Open
Close

Получение графена в домашних условиях. Физические свойства графена

До прошлого года единственным известным науке способом производства графена было нанесение на клейкую ленту тончайшего слоя графита с последующим удалением основы. Эта техника получила название «техники скотча». Однако недавно ученые обнаружили, что существует более эффективный способ получения нового материала: в качестве основы они стали использовать слой меди, никеля или кремния, который затем удаляется вытравливанием (рис.2). Таким способом, прямоугольные листы из графена шириной 76 сантиметров создала команда учёных из Кореи, Японии и Сингапура. Мало того что исследователи поставили своеобразный рекорд по размерам куска однослойной структуры из атомов углерода, так они ещё и создали на основе гибких листов чувствительные экраны.

Рисунок 2: Получение графена методом вытравливания

Впервые графеновые «хлопья» были получены физиками лишь в 2004 году, тогда их размер составил всего лишь 10 микрометров. Год назад команда Родни Руоффа из Техасского университета в Остине рассказала о том, что им удалось создать сантиметровые «обрывки» графена.

Руофф и его коллеги нанесли углеродные атомы на медную фольгу при помощи метода химического осаждения из пара (CVD). Исследователи лаборатории профессора Бюня Хее Хона из университета Сункхюнкхвана пошли дальше и увеличили листы до размеров полноценного экрана. Новая «рулонная» технология (roll-to-roll processing) позволяет получать из графена длинную ленту (рис. 3).

Рисунок 3: Изображение нанесённых друг на друга слоёв графена, полученное при помощи просвечивающей электронной микроскопии высокого разрешения.

Поверх графеновых листов физики поместили слой адгезивного полимера, растворили медные подложки, затем отделили полимерную плёнку – получился единичный слой графена. Чтобы придать листам большую прочность, учёные тем же способом «нарастили» ещё три слоя графена. В конце полученный «бутерброд» обработали азотной кислотой – для улучшения проводимости. Новенький лист графена помещается на подложку из полиэстера и проходит между нагретыми валиками (рис. 4).

Рисунок 4: Рулонная технология получения графена

Образовавшаяся структура пропускала 90% света и обладала электрическим сопротивлением меньшим, чем у стандартного, но по-прежнему очень дорогого прозрачного проводника – оксида индия и олова (ITO). Кстати, использовав листы графена в качестве основы сенсорных дисплеев, исследователи обнаружили, что их структура ещё и менее хрупкая.

Правда, несмотря на все достижения, до коммерциализации технологии ещё очень далеко. Прозрачные плёнки из углеродных нанотрубок пытаются вытеснить ITO уже довольно давно, но производители никак не могут справиться с проблемой «мёртвых пикселей», которые появляются на дефектах плёнки.

Применение графенов в электротехнике и электронике

Яркость пикселей в плоскопанельных экранах определяется напряжением между двумя электродами, один из которых обращен к зрителю (рис.5). Эти электроды обязательно должны быть прозрачными. В настоящее время для производства прозрачных электродов применяется оксид индия, легированный оловом (ITO), но ITO является дорогостоящим и не самым устойчивым веществом. К тому же мир вскоре исчерпает свои запасы индия. Графен является более прозрачным и более устойчивым, чем ITO, и уже был продемонстрирован ЖК-дисплей с графеновым электродом.

Рисунок 5: Яркость графеновых экранов в зависимости от подаваемого напряжения

Большой потенциал у материала и в других областях электроники. В апреле 2008 года ученые из Манчестера продемонстрировали самый крохотный в мире графеновый транзистор. Идеально правильный слой графена управляет сопротивлением материала, превращая его в диэлектрик. Становится возможным создание микроскопического переключателя питания скоростного нано-транзистора для контроля движения отдельных электронов. Чем меньше транзисторы в микропроцессорах, тем быстрее он сам, и ученые надеются, что графеновые транзисторы в компьютерах будущего станут размером с молекулу, учитывая, что современные кремниевые технологии производства микротранзисторов практически достигли предела своих возможностей.

Графен не только отличный проводник электричества. У него высочайшая теплопроводность: колебания атомов легко распространяются по углеродной сетке ячеистой структуры. Тепловыделение в электронике - серьезная проблема, поскольку существуют пределы высоких температур, которые электроника способна выдержать. Однако ученые из университета штата Иллинойс обнаружили, что транзисторы, в которых используется графен, обладают интересным свойством. В них проявляется термоэлектрический эффект, приводящий к понижению температуры прибора. Это может означать, что электроника, построенная на применении графена, оставит в прошлом радиаторы и вентиляторы. Таким образом, привлекательность графена в качестве перспективного материала для микросхем будущего дополнительно возрастает (рис.6).

Рисунок 6: Щуп атомно-силового микроскопа, сканирующий поверхность графеново-металлического контакта с целью измерения температуры.

Ученым было непросто измерить теплопроводность графена. Они изобрели совершенно новый способ измерения его температуры, расположив пленку из графена длиной в 3 мкм над точно таким же крохотным отверстием в кристалле диоксида кремния. Затем пленку нагрели лазерным лучом, заставив ее вибрировать. Эти вибрации помогли рассчитать температуру и теплопроводность.

Изобретательность ученых не знает границ, если речь идет об использовании феноменальных свойств нового вещества. В августе 2007 года был создан самый чувствительный из всех возможных датчиков на его основе. Он способен отреагировать на одну молекулу газа, что поможет своевременно обнаружить наличие токсинов или взрывчатых веществ. Чужеродные молекулы мирно опускаются в графеновую сеть, выбивая из нее электроны либо добавляя их. В результате меняется электрическое сопротивление графенового слоя, которое и измеряется учеными. Даже самые маленькие молекулы задерживаются прочной графеновой сеткой. В сентябре 2008 года ученые из Корнельского университета в США продемонстрировали, как графеновая мембрана, подобно тончайшему воздушному шару, надувается за счет разницы давлений в несколько атмосфер по обеим ее сторонам. Эта особенность графена может быть полезной при определении протекания различных химических реакций и вообще при изучении поведения атомов и молекул.

Получать большие листы чистого графена пока еще очень сложно, но задачу можно упростить, если слой углерода смешать с другими элементами. В Северо-Западном университете США графит окислили и растворили в воде. Результатом стал бумагоподобный материал - графеноксидная бумага (рис.7). Она очень жесткая и довольно проста в изготовлении. Графеноксид пригоден в качестве прочной мембраны в аккумуляторах и топливных элементах.

Рисунок 7: Графеноксидная бумага

Мембрана из графена - идеальная подложка для объектов изучения под электронным микроскопом. Безупречные ячейки сливаются на изображениях в однородный серый фон, на котором четко выделяются другие атомы. До сих пор было практически невозможно различить в электронном микроскопе легчайшие атомы, но с графеном в качестве подложки можно будет разглядеть даже малые атомы водорода.

Возможности применения графена можно перечислять до бесконечности. Недавно физики Северо-Западного университета США выяснили, что графен можно смешивать с пластиком. Результат - тонкий суперпрочный материал, выдерживающий высокие температуры и непроницаемый для газов и жидкостей.

Сфера его применения - производство легких автозаправочных станций, запчастей для автомобилей и самолетов, прочных лопастей ветровых турбин. В пластик можно упаковывать пищевые продукты, надолго сохраняя их свежими.

Графен не только тончайший, но и самый прочный в мире материал. Ученые из Колумбийского университета в Нью-Йорке убедились в этом, поместив графен над крошечными отверстиями в кристалле кремния. Затем нажатием тончайшей алмазной иглы попытались разрушить слой графена и измерили силу давления (рис.8). Оказалось, что графен в 200 раз прочнее стали. Если представить себе графеновый слой толщиной с пищевую пленку, он бы выдержал давление острия карандаша, на противоположном конце которого балансировал бы слон или автомобиль.

Рисунок 8: Давление на графен алмазной иглы

Волокна графена под сканирующим электронным микроскопом. Чистый графен восстановлен из оксида графена (GO) в микроволновой печи. Масштаб 40 мкм (слева) и 10 мкм (справа). Фото: Jieun Yang, Damien Voiry, Jacob Kupferberg / Rutgers University

Графен - 2D-модификация углерода, образованная слоем толщиной в один атом углерода. Материал обладает высокой прочностью, высокой теплопроводностью и уникальными физико-химическими свойствами. Он демонстрирует максимальную подвижность электронов среди всех известных материалов на Земле. Это делает графен практически идеальным материалом в самых различных приложениях, в том числе в электронике, катализаторах, элементах питания, композитных материалах и т.д. Дело за малым - научиться получать качественные слои графена в промышленных масштабах.

Химики из Ратгерского университета (США) нашли простой и быстрый метод производства высококачественного графена путём обработки оксида графена в обычной микроволновой печи . Метод на удивление примитивный и эффективный.

Оксид графита - соединение углерода, водорода и кислорода в различных соотношениях, которое образуется при обработке графита сильными окислителями. Чтобы избавиться от оставшегося кислорода в оксиде графита, а затем получить чистый графен в двумерных листах, нужно приложить значительные усилия.

Оксид графита смешивают с сильными щелочами и ещё дальше восстанавливают материал. В результате получаются мономолекулярные листы с остатками кислорода. Эти листы принято называть оксидом графена (GO). Химики испробовали разные способы удаления лишнего кислорода из GO ( , , , ), но восстановленный такими способами GO (rGO) остаётся сильно неупорядоченным материалом, который далёк по своим свойствам от настоящего чистого графена, полученного методом химического осаждения из газовой фазы (ХОГФ или CVD).

Даже в неупорядоченной форме rGO потенциально может быть полезен для энергоносителей ( , , , , ) и катализаторов ( , , , ), но для извлечения максимальной выгоды от уникальных свойств графена в электронике нужно научиться получать чистый качественный графен из GO.

Химики из Ратгерского университета предлагают простой и быстрый способ восстановления GO до чистого графена, используя 1-2-секундные импульсы микроволнового излучения. Как видно на графиках, графен, полученный «микроволновым восстановлением» (MW-rGO) по своим свойствам намного ближе к чистейшему графену, полученному с помощью ХОГФ.


Физические характеристики MW-rGO, по сравнению с нетронутым оксидом графена GO, восстановленным оксидом графена rGO и графеном, полученным методом химического осаждения из газовой фазы (CVD). Показаны типичные хлопья GO, осаждённые на кремниевую подложку (А); рентгеновская фотоэлектронная спектроскопия (B); рамановская спектроскопия и соотношение размера кристаллов (L a) к отношению пиков l 2D /l G в рамановском спектре для MW-rGO, GO и ХОГФ (CVD).


Электронные и электрокаталитические свойства MW-rGO, по сравнению с rGO. Иллюстрации: Rutgers University

Техпроцесс получения MW-rGO состоит из нескольких этапов.

  1. Окисление графита модифицированным методом Хаммерса и растворение его до однослойных хлопьев оксида графена в воде.
  2. Отжиг GO, чтобы материал стал более восприимчив к микроволновому облучению.
  3. Облучение хлопьев GO в обычной микроволновой печи мощностью 1000 Вт на 1-2 секунды. Во время этой процедуры GO быстро нагревается до высокой температуры, происходит десорбция кислородных групп и великолепная структуризация углеродной решётки.
Съёмка просвечивающим электронным микроскопом показывает, что после обработки СВЧ-излучателем образуется высокоупорядоченная структура, в которой кислородные функциональные группы практически полностью уничтожены.


На изображениях с просвечивающего электронного микроскопа показана структура листов графена со шкалой 1 нм. Слева - однослойный rGO, на котором много дефектов, в том числе функциональные группы кислорода (синяя стрелка) и дыры в углеродном слое (красная стрелка). По центру и справа - отлично структурированный двуслойный и трёхслойный MW-rGO. Фото: Rutgers University

Великолепные структурные свойства MW-rGO при использовании в полевых транзисторах позволяют увеличить максимальную подвижность электронов примерно до 1500 см 2 /В·с, что сравнимо с выдающимися характеристиками современных транзисторов с высокой подвижностью электронов.

Кроме электроники, MW-rGO пригодится в производстве катализаторов: он показал исключительно маленькое значение коэффициента Тафеля при использовании в качестве катализатора при реакции выделения кислорода: примерно 38 мВ на декаду. Катализатор на MW-rGO также сохранил стабильность в реакции выделения водорода, которая продолжалась более 100 часов.

Всё это предполагает отличный потенциал для использования восстановленного в микроволновом излучении графена в промышленности.

Научная статья "High-quality graphene via microwave reduction of solution-exfoliated graphene oxide" опубликована 1 сентября 2016 года в журнале Science (doi: 10.1126/science.aah3398).

Графен является самым прочным материалом на Земле. В 300 раз прочнее стали. Лист графена площадью в один квадратный метр и толщиной, всего лишь в один атом, способен удерживать предмет массой 4 килограмма. Графен, как салфетку, можно сгибать, сворачивать, растягивать. Бумажная салфетка рвется в руках. С графеном такого не случится.

Другие формы углерода: графен, усиленный – арматурный графен , карбин, алмаз, фуллерен, углеродные нанотрубки, “вискерсы” .

Описание графена:

Графен – это двумерная аллотропная форма углерода, в которой объединённые в гексагональную кристаллическую решётку атомы образуют слой толщиной в один атом. Атомы углерода в графене соединяются между собой sp 2 -связями. Графен в буквальном смысле представляет собой материю, ткань .

Углерод имеет множество аллотропов. Некоторые из них, например, алмаз и графит , известны давно, в то время как другие открыты относительно недавно (10-15 лет назад) – фуллерены и углеродные нанотрубки . Следует отметить, что известный многие десятилетия графит представляет собой стопку листов графена, т.е. содержит несколько графеновых плоскостей.

На основе графена получены новые вещества: оксид графена, гидрид графена (называемый графан) и флюорографен (продукт реакции графена со фтором).

Графен обладает уникальными свойствами, что позволяет его использовать в различных сферах.

Свойства и преимущества графена:

– графен является самым прочным материалом на Земле. В 300 раз прочнее стали . Лист графена площадью в один квадратный метр и толщиной, всего лишь в один атом, способен удерживать предмет массой 4 килограмма. Графен, как салфетку, можно сгибать, сворачивать, растягивать. Бумажная салфетка рвется в руках. С графеном такого не случится,

благодаря двумерной структуре графена, он является очень гибким материалом, что позволит использовать его, например, для плетения нитей и других верёвочных структур. При этом тоненькая графеновая «верёвка» по прочности будет аналогична толстому и тяжёлому стальному канату,

– в определённых условиях у графена активируется ещё одна способность, которая позволяет ему «залечивать» «дырки» в своей кристаллической структуре в случае её повреждений,

графен обладает более высокой электропроводностью. Графен практически не имеет сопротивления. У графена в 70 раз мобильность электронов выше, чем у кремния . Скорость электронов в графене составляет 10 000 км/с, хотя в обычном проводнике скорость электронов порядка 100 м/с.

– обладает высокой электроемкостью. Удельная энергоемкость графена приближается к 65 кВт*ч/кг. Данный показатель в 47 раз превышает тот, который имеют столь распространенные ныне литий-ионные аккумуляторы ,

обладает высокой теплопроводностью. Он в 10 раз теплопроводнее меди ,

– характерна полная оптическая прозрачность. Он поглощает всего 2,3% света,

графеновая плёнка пропускает молекулы воды и при этом задерживает все остальные, что позволяет использовать ее как фильтр для воды,

– самый легкий материал. В 6 раз легче пера,

инертность к окружающей среде,

– впитывает радиоактивные отходы,

благодаря Броуновскому движению (тепловым колебаниям) атомов углерода в листе графена последний способен «производить» электрическую энергию,

– является основой для сборки различных не только самостоятельных двумерных материалов, но и многослойных двумерных гетероструктур.

Физические свойства графена*:

* при комнатной температуре.

Получение графена:

Основными способами получения графена считаются:

микромеханическое отшелушивание слоев графита (метод Новоселова – метод скотча). Образец графита помещали между лентами скотча и последовательно отшелушивали слои, пока не остался последний тонкий слой, состоящий из графена,

диспергирование графита в водных средах,

механическая эксфолиация;

эпитаксиальный рост в вакууме;

химическое парофазное охлаждение (CVD-процесс),

метод “выпотевания” углерода из растворов в металлах или при разложении карбидов.

Получение графена в домашних условиях:

Необходимо взять кухонный блендер мощностью не менее 400 Вт. В чашу блендера выливают 500 мл воды, добавляя в жидкость 10-25 миллилитров любого моющего вещества и 20-50 грамм толченого грифеля от карандаша. Далее блендер должен поработать от 10 минут до получаса вплоть до появления взвеси из чешуек графена. Полученный материал будет обладать высокой проводимостью, что позволит использовать его в электродах фотоэлементов. Также произведенный в бытовых условиях графен способен улучшить свойства пластика.

Применение графена:

солнечная энергетика,

водоочистка, фильтрация воды, опреснение морской воды,

электроника (ЖК-мониторы, транзисторы, микросхемы и пр.),

в аккумуляторах и источниках энергии. Графеновый аккумулятор позволяет автомобилю без подзарядки преодолевать 1000 км, время зарядки которого не более 16 секунд,

медицина. Ученые обнаружили, что графеновые чешуйки оксида графена ускоряют размножение стволовых клеток и регенерацию клеток костной ткани,

создание суперкомпозитов,

очистка воды от радиоактивных загрязнений. Оксид графена быстро удаляет радиоактивные вещества из загрязненной воды. Хлопья оксида графена быстро связываются с естественными и искусственными радиоизотопами и конденсируют их, превращая в твердые вещества. Сами хлопья растворимы в жидкости, и их легко производить в промышленных масштабах.

как сделать графен википедия материал аккумулятор свойства аэрогель углерод графит купить цена видео россия презентация плотность
техническое применение открытие получение технология производство структура изобретение графена в светодиодных устройствах мастер нож

Коэффициент востребованности 1 729

Опросы

Нужна ли нашей стране индустриализация?

  • Да, нужна (90%, 2 486 голос(ов))
  • Нет, не нужна (6%, 178 голос(ов))
  • Не знаю (4%, 77 голос(ов))

Поиск технологий

Найдено технологий 1

Поиск по всем отраслям Биотехнологии Водоснабжение и водоотведение Добыча, обработка и переработка полезных ископаемых Здравоохранение Информация и связь Легкая промышленность Лесная и деревообрабатывающая промышленность Машиностроение и металлообработка Наноиндустрия Нефтехимическая промышленность Образование. Подготовка кадров Пищевая промышленность Получение энергии. Электроэнергетика Производство компьютеров, электронных и оптических изделий Производство лекарственных средств и материалов Производство машин и оборудования Производство металлических изделий Производство прочей неметаллической минеральной продукции Производство резиновых и пластмассовых изделий Производство транспортных средств и оборудования Производство электрического оборудования Промышленность строительных материалов Сбор и утилизация отходов, ликвидация загрязнений Сельское хозяйство, лесное хозяйство, охота, рыболовство и рыбоводство Системы (технологии) управления Стекольная и фарфоро-фаянсовая промышленность Строительство Супер прорывные технологии Топливная промышленность Транспортировка Химическая промышленность Хранение Целлюлозно-бумажная промышленность Черная и цветная металлургия

Может быть интересно:

  • Технология удаленного люминофора - способ получения белого света в результате …

Графен - революционный материал 21 столетия. Это самый прочный, самый легкий и электропроводящий вариант углеродного соединения.

Графен был найден Константином Новоселовым и Андреем Геймом, работающими в Университете Манчестера, за что русские ученые были удостоены Нобелевской премии. На сегодняшний день на исследование свойств графена выделено около десяти миллиардов долларов на десять лет, и ходят слухи, что он может стать отличной заменой кремнию, особенно в полупроводниковой промышленности.

Однако двухмерная структура наподобие этого углеродсодержащего материала была предсказана и для других элементов Периодической системы химических элементов и весьма необычные свойства одного из таких веществ недавно удалось изучить. А называется это вещество «синий фосфор».

Выходцы из России, работающие в Британии, Константин Новоселов и Андрей Гейм создали графен – полупрозрачный слой углерода толщиной в один атом – в 2004 году. С этого момента практически сразу и повсюду мы стали слышать хвалебные оды о самых разных удивительных свойствах материала, обладающего потенциалом изменить наш мир и найти свое применение в самых разных сферах, начиная от производства квантовых компьютеров и заканчивая производством фильтрами для получения чистой питьевой воды. Прошло 15 лет, но мир под влиянием графена так и не изменился. Почему?