Общая биология Вымершие животные Казахстана Жизненные ресурсы человечества Действительные причины голода и нищеты на Земле и возможности их устранения Пищевые ресурсы Ресурсы энергии Книга для чтения по ботанике Книга для чтения по зоологии Птицы Казахстана. Том I География Тесты по географии Вопросы и ответы по географии Казахстана Тестовые задания, ответы по географии для поступающих в ВУЗы Тесты по географии Казахстана 2005 Информация История Казахстана Тесты по Истории Казахстана 3700 тестов по истории Казахстана Вопросы и ответы по истории Казахстана Тесты по истории Казахстана 2004 Тесты по истории Казахстана 2005 Тесты по истории Казахстана 2006 Тесты по истории Казахстана 2007 Учебники по истории Казахстана Вопросы историографии Казахстана Вопросы социально-экономического развития Советского Казахстана Ислам на территории Казахстана. Историография советского Казахстана (очерк) История Казахстана. Учебник для студентов и школьников. ВЕЛИКИЙ ШЕЛКОВЫЙ ПУТЬ НА ТЕРРИТОРИИ КАЗАХСТАНА И ДУХОВНАЯ КУЛЬТУРА В VI-XII вв. Древние государства на территории Казахстана: Уйсуны, Канглы, Хунну Казахстан в древности Казахстан в эпоху средневековья (XIII — 1 пол. XV вв.) Казахстан в составе Золотой Орды Казахстан в эпоху монгольского владычества Племенные союзы Саков и Сарматов Раннесредневековый Казахстан (VI-XII вв.) Средневековые государства на территории Казахстана в XIV-XV вв ХОЗЯЙСТВО И ГОРОДСКАЯ КУЛЬТУРА РАННЕСРЕДНЕВЕКОВОГО КАЗАХСТАНА (VI-XII вв.) Экономика и культура средневековых государств Казахстана XIII-XV вв. КНИГА ДЛЯ ЧТЕНИЯ ПО ИСТОРИИ ДРЕВНЕГО МИРА Религиозные верования. Распространение ислама Хунну: археология, происхождение культуры, этническая история Хуннский некрополь Шомбуузийн Бэльчээр в горах монгольского Алтая Школьный курс истории Казахстана Августовский переворот 19-21 августа 1991 года ИНДУСТРИАЛИЗАЦИЯ Казахско-китайские отношения в XIX веке Казахстан в годы застоя (60-80-е годы) КАЗАХСТАН В ГОДЫ ИНОСТРАННОЙ ИНТЕРВЕНЦИИ И ГРАЖДАНСКОЙ ВОЙНЫ (1918-1920 ГГ.) Казахстан в годы перестройки Казахстан в новое время КАЗАХСТАН В ПЕРИОД ГРАЖДАНСКОГО ПРОТИВОСТОЯНИЯ НАЦИОНАЛЬНО-ОСВОБОДИТЕЛЬНОЕ ДВИЖЕНИЕ 1916 ГОДА КАЗАХСТАН В ПЕРИОД ФЕВРАЛЬСКОЙ РЕВОЛЮЦИИ И ОКТЯБРЬСКОГО ПЕРЕВОРОТА 1917 г. КАЗАХСТАН В СОСТАВЕ СССР Казахстан во второй половине 40-х — середине 60-х годов. Общественно-политическая жизнь КАЗАХСТАНЦЫ В ВЕЛИКОЙ ОТЕЧЕСТВЕННОЙ ВОЙНЕ Каменный век Палеолит (древнекаменный век) 2,5 млн.-12 тыс. до н.э. КОЛЛЕКТИВИЗАЦИЯ МЕЖДУНАРОДНОЕ ПОЛОЖЕНИЕ НЕЗАВИСИМОГО КАЗАХСТАНА Национально-освободительные восстания Казахского народа в ХVIII-ХIХ вв. НЕЗАВИСИМЫЙ КАЗАХСТАН ОБЩЕСТВЕННО-ПОЛИТИЧЕСКАЯ ЖИЗНЬ В 30-е ГОДЫ. НАРАЩИВАНИЕ ЭКОНОМИЧЕСКОЙ МОЩИ КАЗАХСТАНА. Общественно-политическое развитие независимого Казахстана Племенные союзы и ранние государства на территории Казахстана Провозглашение суверенитета Казахстана Регионы Казахстана в раннем железном веке Реформы управления Казахстаном СОЦИАЛЬНО-ЭКОНОМИЧЕСКОЕ РАЗВИТИЕ В ХIХ-НАЧАЛЕ XX ВЕКА Средние века ГОСУДАРСТВА В ПЕРИОД РАСЦВЕТА СРЕДНЕВЕКОВЬЯ (Х-ХIII вв.) Казахстан в XIII-первой половине XV веков Раннесредневековые государства (VI-IX вв.) Укрепление Казахского ханства в XVI-XVII веках ЭКОНОМИЧЕСКОЕ РАЗВИТИЕ: УСТАНОВЛЕНИЕ РЫНОЧНЫХ ОТНОШЕНИЙ История России ИСТОРИЯ ОТЕЧЕСТВА XX ВЕК 1917 ГОД НОВАЯ ЭКОНОМИЧЕСКАЯ ПОЛИТИКА ОТТЕПЕЛЬ ПЕРВАЯ РУССКАЯ РЕВОЛЮЦИЯ (1905-1907) ПЕРЕСТРОЙКА ПОБЕДИВШАЯ ДЕРЖАВА (1945-1953) РОССИЙСКАЯ ИМПЕРИЯ В МИРОВОЙ ПОЛИТИКЕ. ПЕРВАЯ МИРОВАЯ ВОЙНА РОССИЯ В НАЧАЛЕ XX ВЕКА Политические партии и общественные движения в начале XX века. РОССИЯ МЕЖДУ РЕВОЛЮЦИЕЙ И ВОЙНОЙ (1907-1914) СОЗДАНИЕ В СССР ТОТАЛИТАРНОГО ГОСУДАРСТВА (1928-1939) Обществознание Различные материалы по учебе Русский язык Тесты по русскому языку Вопросы и ответы по русскому языку Учебники по русскому языку Правила русского языка
Клеточные структуры Эукариотическая клетка Прокариотическая клетка
Цитоплазматическая мембрана Есть Есть; впячивания мембраны образуют мезосомы
Ядро Имеет двумембранную оболочку, содержит одно или несколько ядрышек Нет; имеется эквивалент ядра - нуклеоид - часть цитоплазмы, где содержится ДНК, не окруженная мембраной
Генетический материал Линейные молекулы ДНК, связанные с бе ками Кольцевые молекулы ДНК, не связанные с белками
Эндоплазматическая сеть Есть Нет
Комплекс Гольджи Есть Нет
Лизосомы Есть Нет
Митохондрии Есть Нет
Пластиды Есть Нет
Центриоли, микротрубочки, микрофиламенты Есть Нет
Жгутики Если есть, то состоят из микротрубочек, окруженных цитоплазматической мембраной Если есть, то не содержат микротрубочек и не окружены цитоплазматической мембраной
Клеточная стенка Есть у растений (прочность, придает целлюлоза) и грибов (прочность придает хитин) Есть (прочность придает пептидогликан)
Капсула или слизистый слой Нет Есть у некоторых бактерий
Рибосомы Есть, крупные (80S) Есть, мелкие (70S)

Тесты:

1.Поддержка жизни на каком-либо уровне связано с явлением репродукции. На каком уровне организации, репродукция осуществляется на основе матричного синтеза

А. Молекулярном

Б. Субклеточном

В. Клеточном

Г. Тканевом

Д. На уровне организма

2. Установлено, что в клетках организмов отсутствуют мембранные органеллы и их наследственный материал не имеет нуклеосомной организации. Что это за организмы?

А. Простейшие

Б. Вирусы

В. Аскомицеты

Г. Эукариоты

Д. Прокариоты

3. На занятии по биологии преподаватель попросил указать в лабораторной работе степень увеличения микроскопа, которая использовалась при изучении микропрепаратов. Один из студентов не смог самостоятельно справиться с поставленной задачей. Как правильно подсчитать этот показатель?

А. Умножить показатели, указанные на всех объективах микроскопа

Б. Разделить показатель объектива с меньшим увеличением на показатель объектива с большим увеличением

В. Умножить показатели увеличения объектива и окуляра

Г. Разделить показатели увеличения объектива на показатель окуляра

Д. Вычесть показатели, указанные на всех объективах микроскопа, из значения увеличения окуляра

4. При изучении микропрепарата студент после его фиксации на предметном столике и достижения оптимальной освещённости поля зрения установил объектив «х40» и посмотрел в объектив. Преподаватель остановил студента и сказал, что при работе допущена принципиальная ошибка. Какая ошибка была допущена?

А. Не стоило фиксировать микропрепарат

Б. Изучение микропрепарата нужно было начать с помощью объектива с малым увеличением

В. Освещение регулируется в последнюю очередь

Г. Фиксация препарата производится перед завершением исследования

Д. Все манипуляции стоило проводить в обратном порядке

5. Существование жизни на всех уровнях определяется структурой более низкого уровня. Какой уровень организации предшествует и обеспечивает существование жизни на клеточном уровне:

А. Популяционно-видовой

Б. Тканевой

В. Молекулярный

Г. Организменный

Д. Биоценотический

Задачи для контроля знаний:

1. При попытке изучения микропрепарата с помощью светового микроскопа исследователь обнаружил, что всё поле зрения затемнено. Что может быть причиной этого явления? Как устранить эту проблему?

2. При попытке изучения микропрепарата с помощью светового микроскопа исследователь обнаружил, что освещена только половина поля зрения. Что может быть причиной этого явления? Как устранить эту проблему?

3. Какие манипуляции необходимо провести в случае, если при использовании светового микроскопа наблюдаемый объект виден нечётко?

А) если на окуляре есть обозначение «х15», а на объективе «х8»

Б) если кратность увеличения линзы окуляра «х10» , а объектива «х40»

6. Материалы для разбора с преподавателем и контроля его усвоения:

6.1. Разбор с преподавателем узловых вопросов для освоения темы занятия.

6.2. Демонстрация преподавателем методик практических приемов по теме.

6.3. Материал для контроля усвоения материала:

Вопросы для разбора с преподавателем:

1. Медицинская биология как наука об основах жизнедеятельности человека, изучающая закономерности наследственности, изменчивости, индивидуального и эволюционного развития, а также вопросы морфофизиологической и социальной адаптации человека к условиям окружающей среды в связи с его биосоциальной сущностью.

2. Современный этап развития общей и медицинской биологии. Место биологии в системе медицинского образования.

3. Сущность жизни. Свойства живого. Формы жизни, ее фундаментальные свойства и атрибуты. Определение понятия жизни на современном уровне развития биологической науки.

4. Эволюционно обусловленные структурные уровни организации жизни; элементарные структуры уровней и основные биологические явления, их характеризующие.

5. Значение представлений об уровнях организации живого для медицины.

6. Особое место человека в системе органического мира.

7. Соотношение физико-химических, биологических и социальных явлений в жизнедеятельности человека.

8. Оптические системы в биологических исследованиях. Строение светового микроскопа и правила работы с ним.

9. Техника изготовления временных микропрепаратов, их изучение и описание. Методы изучения структуры клетки

Практическая часть

1. Используя методические указания изучить строение микроскопа и правила работы с ним.

2. Отработать навыки работы с микроскопом и изготовления временных препаратов волокон ваты, чешуек крыла бабочки. Изучить микропрепараты: кожица луковицы, лист элодеи, мазок крови лягушки, изучить типографский шрифт.

3. Занести в протокол граф логической структуры “Строение микроскопа”.

4. Занести в протокол “Правила работы с микроскопом”

5. Заполнить таблицу «Уровни организации и исследования многоклеточного организма».

Похожая информация:

Поиск на сайте:

Прокариотические клетки по своему строению мельче и проще клеток эукариот. Среди них не бывает многоклеточных организмов, лишь иногда образуют подобие колоний. У прокариот нет ни только клеточного ядра, но и всех мембранных органелл (митохондрий, хлоропластов, ЭПС, комплекса Гольджи, центриолей и др.).

К прокариотам относятся бактерии, синезеленые водоросли (цианобактерии), археи и др. Прокариоты были первыми живыми организмами на Земле.

Функции мембранных структур выполняют выросты (впячивания) клеточной мембраны во внутрь цитоплазмы. Они бывают трубчатыми, пластинчатыми, иной формы. Ряд из них называют мезосомами. Фотосинтезирующие пигменты, дыхательные и другие ферменты располагаются на таких различных образованиях и таким образом выполняют свои функции.

У прокариот в центральной части клетки находится только одна большая хромосома (нуклеоид ), которая имеет кольцевое строение. В ее состав входит ДНК. Вместо белков, придающих форму хромосоме как у эукариот, здесь находится РНК. Хромосома не отделена от цитоплазмы мембранной оболочкой, поэтому говорят, что прокариоты - безъядерные организмы. Однако в одном месте хромосома прикреплена к клеточной мембране.

Кроме нуклеоида в строении прокариотических клеток отмечается наличие плазмид (малых хромосом также кольцевой структуры).

В отличие от эукариот цитоплазма прокариот неподвижна.

У прокариот есть рибосомы, однако они мельче рибосом эукариот.

Прокариотические клетки отличаются сложным строением своих оболочек. Кроме цитоплазматической мембраны (плазмалеммы), у них есть клеточная стенка, а также капсула и другие образования, в зависимости от типа прокариотического организма. Клеточная стенка выполняет опорную функцию и препятствует проникновению вредных веществ. В состав клеточной стенки бактерий входит муреин (гликопептид).

На поверхности прокариот часто имеются жгутики (один или множество) и различные ворсинки.

С помощью жгутиков клетки перемещаются в жидкой среде. Ворсинки выполняют разные функции (обеспечивают несмачиваемость, прикрепление, переносят вещества, участвуют в половом процессе, образуя конъюгационный мостик).

Прокариотические клетки делятся бинарным делением. У них нет митоза и мейоза. Перед делением нуклеоид удваивается.

Прокариоты часто образуют споры, которые являются способом переживания неблагоприятных условий. Споры ряда бактерий сохраняют жизнеспособность при высокой и крайне низкой температурах. При образовании споры прокариотическая клетка покрывается толстой плотной оболочкой. Ее внутреннее строение несколько изменяется.

Строение эукариотической клетки

Клеточная стенка эукариотической клетки, в отличие от клеточной стенки прокариот состоит главным образом из полисахаридов. У грибов основным является азотсодержащий полисахарид хитин. У дрожжей 60–70% полисахаридов представлены глюканом и маннаном, которые связаны с белками и липидами. Функции клеточной стенки эукариот те же, что и у прокариот.

Цитоплазматическая мембрана (ЦПМ) также имеет трехслойную структуру. Поверхность мембраны имеет выпячивания, близкие к мезосомам прокариот. ЦПМ регулирует процессы обмена веществ клетки.

У эукариот ЦПМ способна захватывать из окружающей среды большие капли, содержащие углеводы, липиды и белки. Это явление называется пиноцитозом. ЦПМ эукариотической клетки способна также захватывать из среды твердые частицы (явление фагоцитоза). Кроме того, ЦПМ ответственна за выброс в среду продуктов обмена.

Рис. 2.2 Схема строения эукариотической клетки:

1 – клеточная стенка; 2 – цитоплазматическая мембрана;

3 – цитоплазма; 4 – ядро; 5 – эндоплазматическая сеть;

6 – митохондрии; 7 – комплекс Гольджи; 8 – рибосомы;

9 – лизосомы; 10 – вакуоли

Ядро отделено от цитоплазмы двумя мембранами, в которых имеются поры. Поры у молодых клеток открыты, служат они для миграции из ядра в цитоплазму предшественников рибосом, информационной и транспортной РНК. В ядре в нуклеоплазме имеются хромосомы, состоящие из двух нитевидных цепочных молекул ДНК, соединенных с белками. В ядре имеется также ядрышко, богатое матричной РНК и связанное со специфической хромосомой – ядрышковым организатором.

Основной функцией ядра является участие в размножении клетки. Это носитель наследственной информации.

В эукариотической клетке ядро – важнейший, но не единственный носитель наследственной информации. Часть такой информации содержится в ДНК митохондрии и хлоропластов.

Митохондрии – мембранная структура, содержащая две мембраны – наружную и внутреннюю, сильно складчатую. На внутренней мембране сосредоточены окислительно-восстанови-тельные ферменты. Основной функцией митохондрии является снабжение клетки энергией (образование АТФ). Митохондрии – саморепродуцирующая система, так как в ней имеется собственная хромосома – кольцевая ДНК и другие компоненты, которые входят в состав обычной прокариотической клетки.

Эндоплазматическая сеть (ЭС) – мембранная структура, состоящая из канальцев, которые пронизывают всю внутреннюю поверхность клетки. Бывает гладкой и шероховатой. На поверхности шероховатой ЭС располагаются рибосомы, более крупные, чем рибосомы прокариот. На мембранах ЭС расположены также ферменты, осуществляющие синтез липидов, углеводов и ответственных за транспорт веществ в клетке.

Комплекс Гольджи – пакеты уплощенных мембранных пузырьков – цистерн, в которых осуществляется упаковка и транспорт белков внутри клетки. В комплексе Гольджи происходит также синтез гидролитических ферментов (место образования лизосом).

В лизосомах сосредоточены гидролитические ферменты. Здесь происходит расщепление биополимеров (белков, жиров, углеводов).

Вакуоли отделены от цитоплазмы мембранами. В запасных вакуолях содержатся запасные питательные вещества клетки, а в шлаковых – ненужные продукты обмена и токсические вещества.

Самое очевидное отличие прокариот от эукариот заключается в наличии у последних ядра , что отражено в названии этих групп: «карио» с древнегреческого переводится как ядро, «про» — до, «эу» — хорошо. Отсюда прокариоты - это доядерные организмы, эукариоты - ядерные.

Однако это далеко не единственное и возможно не главное отличие прокариотических организмов от эукариот. В клетках прокариот вообще нет мембранных органоидов (за редким исключением) - митохондрий, хлоропластов, комплекса Гольджи, эндоплазматической сети, лизосом.

Их функции выполняют выросты (впячивания) клеточной мембраны, на которых располагаются различные пигменты и ферменты, обеспечивающие процессы жизнедеятельности.

У прокариот нет характерных для эукариот хромосом. Их основной генетический материал - это нуклеоид, обычно имеющий форму кольца. В эукариотических клетках хромосомы представляют собой комплексы ДНК и белков-гистонов (играют важную роль в упаковке ДНК). Эти химические комплексы называются хроматином. Нуклеоид прокариот не содержит гистонов, а форму ему придают связанные с ним молекулы РНК.

Хромосомы эукариот находятся в ядре. У прокариот нуклеоид находится в цитоплазме и обычно крепится в одном месте к мембране клетки.

Кроме нуклеоида в прокариотических клетках бывает разное количество плазмид - нуклеоидов существенно меньшего размера, чем основной.

Количество генов в нуклеоиде прокариот на порядок меньше, чем в хромосомах. У эукариот есть множество генов, выполняющих регуляторную функцию по отношению к другим генам. Это дает возможность эукариотическим клеткам многоклеточного организма, содержащим одну и ту же генетическую информацию, специализироваться; изменяя свой метаболизм, более гибко реагировать на изменения внешней и внутренней среды. Отличается и структура генов. У прокариот гены в ДНК располагаются группами - оперонами. Каждый оперон транскрибируется как единое целое.

Отличия прокариот от эукариот есть и в процессах транскрипции и трансляции. Самое главное заключается в том, что в прокариотических клетках эти процессы могут протекать одновременно на одной молекуле матричной (информационной) РНК: в то время как она еще синтезируется на ДНК, на готовом ее конце уже «сидят» рибосомы и синтезируют белок. В эукариотических клетках мРНК после транскрипции претерпевает так называемое созревание. И только после этого на ней может синтезироваться белок.

Рибосомы прокариот меньше (коэффициент седиментации 70S), чем у эукариот (80S). Отличается количество белков и молекул РНК в составе субъединиц рибосом. Следует отметить, что рибосомы (а также генетический материал) митохондрий и хлоропластов схожи с прокариотами, что может говорить об их происхождении от древних прокариотических организмов, оказавшихся внутри клетки-хозяина.

Прокариоты отличаются обычно более сложным строением своих оболочек. Кроме цитоплазматической мембраны и клеточной стенки у них также имеется капсула и другие образования, в зависимости от типа прокариотического организма. Клеточная стенка выполняет опорную функцию и препятствует проникновению вредных веществ. В состав клеточной стенки бактерий входит муреин (гликопептид). Среди эукариот клеточная стенка есть у растений (ее основной компонент - целлюлоза), у грибов - хитин.

Прокариотические клетки делятся бинарным делением. У них нет сложных процессов клеточного деления (митоза и мейоза) , характерных для эукариот. Хотя перед делением нуклеоид удваивается, так же как хроматин в хромосомах. В жизненном цикле эукариот наблюдается чередование диплоидной и гаплоидной фаз. При этом обычно преобладает диплоидная фаза. В отличие от них у прокариот такого нет.

Клетки эукариот различны по размерам, но в любом случае существенно крупнее прокариотических (в десятки раз).

Питательные вещества в клетки прокариот поступают только с помощью осмоса. У эукариотических клеток кроме этого может также наблюдаться фаго- и пиноцитоз («захват» пищи и жидкости с помощью цитоплазматической мембраны).

В целом отличие прокариот от эукариот заключается в однозначно более сложном строении последних. Считается, что клетки прокариотического типа возникли путем абиогенеза (длительной химической эволюции в условиях ранней Земли). Эукариоты появились позже от прокариотов, путем их объединения (симбиотическая, а также химерная гипотезы) или эволюции отдельно взятых представителей (инвагинационная гипотеза). Сложность клеток эукариот позволила им организовать многоклеточный организм, в процессе эволюции обеспечить все основное разнообразие жизни на Земле.

Таблица отличий прокариот от эукариот

ПризнакПрокариотыЭукариоты Клеточное ядро Мембранные органоиды Оболочки клетки Генетический материал Деление Многоклеточность Рибосомы Обмен веществ Происхождение
Нет Есть
Нет. Их функции выполняют впячивания клеточной мембраны, на которых располагаются пигменты и ферменты. Митохондрии, пластиды, лизосомы, ЭПС, комплекс Гольджи
Более сложные, бывают различные капсулы. Клеточная стенка состоит из муреина. Основной компонент клеточной стенки целлюлоза (у растений) или хитин (у грибов). У клеток животных клеточной стенки нет.
Существенно меньше. Представлен нуклеоидом и плазмидами, которые меют кольцевую форму и находятся в цитоплазме. Объем наследственной информации значительный. Хромосомы (состоят из ДНК и белков). Характерна диплоидность.
Бинарное деление клетки. Есть митоз и мейоз.
Для прокариот не характерна. Представлены как одноклеточными, так и многоклеточными формами.
Мельче Крупнее
Более разнообразный (гетеротрофы, фотосинтезирующие и хемосинтезирующие различными способами автотрофы; анаэробное и аэробное дыхание). Автотрофность только у растений за счет фотосинтеза. Почти все эукариоты аэробы.
Из неживой природы в процессе химической и предбиологической эволюции. От прокариот в процессе их биологической эволюции.

Эукариотических клеток

Наиболее сложная организация присуща эукариотическим клеткам животных и растений. Строение клеток животных и растений характеризуется принципиальным сходством, но форма, размеры и масса их чрезвычайно разнообразны и зависят от того, является ли организм одноклеточным или многоклеточным. Например, диа-томовые водоросли, эвгленовые, дрожжи, миксомицеты и простейшие являются одноклеточными эукариотами, тогда как организмы подавляющего большинства других типов являются многоклеточными эукариотами, количество клеток у которых составляет от нескольких (например, у некоторых гельминтов) до миллиардов (у млекопитающих) на организм. Организм человека состоит из около 10 различных клеток, которые различаются между собой по осуществляемым ими функциям.

В случае человека насчитывают более 200 типов разных клеток. Наиболее многочисленными клетками в организме человека являются эпителиальные клетки, среди которых различают орого-вевающие клетки (волос и ногтей), клетки, обладающие всасывательной и барьерной функциями (в желуд очно-кишечном тракте, мочеполовых путях, роговице, влагалище и других системах органов), клетки, выстилающие внутренние органы и полости (пневмо-циты, серозные клетки и многие другие). Различают клетки, обеспечивающие метаболизм и накопление резервных веществ (гепатоциты, жировые клетки). Большую группу составляют эпителиальные и соединительнотканные клетки, секретизирующие внеклеточный матрикс (амилобласты, фибробласты, остеобласты и другие) и гормоны, а также сократительные клетки (скелетных и сердечных мышц, радужной оболочки и других структур), клетки крови и иммунной системы (эритроциты, нейтрофилы, эозинофилы, базофилы, Т-лимфоциты и другие). Существуют также клетки, выполняющие роль сенсорных преобразователей (фоторецепторы, осязательные, слуховые, обонятельные, вкусовые и другие рецепторы). Значительное число клеток представлено нейронами и гли-альными клетками центральной нервной системы. Существуют также специализированные клетки хрусталика глаза, пигментные клетки и питающие клетки, далее следует назвать подовые клетки. Известны и многие другие типы клеток человека.

В природе не существует некой типичной клетки, ибо все они характеризуются чрезвычайным разнообразием. Тем не менее все эукариотические клетки существенно отличаются от прокариотических клеток по ряду свойств и прежде всего по объему, форме и размерам. Объем большинства эукариотических клеток превышает объем прокариотов в 1000-10 000 раз. Такой объем прокариотических клеток связан с содержанием в них различных органелл, осуществляющих всевозможные клеточные функции. Для эукариотических клеток характерно также наличие большого количества генетического материала, сосредоточенного в основном в относительно большом количестве хромосом, что обеспечивает им большие возможности в дифференцировке и специализации.

Не менее важной особенностью эукариотических клеток является то, что им присуща компартментализация, обеспеченная наличием внутренних мембранных систем. В результате этого многие ферменты локализуются в определенных компартментах. Например, почти все ферменты, катализирующие синтез белков в животных клетках, локализованы в рибосомах, тогда как ферменты, катализирующие синтез фосфолипидов, в основном сосредоточены на клеточной ци-топлазматической мембране. В отличие от прокариотических клеток в эукариотических клетках имеется ядрышко.

Эукариотические клетки по сравнению с прокариотическими обладают более сложной системой восприятия веществ из окружающей среды, без чего невозможна их жизнь. Существуют и другие различия между эукариотическими и прокариотическими клетками.

Форма клеток бывает самой разнообразной и часто зависит также от выполняемых ими функций. Например, многие простейшие имеют овальную форму, тогда как эритроциты являются овальными дисками, а мышечные клетки млекопитающих вытянуты. Размеры эукариотических клеток являются микроскопическими (табл. 3).

Некоторые виды клеток характеризуются значительными размерами. Например, размеры нервных клеток у крупных животных достигают нескольких метров в длину, а у человека - до 1 метра. Клетки отдельных тканей растений достигают нескольких миллиметров в длину.

Считают, что чем крупнее организм в пределах вида, тем крупнее его клетки. Однако для родственных видов животных, различающихся по размерам, характерны и сходные по размерам клетки. Например, у всех млекопитающих сходны по размерам эритроциты.

Клетки различаются также и по массе. Например, одиночная клетка печени (гепатоцит) человека весит 19-9 г.

Соматическая клетка человека (типичная эукариотическая клетка) представляет собой образование, состоящее из множества структурных компонентов микроскопических и субмикроскопических размеров(рис. 46).

Использование электронной микроскопии и других методов позволило установить чрезвычайное разнообразие в структуре как оболочки и цитоплазмы, так и ядра. В частности, был установлен мембранный принцип строения внутриклеточных структур, исходя из которого различают ряд структурных компонентов клетки, а именно.