Açık
Kapalı

İkinci dereceden denklemlerin çözümü. Doğrusal denklemleri örneklerle çözme İkinci dereceden denklemin kökleri

İkinci dereceden denklemler 8. sınıfta çalışılıyor, bu yüzden burada karmaşık bir şey yok. Bunları çözme yeteneği kesinlikle gereklidir.

İkinci dereceden denklem, a, b ve c katsayılarının keyfi sayılar olduğu ve a ≠ 0 olduğu, ax 2 + bx + c = 0 formundaki bir denklemdir.

Belirli çözüm yöntemlerini incelemeden önce, tüm ikinci dereceden denklemlerin üç sınıfa ayrılabileceğini unutmayın:

  1. Kökleri yok;
  2. Tam olarak bir köke sahip olun;
  3. İki farklı kökü var.

Bu, ikinci dereceden denklemler ile kökün her zaman var olduğu ve benzersiz olduğu doğrusal denklemler arasındaki önemli bir farktır. Bir denklemin kaç kökü olduğu nasıl belirlenir? Bunun için harika bir şey var - ayrımcı.

diskriminant

İkinci dereceden denklem ax 2 + bx + c = 0 verilse, diskriminant basitçe D = b 2 − 4ac sayısı olur.

Bu formülü ezbere bilmeniz gerekiyor. Artık nereden geldiği önemli değil. Başka bir şey daha önemlidir: Diskriminantın işaretiyle ikinci dereceden bir denklemin kaç kökü olduğunu belirleyebilirsiniz. Yani:

  1. Eğer D< 0, корней нет;
  2. Eğer D = 0 ise tam olarak bir kök vardır;
  3. D > 0 ise iki kök olacaktır.

Lütfen dikkat: Birçok insanın inandığı gibi, ayrımcı, hiçbir şekilde işaretlerini değil, köklerin sayısını gösterir. Örneklere bir göz atın ve her şeyi kendiniz anlayacaksınız:

Görev. İkinci dereceden denklemlerin kaç kökü vardır:

  1. x 2 − 8x + 12 = 0;
  2. 5x2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

İlk denklemin katsayılarını yazalım ve diskriminantı bulalım:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 1 12 = 64 − 48 = 16

Diskriminant pozitif olduğundan denklemin iki farklı kökü vardır. İkinci denklemi de benzer şekilde analiz ediyoruz:
bir = 5; b = 3; c = 7;
D = 3 2 − 4 5 7 = 9 − 140 = −131.

Diskriminant negatiftir, kök yoktur. Geriye kalan son denklem:
bir = 1; b = −6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

Diskriminant sıfırdır; kök bir olacaktır.

Lütfen her denklem için katsayıların yazıldığını unutmayın. Evet uzun, evet sıkıcı ama olasılıkları karıştırıp aptalca hatalar yapmayacaksınız. Kendiniz seçin: hız veya kalite.

Bu arada, eğer alışırsanız, bir süre sonra tüm katsayıları yazmanıza gerek kalmayacak. Bu tür operasyonları kafanızda gerçekleştireceksiniz. Çoğu insan bunu 50-70 çözülmüş denklemden sonra bir yerde yapmaya başlar - genel olarak o kadar da değil.

İkinci dereceden bir denklemin kökleri

Şimdi çözümün kendisine geçelim. Diskriminant D > 0 ise kökler aşağıdaki formüller kullanılarak bulunabilir:

İkinci dereceden bir denklemin kökleri için temel formül

D = 0 olduğunda bu formüllerden herhangi birini kullanabilirsiniz; cevap olan aynı sayıyı elde edersiniz. Son olarak eğer D< 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

İlk denklem:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ denklemin iki kökü vardır. Onları bulalım:

İkinci denklem:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ Denklemin yine iki kökü vardır. Haydi onları bulalım

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(hizala)\]

Son olarak üçüncü denklem:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ denklemin tek kökü vardır. Herhangi bir formül kullanılabilir. Örneğin, ilki:

Örneklerden de görebileceğiniz gibi her şey çok basit. Formülleri biliyorsanız ve sayabiliyorsanız hiçbir sorun yaşanmayacaktır. Çoğu zaman, formülde negatif katsayılar değiştirilirken hatalar meydana gelir. Burada yine yukarıda açıklanan teknik yardımcı olacaktır: formüle tam anlamıyla bakın, her adımı yazın - ve çok yakında hatalardan kurtulacaksınız.

Tamamlanmamış ikinci dereceden denklemler

İkinci dereceden bir denklemin tanımda verilenden biraz farklı olduğu görülür. Örneğin:

  1. x2 + 9x = 0;
  2. x 2 − 16 = 0.

Bu denklemlerde terimlerden birinin eksik olduğunu fark etmek kolaydır. Bu tür ikinci dereceden denklemleri çözmek standart denklemlerden bile daha kolaydır: diskriminantın hesaplanmasını bile gerektirmezler. O halde yeni bir konsept sunalım:

ax 2 + bx + c = 0 denklemine, b = 0 veya c = 0 ise tamamlanmamış ikinci dereceden denklem denir; x değişkeninin veya serbest elemanın katsayısı sıfıra eşittir.

Elbette bu katsayıların her ikisinin de sıfıra eşit olması durumunda çok zor bir durum mümkündür: b = c = 0. Bu durumda denklem ax 2 = 0 formunu alır. Böyle bir denklemin tek bir kökü olduğu açıktır: x = 0.

Geri kalan durumları ele alalım. b = 0 olsun, sonra ax 2 + c = 0 formunda tamamlanmamış ikinci dereceden bir denklem elde ederiz. Bunu biraz dönüştürelim:

Aritmetik karekök yalnızca negatif olmayan bir sayının mevcut olduğundan, son eşitlik yalnızca (−c /a) ≥ 0 için anlamlıdır. Sonuç:

  1. Eğer ax 2 + c = 0 formundaki tamamlanmamış ikinci dereceden bir denklemde (−c /a) ≥ 0 eşitsizliği karşılanıyorsa, iki kök olacaktır. Formül yukarıda verilmiştir;
  2. Eğer (−c /a)< 0, корней нет.

Gördüğünüz gibi bir diskriminant gerekli değildi; tamamlanmamış ikinci dereceden denklemlerde hiçbir karmaşık hesaplama yoktur. Aslında (−c /a) ≥ 0 eşitsizliğini hatırlamaya bile gerek yok. x 2 değerini ifade edip eşittir işaretinin diğer tarafında ne olduğunu görmek yeterli. Pozitif bir sayı varsa iki kökü olacaktır. Negatif ise hiçbir kök kalmayacaktır.

Şimdi serbest elemanın sıfıra eşit olduğu ax 2 + bx = 0 formundaki denklemlere bakalım. Burada her şey basit: her zaman iki kök olacak. Polinomu çarpanlara ayırmak yeterlidir:

Ortak çarpanı parantezlerden çıkarmak

Faktörlerden en az biri sıfır olduğunda ürün sıfırdır. Köklerin geldiği yer burasıdır. Sonuç olarak bu denklemlerden birkaçına bakalım:

Görev. İkinci dereceden denklemleri çözün:

  1. x 2 − 7x = 0;
  2. 5x2 + 30 = 0;
  3. 4x2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Kök yok çünkü kare negatif bir sayıya eşit olamaz.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

Denklemlerin kullanımı hayatımızda oldukça yaygındır. Birçok hesaplamada, yapı yapımında ve hatta sporda kullanılırlar. İnsanoğlu denklemleri eski zamanlarda kullandı ve o zamandan beri kullanımları daha da arttı. Dokuzuncu sınıf denklemlerini çözmek birçok farklı çözme yönteminin kullanılmasını içerir: grafiksel, cebirsel toplama yöntemleri, yeni değişkenlerin tanıtılması, fonksiyonların kullanılması ve denklemlerin bir türden daha basit bir türe dönüştürülmesi ve çok daha fazlası. Denklemi çözme yöntemi ilk verilere göre seçilir, bu nedenle örnekleri kullanarak yöntemleri net bir şekilde anlamak en iyisidir.

Bize aşağıdaki biçimde bir denklem verildiğini varsayalım:

\[\frac (18)(x^2-6x)-\frac(12)(x^2+6x)=\frac (1)(x)\]

Bu denklemi çözmek için sol ve sağ tarafları \'ye bölün.

\[\frac(18)(x-6)-\frac(12)(x+6)=1\]

\[\frac (6x+180)(x^2-36)=1\]

Ortaya çıkan iki kök bu denklemin çözümüdür.

Denklemi çözelim:

\[ (x^2-2x)^2-3x^2+6x-4=0 \]

Bu denklemin tüm köklerinin toplamını bulmak gerekir. Bunu yapmak için değiştirmeniz gerekir:

Bu denklemin kökleri 2 sayı olacaktır: -1 ve 4. Dolayısıyla:

\[\begin(bmatrix) x^2-2x=-1\\ x^2-2x=4 \end(bmatrix)\] \[\begin(bmatrix) x=1\\ x=1\pm\sqrt5 \end(bmatrix)\]

3 kökün toplamı 4'e eşittir, bu da bu denklemi çözmenin cevabı olacaktır.

9. sınıf için denklemleri çevrimiçi olarak nerede çözebilirim?

Denklemi https://sitemizden çözebilirsiniz. Ücretsiz çevrimiçi çözücü, her türlü karmaşıklıktaki çevrimiçi denklemleri birkaç saniye içinde çözmenize olanak tanır. Tek yapmanız gereken, verilerinizi çözücüye girmenizdir. Ayrıca web sitemizde video talimatlarını izleyebilir ve denklemin nasıl çözüleceğini öğrenebilirsiniz. Hala sorularınız varsa, bunları http://vk.com/pocketteacher VKontakte grubumuzda sorabilirsiniz. Grubumuza katılın, size yardımcı olmaktan her zaman mutluluk duyarız.

Derecelerin temel özelliklerini hatırlayalım. a > 0, b > 0, n, m herhangi bir reel sayı olsun. Daha sonra
1) a n a m = a n+m

2) \(\frac(a^n)(a^m) = a^(n-m) \)

3) (bir n) m = bir nm

4) (ab) n = a n b n

5) \(\left(\frac(a)(b) \right)^n = \frac(a^n)(b^n) \)

7) a n > 1, eğer a > 1 ise, n > 0

8) bir n 1, n
9) a n > a m eğer 0 ise

Uygulamada, a'nın belirli bir pozitif sayı, x'in ise bir değişken olduğu y = a x formundaki fonksiyonlar sıklıkla kullanılır. Bu tür işlevler denir gösterge niteliğinde. Bu isim, üstel fonksiyonun argümanının üs olması ve üssün tabanının verilen sayı olmasıyla açıklanmaktadır.

Tanım.Üstel fonksiyon, y = a x biçiminde bir fonksiyondur; burada a, belirli bir sayıdır, a > 0, \(a \neq 1\)

Üstel fonksiyon aşağıdaki özelliklere sahiptir

1) Üstel fonksiyonun tanım alanı tüm gerçek sayılar kümesidir.
Bu özellik, a > 0 olduğunda a x kuvvetinin tüm x gerçek sayıları için tanımlandığı gerçeğinden kaynaklanır.

2) Üstel fonksiyonun değerler kümesi tüm pozitif sayılar kümesidir.
Bunu doğrulamak için, a x = b denkleminin, burada a > 0, \(a \neq 1\), eğer \(b \leq 0\) ise kökleri olmadığını ve herhangi bir b > için bir kökü olduğunu göstermeniz gerekir. 0.

3) y = a x üstel fonksiyonu, a > 1 ise tüm reel sayılar kümesinde artar, 0 ise azalır. Bu, derece (8) ve (9)'un özelliklerinden kaynaklanır.

a > 0 ve 0 için y = a x üstel fonksiyonlarının grafiklerini oluşturalım. Dikkate alınan özellikleri kullanarak, a > 0 için y = a x fonksiyonunun grafiğinin (0; 1) noktasından geçtiğini ve yukarıda bulunduğunu not ediyoruz. Öküz ekseni.
Eğer x 0 ise.
Eğer x > 0 ve |x| arttıkça grafik hızla yükselir.

y = a x fonksiyonunun grafiği 0'da. Eğer x > 0 ise ve artıyorsa, grafik hızla Ox eksenine yaklaşır (bunu kesmeden). Dolayısıyla Ox ekseni grafiğin yatay asimptotudur.
eğer x

Üstel denklemler

Üstel denklemlerin birkaç örneğini ele alalım; bilinmeyenin üssün içinde yer aldığı denklemler. Üstel denklemleri çözmek genellikle a x = a b denklemini çözmekle sonuçlanır; burada a > 0, \(a \neq 1\), x bir bilinmeyendir. Bu denklem kuvvet özelliği kullanılarak çözülür: aynı tabana sahip a > 0, \(a \neq 1\) kuvvetleri ancak ve ancak üsleri eşitse eşittir.

Denklem 2'yi çözün 3x 3 x = 576
2 3x = (2 3) x = 8 x, 576 = 24 2 olduğundan, denklem 8 x 3 x = 24 2 veya 24 x = 24 2 olarak yazılabilir, buradan x = 2 olur.
Cevap x = 2

Denklemi çözün 3 x + 1 - 2 3 x - 2 = 25
Sol taraftaki parantezlerden 3 x - 2 ortak faktörünü alırsak, 3 x - 2 (3 3 - 2) = 25, 3 x - 2 25 = 25 elde ederiz,
dolayısıyla 3 x - 2 = 1, x - 2 = 0, x = 2
Cevap x = 2

3 x = 7 x denklemini çözün
\(7^x \neq 0 \) olduğundan, denklem \(\frac(3^x)(7^x) = 1 \) biçiminde yazılabilir, buradan \(\left(\frac(3) )( 7) \sağ) ^x = 1 \), x = 0
Cevap x = 0

9 x - 4 3 x - 45 = 0 denklemini çözün
3 x = t yerine bu denklem ikinci dereceden denklem t 2 - 4t - 45 = 0'a indirgenir. Bu denklemi çözerek köklerini buluruz: t 1 = 9, t 2 = -5, dolayısıyla 3 x = 9, 3 x = -5 .
3 x = 9 denkleminin x = 2 kökü vardır ve 3 x = -5 denkleminin kökleri yoktur, çünkü üstel fonksiyon negatif değerler alamaz.
Cevap x = 2

Denklem 3'ü çözün 2 x + 1 + 2 5 x - 2 = 5 x + 2 x - 2
Denklemi formda yazalım.
3 2 x + 1 - 2 x - 2 = 5 x - 2 5 x - 2, dolayısıyla
2 x - 2 (3 2 3 - 1) = 5 x - 2 (5 2 - 2)
2 x - 2 23 = 5 x - 2 23
\(\left(\frac(2)(5) \right) ^(x-2) = 1 \)
x - 2 = 0
Cevap x = 2

Denklem 3'ü çözün |x - 1| = 3 |x + 3|
3 > 0, \(3 \neq 1\) olduğundan, orijinal denklem |x-1| denklemine eşdeğerdir. = |x+3|
Bu denklemin karesini alarak (x - 1) 2 = (x + 3) 2 sonucunu elde ederiz; buradan
x 2 - 2x + 1 = x 2 + 6x + 9, 8x = -8, x = -1
Kontrol, x = -1'in orijinal denklemin kökü olduğunu gösterir.
Cevap x = -1

Parantez açılıp benzer terimler getirildikten sonra şu şekli alan, bir bilinmeyenli denklem

balta + b = 0 a ve b'nin keyfi sayılar olduğu yere denir Doğrusal Denklem bilinmeyen biriyle. Bugün bu doğrusal denklemleri nasıl çözeceğimizi bulacağız.

Örneğin, tüm denklemler:

2x + 3= 7 – 0,5x; 0,3x = 0; x/2 + 3 = 1/2 (x – 2) - doğrusal.

Denklemi gerçek eşitliğe dönüştüren bilinmeyenin değerine denir. karar veya denklemin kökü .

Örneğin, 3x + 7 = 13 denkleminde bilinmeyen x yerine 2 sayısını yazarsak, doğru eşitlik olan 3 2 +7 = 13'ü elde ederiz. Bu, x = 2 değerinin çözüm veya kök olduğu anlamına gelir. denklemin.

Ve x = 3 değeri, 3x + 7 = 13 denklemini gerçek eşitliğe dönüştürmez çünkü 3 2 +7 ≠ 13. Bu, x = 3 değerinin denklemin bir çözümü veya kökü olmadığı anlamına gelir.

Herhangi bir doğrusal denklemin çözülmesi, formdaki denklemlerin çözülmesine indirgenir

balta + b = 0.

Serbest terimi denklemin sol tarafından sağa taşıyalım, b'nin önündeki işareti ters tarafa çevirelim, şunu elde ederiz:

a ≠ 0 ise x = ‒ b/a .

Örnek 1. 3x + 2 =11 denklemini çözün.

2'yi denklemin sol tarafından sağa doğru hareket ettirelim, 2'nin önündeki işareti ters tarafa çevirelim, şunu elde ederiz:
3x = 11 – 2.

O zaman çıkarma işlemini yapalım
3x = 9.

X'i bulmak için ürünü bilinen bir faktöre bölmeniz gerekir;
x = 9:3.

Bu, x = 3 değerinin denklemin çözümü veya kökü olduğu anlamına gelir.

Cevap: x = 3.

a = 0 ve b = 0 ise 0x = 0 denklemini elde ederiz. Bu denklemin sonsuz sayıda çözümü vardır, çünkü herhangi bir sayıyı 0 ile çarptığımızda 0 elde ederiz, ancak b de 0'a eşittir. Bu denklemin çözümü herhangi bir sayıdır.

Örnek 2. 5(x – 3) + 2 = 3 (x – 4) + 2x ‒ 1 denklemini çözün.

Parantezleri genişletelim:
5x – 15 + 2 = 3x – 12 + 2x – 1.


5x – 3x ‒ 2x = – 12 ‒ 1 + 15 ‒ 2.

İşte bazı benzer terimler:
0x = 0.

Cevap: x - herhangi bir sayı.

a = 0 ve b ≠ 0 ise 0x = - b denklemini elde ederiz. Bu denklemin hiçbir çözümü yoktur, çünkü herhangi bir sayıyı 0 ile çarptığımızda 0 elde ederiz, ancak b ≠ 0 olur.

Örnek 3. x + 8 = x + 5 denklemini çözün.

Bilinmeyen içeren terimleri sol tarafta, serbest terimleri ise sağ tarafta gruplayalım:
x – x = 5 – 8.

İşte bazı benzer terimler:
0х = ‒ 3.

Cevap: Çözüm yok.

Açık Şekil 1 doğrusal bir denklemin çözümü için bir diyagram gösterir

Tek değişkenli denklemleri çözmek için genel bir şema çizelim. Örnek 4'ün çözümünü ele alalım.

Örnek 4. Diyelim ki denklemi çözmemiz gerekiyor

1) Denklemin tüm terimlerini paydaların en küçük ortak katı olan 12 ile çarpın.

2) İndirgemeden sonra şunu elde ederiz:
4 (x – 4) + 3 2 (x + 1) ‒ 12 = 6 5 (x – 3) + 24x – 2 (11x + 43)

3) Bilinmeyen ve serbest terimler içeren terimleri ayırmak için parantezleri açın:
4x – 16 + 6x + 6 – 12 = 30x – 90 + 24x – 22x – 86.

4) Bir bölümde bilinmeyenleri içeren terimleri, diğer bölümde ise serbest terimleri gruplayalım:
4x + 6x – 30x – 24x + 22x = ‒ 90 – 86 + 16 – 6 + 12.

5) Benzer terimleri sunalım:
- 22х = - 154.

6) – 22'ye bölersek, şunu elde ederiz:
x = 7.

Gördüğünüz gibi denklemin kökü yedidir.

Genellikle böyle denklemler aşağıdaki şema kullanılarak çözülebilir:

a) denklemi tamsayı formuna getirin;

b) braketleri açın;

c) bilinmeyeni içeren terimleri denklemin bir kısmında, serbest terimleri ise diğer kısmında gruplandırın;

d) benzer üyeleri getirmek;

e) Benzer terimlerin getirilmesinden sonra elde edilen aх = b formundaki bir denklemi çözün.

Ancak bu şema her denklem için gerekli değildir. Birçok basit denklemi çözerken, birinciden değil ikinciden başlamalısınız ( Örnek. 2), üçüncü ( Örnek. 13) ve hatta örnek 5'teki gibi beşinci aşamadan itibaren.

Örnek 5. 2x = 1/4 denklemini çözün.

Bilinmeyeni bulun x = 1/4:2,
x = 1/8
.

Ana durum sınavında bulunan bazı doğrusal denklemlerin çözümüne bakalım.

Örnek 6. 2 (x + 3) = 5 – 6x denklemini çözün.

2x + 6 = 5 – 6x

2x + 6x = 5 – 6

Cevap: - 0,125

Örnek 7. Denklemi çözün – 6 (5 – 3x) = 8x – 7.

– 30 + 18x = 8x – 7

18x – 8x = – 7 +30

Cevap: 2.3

Örnek 8. Denklemi çözün

3(3x – 4) = 4 7x + 24

9x – 12 = 28x + 24

9x – 28x = 24 + 12

Örnek 9. f(x + 2) = 3 7 ise f(6)'yı bulun

Çözüm

f(6)'yı bulmamız gerektiğinden ve f(x + 2)'yi bildiğimizden,
o zaman x + 2 = 6.

Doğrusal denklem x + 2 = 6'yı çözüyoruz,
x = 6 – 2, x = 4 elde ederiz.

Eğer x = 4 ise
f(6) = 3 7-4 = 3 3 = 27

Cevap: 27.

Hala sorularınız varsa veya denklem çözmeyi daha detaylı anlamak istiyorsanız PROGRAM'daki derslerime kaydolun. Sana yardım etmekten memnun olacağım!

TutorOnline ayrıca eğitmenimiz Olga Alexandrovna'nın hem doğrusal denklemleri hem de diğerlerini anlamanıza yardımcı olacak yeni bir video dersini izlemenizi önerir.

web sitesi, materyalin tamamını veya bir kısmını kopyalarken kaynağa bir bağlantı gereklidir.