Open
Close

Значение анатомии нервной системы для современного психолога. Анатомия центральной нервной системы

Основные понятия анатомии ЦНС

Нервная система человека состоит из возбудимой специфической ткани, называемой нервной. Нервная ткань представлена двумя отделами:

  • центральным,
  • периферическим.

Центральная нервная система защищается костными образованиями скелета:

  • черепной коробкой, в которой располагается головной мозг;
  • позвоночником, в спинномозговом канале которого располагается спинной мозг.

Периферическую нервную систему составляют нервы и нервные узлы.

Выделяют две части периферической нервной системы:

  • соматическую;
  • вегетативную.

Определение 1

Часть нервной системы, регулирующая работу мышц скелета, называется соматической .

С помощью соматической нервной системы человек управляет движениями, произвольно вызывает или прекращает их.

Определение 2

Часть нервной системы, которая регулирует функционирование внутренних органов, называется вегетативной .

Работа вегетативной нервной системы не подчинена воле человека.

Для обозначения взаимного расположения основных структур нервной системы анатомами используются специфические термины:

  • плоскость, которая проходит вдоль середины тела и делит его на правую и левую половину, называется сагиттальной ;
  • структуры, которые расположены на спинной части тела, называются дорсальными ;
  • структуры, расположенные на брюшной стороне тела человека, называются вентральными ;
  • структуры, которые лежат по центру тела вблизи от сагиттальной плоскости, называются медиальными ;
  • лежащие сбоку от сагиттальной плоскости структуры, носят название латеральных .
  • самые верхние точки нервных структур называются апикальными ;
  • точки, лежащие в основании структуры нервной системы – базальными ;
  • направление в сторону нижней части тела называется каудальным ;
  • направление в сторону головной части - ростральным .

Нервная ткань

Формирование нервной системы человека начинается с образования нервной пластины, представляющей собой полоску эмбриональной утолщенной эктодермы, расположенную над хордой. Нервная пластинка прогибается, а ее края при этом смыкаются, в результате чего образуется нервная трубка, которая отщипляется от эктодермы, погружаясь под нее.

В самом начале формирования стенки нервных трубок состоят из слоя клеток нейроэпителия. В процессе деления клеток стенки нервных трубок утолщаются. Слой клеток, которые принадлежат к центральному каналу, носит название эпендимного. Именно эти клетки дают начало всем клеткам нашей нервной системы. Зачатковая клетка в свою очередь делится на две дочерних. При этом одна становится нейробластом. Нейробласты изменяются и превращаются в нейроны - зрелые нервные клетки. Другая дочерняя клетка образует длинные радиальные отростки - спонгиобласты. Спонгиобласты играют важную роль в формировании нервных тканей, так как по их отросткам мигрируют изменяющиеся нервные клетки. Почти все клетки нервной ткани имеют общее происхождение и трансформируются в два типа клеток: нейроны и нейроглию.

Нейроны

Определение 3

Нейроны - возбудимые клетки нервной системы. Они способны к возбуждению и проведению возбуждения. Нейроны в течение жизни не делятся.

В нейроне выделяют сому (тело) и отростки. Сома, в свою очередь, имеет ядро и клеточные органоиды. Основная функция сомы заключается в осуществлении метаболизма клетки. Количество отростков у нейронов разное, но все они делятся на два основных типа:

  • дендриты - короткие, ветвящиеся сильно отростки, функцией которых является сбор информации от других нейронов.
  • аксоны, которых в каждом нейроне по одному и их функция заключается в проведении нервного импульса к терминалям аксонным.

Типы нейронов

Все нейроны делятся на несколько типов:

  • униполярные клетки;
  • биполярные клетки;
  • мультиполярные клетки.

Униполярные клетки принадлежат к болевой, температурной, тактильной модальностям и расположены в сенсорных узлах: спинальном, тройничном и каменистом.

Биполярные клетки имеют всего один аксон и один дендрит, они формируют зрительную систему, характерны для слуховой и обонятельной сенсорных систем.

Мультиполярные клетки обладают одним аксоном и множеством дендритов. К данному типу нейронов принадлежит большая часть нейронов ЦНС.

Развитие нервной системы в онтогенезе

Определение 4

Онтогенез - индивидуальное развитие организма.

Онтогенез делится на два важных периода:

  • пренатальный или внутриутробный;
  • постнатальный, который начинается после рождения.

Пренатальный период подразделяется на три основных периода:

  • начальный, который охватывает первую неделю развития;
  • зародышевый, длящийся от начала второй недели до окончания восьмой недели, т.е. от имплантации до полного завершения закладки всех органов;
  • плодный, начинающийся с девятой недели и до рождения и сопровождающийся усиленным ростом организма.

Постнатальный онтогенез человеческой нервной системы начинается с рождением ребенка. Головной мозг новорожденного весит от $300$ до $400$ грамм. После рождения прекращается образование новых нейронов из нейробластов, нейроны не делятся. Но уже к $8$-му месяцу жизни вес мозга практически удваивается, а к $4-5$ году жизни утраивается. Масса мозга растет за счет миелинизации и увеличения количества отростков. Максимальной массы мозг мужчин достигает к $20-29$ годам, а у женщин уже к возрасту $15-19$ лет. После прохождения пятидесятилетнего рубежа мозг уплощается и вес его снижается примерно на $100$ грамм.

СОЦИАЛЬНО-ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ МОСКОВСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА СЕРВИСА

АНАТОМИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

(Учебное пособие)

О.О. Якименко

Москва - 2002


Пособие по анатомии нервной системы предназначено для студентов Социально-технологического института факультета психологии. Содержание включает основные вопросы, связанные с морфологической организацией нервной системы. Помимо анатомических данных о структуре нервной системы в работу включены гистологические цитологические характеристики нервной ткани. А также вопросы информации о росте и развитии нервной системы от эмбрионального до позднего постнатального онтогенеза.

Для наглядности излагаемого материала в текст внесены иллюстрации. Для самостоятельной работы студентов дан список учебной и научной литературы, а также анатомических атласов.

Классические научные данные по анатомии нервной системы являются фундаментом для изучения нейрофизиологии мозга. Знание морфологических характеристик нервной системы на каждом этапе онтогенеза необходимо для понимания возрастной динамики поведения и психики человека.

РАЗДЕЛ I. ЦИТОЛОГИЧЕСКИЕ И ГИСТОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ НЕРВНОЙ СИСТЕМЫ

Общий план строения нервной системы

Главная функция нервной системы состоит в быстрой и точной передаче информации, обеспечивая взаимосвязь организма с окружающим миром. Рецепторы реагируют на любые сигналы внешней и внутренней среды, преобразуя их в потоки нервных импульсов, которые поступают в центральную нервную систему. На основе анализа потоков нервных импульсов мозг формирует адекватный ответ.

Вместе с эндокринными железами нервная система регулирует работу всех органов. Эта регуляция осуществляется благодаря тому, что спинной и головной мозг связаны нервами со всеми органами, двусторонними связями. От органов в центральную нервную систему поступают сигналы об их функциональном состоянии, а нервная система в свою очередь посылает сигналы к органам, корректируя их функции и обеспечивая все процессы жизнедеятельности - движение, питание, выделение и другие. Кроме того нервная система обеспечивает координацию деятельности клеток, тканей, органов и систем органов, при этом организм функционирует как единое целое.

Нервная система является материальной основой психических процессов: внимания, памяти, речи, мышления и др., с помощью которых человек не только познает окружающую среду, но и может активно ее изменять.

Таким образом, нервная система- это та часть живой системы, которая специализируется на передаче информации и на интегрировании реакций в ответ на воздействие окружающей среды.

Центральная и периферическая нервная система

Нервная система по топографическому признаку подразделяется на центральную нервную систему, куда входит головной мозг и спинной мозг, и периферическую, которая состоит из нервов и ганглиев.

Нервная система

Согласно классификации по функциональному признаку нервная система подразделяется на соматическую (отделы нервной системы, регулирующие работу скелетных мышц) и автономную (вегетативную), которая регулирует работу внутренних органов. В автономной нервной системе выделяют два отдела: симпатический и парасимпатический.

Нервная система

соматическая автономная

симпатическая парасимпатическая

Как соматическая, так и автономная нервная системы включают центральный и периферический отделы.

Нервная ткань

Основной тканью, из которой образована нервная система, является нервная ткань . Она отличается от других видов ткани тем, что в ней отсутствует межклеточное вещество.

Нервная ткань состоит из двух видов клеток: нейронов и глиальных клеток. Нейроны играют главную роль, обеспечивая все функции центральной нервной системы. Глиальные клетки имеют вспомогательное значение, выполняя опорную, защитную, трофическую функции и др. В среднем количество глиальных клеток превышает количество нейронов в отношении 10:1 соответственно.

Оболочки мозга образованы соединительной тканью, а полости мозга - особым видом эпителиальной ткани (эпиндимная выстилка).

Нейрон - структурно-функциональная единица нервной системы

Нейрон обладает признаками, общими для всех клеток: имеет оболочку-плазматическую мембрану, ядро и цитоплазму. Мембрана представляет собой трехслойную структуру, содержащую липидные и белковые компоненты. Кроме того на поверхности клетки имеется тонкий слой, называемый гликокалисом. Плазматическая мембраны регулирует обмен веществ между клеткой и средой. Для нервной клетки это особенно важно, так как мембрана регулирует движение веществ, которые непосредственно связаны с нервной сигнализацией. Также мембрана служит местом электрической активности, лежащей в основе быстрой нервной сигнализации и местом действия пептидов и гормонов. Наконец, ее участки образуют синапсы - место контакта клеток.

Каждая нервная клетки обладает ядром, которое содержит генетический материал в форме хромосом. Ядро выполняет две важных функции - контролирует дифференцировку клетки в ее конечную форму, определяя виды связей и регулирует синтез белка во всей клетке, управляя ростом и развитием клетки.

В цитоплазме нейрона имеются органеллы (эндоплазматический ретикулум, аппарат Гольджи, митохондрии, лизосомы, рибосомы и др.).

Рибосомы синтезируют белки, часть которых остается в клетке, другая часть предназначена для выведения из клетки. Кроме того, рибосомы производят элементы молекулярного аппарата для большей части клеточных функций: ферменты, белки-переносчики, рецепторы, белки мембран и т.д

Эндоплазматический ретикулум представляет систему каналов и окруженных мембраной пространств (крупных, плоских, называемых цистернами, и мелких, называемых везикулами или пузырьками) Выделяют гладкий и шероховатый эндоплазматический реьтикулом. Последний содержит рибосомы

Функция аппарата Гольджи состоит в хранении, концентрировании и упаковке секреторных белков.

Кроме систем, вырабатываающих и переносящих разные вещества, клетка обладает внутренней пищеварительной системой, состоящей из лизосом, не имеющих определеной формы. Они содержат разнообразные гидролитические ферменты, которые расщепляют и переваривают множество соединений, возникающих как внутри, так и вне клетки.

Митохондрии- это самая сложная органела клетки после ядра. Ее функция - выработка и доставка энергии, нееобходимая для жизнедеятельности клеток.

Большая часть клеток тела способна усваивать различные сахара, при этом энергия или выделяется или запасается в клетке ввиде гликогена. Однако нервные клетки в головном мозгу используют исключительно глюкозу, так как все другие вещества задерживаются гематоэнцефалическим барьером. Большинство из них лишены способности запасать гликоген, что усиливает их зависимость в отношении энергии от глюкозы в крови и от кислорода. Поэтому в нервных клетках самое большое количество митохондрий.

В нейроплазме содержатся органеллы специального назначения: микротрубочки и нейрофиламенты, которые различаются размером и строением. Нейрофиламенты встречаются только в нервных клетках и представляют внутренний скелет нейроплазмы. Микротрубочки тянутся вдоль аксона по внутренним полостям от сомы до окончания аксона. Эти органеллы и распространяют биологически активные вещества (рис. 1 А и Б). Внутрииклеточный транспорт между телом клетки и отходящими от него отростками может быть ретроградным- от нервных окончаний к телу клетки и ортоградным – от тела клетки к окончаниям.

Рис. 1 А. Внутреннее строение нейрона

Отличительной особенностью нейронов является наличие митохондрий в аксоне как добавочного источника энергии и нейрофибрилл. Взрослые нейроны не способны к делению.

Каждый нейрон имеет расширенную центральную часть тело - сому и отростки- дендриты и аксон. Тело клетки заключено в клеточную оболочку и содержит ядро и ядрышко, поддерживая целостность мембран тела клетки и ее отростков, обеспечивающих проведение ими нервных импульсов. По отношению к отросткам сома выполняет трофическую функцию, регулируя обмен веществ клетки. По дендритам (афферентные отростки) импульсы поступают к телу нервной клетки, а по аксонам (эфферентные отростки) от тела нервной клетки к другим нейронам или органам

ольшинство дендритов (дендрон - дерево) короткие, сильно ветвящиеся отростки. Их поверхность значительно увеличивается за счет небольших выростов – шипиков. Аксон (аксис - отросток) чаще длинный, мало ветвящийся отросток.

Каждый нейрон имеет только один аксон, длина которого может достигать несколько десятков сантиметров. Иногда от аксона отходят боковые отростки - коллатерали. Окончания аксона, как правило, ветвятся и их называют терминалями. Место, где от сомы клеток отходит аксон, называется аксональным холмиком.

Рис. 1 Б. Внешнее строение нейрона


Существует несколько классификаций нейронов, основанных на разных признаках: форме сомы, количеству отростков, функциям и эффектам, которые нейрон оказывает на другие клетки.

В зависимости от формы сомы различают зернистые (ганглиозные) нейроны, у которых сома имеет округлую форму; пирамидные нейроны разных размеров - большие и малые пирамиды; звездчатые нейроны; веретенообразные нейроны (рис.2 А).

По количеству отростков выделяют униполярные нейроны, имеющие один отросток, отходящий от сомы клеток; псевдоуниполярные нейроны (такие нейроны имеют Т-образный ветвящийся отросток); биполярные нейроны, имеющие один дендрит и один аксон и мультиполярные нейроны, которые имеют несколько дендритов и один аксон (рис. 2 Б).

Рис. 2. Классификация нейронов по форме сомы, по количеству отростков


Униполярные нейроны находятся в сенсорных узлах (например, спинальных, тройничном) и связаны с таким видом чувствительности, как болевая, температурная, тактильная, чувством давления, вибрации и т.д.

Эти клетки, хотя и называют униполярными, на самом деле имеют два отростка, которые сливаются вблизи тела клетки.

Биполярные клетки характерны для зрительной, слуховой и обонятельной систем

Мультиполярные клетки имеют разнообразную форму тела – веретенообразную, корзинчатую, звездчатую, пирамидную - малой и большой формы.

По выполняемым функциям нейроны бывают: афферентные, эфферентные и вставочные (контактные).

Афферентные нейроны - сенсорные (псевдоуниполярные), их сомы расположены вне центральной нервной системы в ганглиях (спинномозговых или черепно-мозговых). Форма сомы - зернистая. Афферентные нейроны имеют один дендрит, который подходит к рецепторам (кожи, мышц, сухожилий и т.д.). По дендритам информация о свойствах раздражителей передается на сому нейрона и по аксону в центральную нервную систему.

Эфферентные (двигательные) нейроны регулируют работу эффекторов (мышц, желез, ткани и т.д.). Это мультиполярные нейроны, их сомы имеют звездчатую или пирамидную форму, лежащие в спинном или головном мозге или в ганглиях автономной нервной системы. Короткие, обильно ветвящиеся дендриты воспринимают импульсы от других нейронов, а длинные аксоны выходят за пределы центральной нервной системы и в составе нерва идут к эффекторам (рабочим органам), например, к скелетной мышце.

Вставочные нейроны (интернейроны, контактные) составляют основную массу мозга. Они осуществляют связь между афферентными и эфферентными нейронами, перерабатывают информацию, поступающую от рецепторов в центральную нервную систему. В основном это мультиполярные нейроны звездчатой формы.


Среди вставочных нейронов различаются нейроны с длинными и короткими аксонами (рис. 3 А, Б).

В качестве сенсорных нейронов изображены: нейрон, отросток которого идет в составе слуховых волокон пред-дверно-улиткового нерва (VIII пара), нейрон, реагирующий на стимуляцию кожи (КН). Вставочные нейроны представлены амакрино-вой (АмН) и биполярной (БН) клетками сетчатки, нейроном обонятельной луковицы (ОбН), нейроном голубоватого места (ГМН), пирамидной клеткой коры головного мозга (ПН) и звездчатым нейроном (ЗН) мозжечка. В качестве двигательного нейрона изображен мотонейрон спинного мозга.

Рис. 3 А. Классификация нейронов по выполняемым функциям

Сенсорные нейрон:

1 - биполярный, 2 - псевдобиполярный, 3 - псевдоуниполярный, 4 - пирамидная клетка, 5 - нейрон спинного мозга, 6 -нейрон п. ambiguus, 7 - нейрон ядра подъязычного нерва. Симпатические нейроны: 8 - из звездчатого ганглия, 9 - из верхнего шейного ганглия, 10 - из интермедиолатеральеного столба бокового рога спинного мозга. Парасимпатические нейроны: 11 - из узла мышечного сплетения кишечной стенки, 12 - из дорсального ядра блуждающего нерва, 13 - из ресничного узла.

По эффекту, который нейроны оказывают на другие клетки, различают возбуждающие нейроны и тормозные нейроны. Возбуждающие нейроны оказывают активизирующий эффект, повышая возбудимость клеток, с которыми они связаны. Тормозные нейроны, напротив, снижают возбудимость клеток, вызывая угнетающий эффект.

Пространство между нейронами заполнено клетками, которые называются нейроглией (термин глия- обозначает клей, клетки “склеивают” компоненты ЦНС в единое целое). В отличие от нейронов клетки нейроглии делятся в течение всей жизни человека. Нейроглиальных клеток очень много; в некоторых отделах нервной системы их в 10 раз больше, чем нервных клеток. Выделяют клетки макроглии и клетки микроглии (рис.4).


Четыре основных вида клеток глии.

Нейрон, окруженный различными элементами глии

1 - астроциты макроглия

2 - олигодендроциты макроглия

3 – микроглия макроглия

Рис. 4. Клетки макроглии и микроглии


К макроглие относят астроциты и олигодендроциты. Астроциты обладают множеством отростков, которые расходятся от тела клетки во всех направлениях, придавая вид звезды. В центральной нервной системе некоторые отростки заканчиваются концевой ножкой на поверхности кровеносных сосудов. Астроциты, лежащие в белом веществе головного мозга, называются фиброзными астроцитами из-за наличия множества фибрилл в цитоплазме их тел и ветвей. В сером веществе астроциты содержат меньше фибрилл и называются протоплазматическими астроцитами. Они служат опорой нервных клеток, обеспечивают репарацию нервов после повреждения, изолируют и объединяют нервные волокна и окончания, участвуют в метаболических процессах, моделирующих ионный состав, медиаторы. Теперь отвергнуты предположения ь, что они участвуют в транспорте веществ от кровеносных сосудов к нервным клеткам и образуют часть гематоэцефалического барьера.

1. Олигодендроциты меньше по размерам, чем астроциты, содержат небольшие ядра, чаще встречаются в белом веществе и ответственны за формирование миелиновых оболочек вокруг длинных аксонов. Они выполняют роль изолятора и увеличивают скорость проведения нервных импульсов вдоль отростков. Миелиновая оболочка сегментарна, пространство между сегментами называется перехват Ранвье (рис.5). Каждый ее сегмент, как правило, образован одним олигодендроцитом (Шванновская клетка), который, истончаясь, закручивается вокруг аксона. Миелиновая оболочка имеет белый цвет (белое вещество), так как в состав мембран олигодендроцитов входит жироподобное вещество - миелин. Иногда одна глиальная клетка, образуя выросты, принимает участие в образовании сегментов нескольких отростков. Предполагается, что олигодендроциты осуществляют сложный метаболический обмен с нервными клетками.


1 - олигодендроцит, 2 - связь между телом клетки глии и миелиновой оболочкой, 4 - цитоплазма, 5 -плазматическая мембрана, 6 - перехват Ранвье, 7 - петля плазматической мембраны, 8 - мезаксон, 9 – гребешок

Рис. 5А. Участие олигодендроцита в образовании миелиновой оболочки

Представлены четыре стадии "обволакивания" аксона (2) шванновской клеткой (1) и его обертывания несколькими сдвоенными слоями мембраны, которые после сжатия образуют плотную миелиновую оболочку.

Рис. 5 Б. Схема оброзования миелиновой оболочки.


Сома нейрона и дендриты покрыты тонкими оболочками, которые не образуют миелин и составляют серое вещесство.

2. Микроглия представлена мелкими клетками, способными к амебовидному передвижению. Функция микроглии - защита нейронов от воспалений и инфекций (по механизму фагоцитоза - захватывание и переваривание генетически чужеродных веществ). Клетки микроглии доставляют нейронам кислород и глюкозу. Кроме того, они входят в состав гематоэнцефалического барьера, который образован ими и эндотелиальными клетками, образующими стенки кровеносных капилляров. Гематоэнцефалический барьер задерживает макромолекулы, ограничивая их доступ к нейронам.

Нервные волокна и нервы

Длинные отростки нервных клеток называют нервными волокнами. По ним нервные импульсы могут передаваться на большие расстояния до 1 метра.

Классификация нервных волокон основана на морфологических и функциональных признаках.

Нервные волокна, имеющие миелиновую оболочку, называются миелинизированными (мякотными), а волокна, не имеющие миелиновой оболочки - немиелинизированными (безмякотными).

По функциональным признакам различают афферентные (чувствительные) и эфферентные (двигательные) нервные волокна.

Нервные волокна, выходящие за пределы нервной системы, образуют нервы. Нерв - это совокупность нервных волокон. Каждый нерв имеет оболочку и кровоснабжение (рис.6).


1 - общий ствол нерва, 2 - разветвления нервного волокна, 3 - оболочка нерва, 4 - пучки нервных волокон, 5 - миелиновая оболочка, 6 - мембрана швановской клетки, 7 - перехват Ранвье, 8 - ядро швановской клетки, 9 - аксолемма.

Рис. 6 Строение нерва (А) и нервного волокна (Б).

Различают спинномозговые нервы, связанные со спинным мозгом (31 пара) и черепно-мозговые нервы (12 пар), связанные с головным мозгом. В зависимости от количественного соотношения афферентных и эфферентных волокон в составе одного нерва различают чувствительные, двигательные и смешанные нервы. В чувствительных нервах преобладают афферентные волокна, в двигательных - эфферентные, в смешанных - количественное соотношение афферентных и эфферентных волокон приблизительно равно. Все спинномозговые нервы являются смешанными нервами. Среди черепно-мозговых нервов выделяют три вышеперечисленных типа нервов. I пара - обонятельные нервы (чувствительные), II пара - зрительные нервы (чувствительные), III пара - глазодвигательные (двигательные), IV пара - блоковые нервы (двигательные), V пара - тройничные нервы (смешанные), VI пара - отводящие нервы (двигательные), VII пара - лицевые нервы (смешанные), VIII пара - вестибуло-кохлеарные нервы (смешанные), IX пара - языкоглоточные нервы (смешанные), X пара - блуждающие нервы (смешанные), XI пара - добавочные нервы (двигательные), XII пара - подъязычные нервы (двигательные) (рис 7).


I - пара- обонятельные нервы,

II - пара- зрительные нервы,

III - пара- глазодвигательные нервы,

IV - пара- блоковые нервы,

V - пара - тройничные нервы,

VI - пара- отводящие нервы,

VII - пара- лицевые нервы,

VIII - пара- кохлеарные нервы,

IX - пара- языкоглоточные нервы,

X - пара - блуждающие нервы,

XI - пара- добавочные нервы,

XII - пара-1,2,3,4 - корешки верхних спиномозговых нервов.

Рис. 7, Схема расположения черепно-мозговых и спинальных нервов

Серое и белое вещество нервной системы

На свежих срезах мозга видно, что одни структуры более темные - это серое вещество нервной системы, а другие структуры более светлые - белое вещество нервной системы. Белое вещество нервной системы образовано миелинизированными нервными волокнами, серое - немиелинизированными частями нейрона - сомами и дендритами.

Белое вещество нервной системы представлено центральными трактами и периферическими нервами. Функция белого вещества - передача информации от рецепторов в центральную нервную систему и от одних отделов нервной системы к другим.

Серое вещество центральной нервной системы образовано корой мозжечка и корой полушарий большого мозга, ядрами, ганглиями и некоторыми нервами.

Ядра - скопления серого вещества в толще белого вещества. Они расположены в разных отделах центральной нервной системы: в белом веществе больших полушарий - подкорковые ядра, в белом веществе мозжечка - мозжечковые ядра, некоторые ядра расположены в промежуточном, среднем и продолговатом мозге. Большинство ядер являются нервными центрами, регулирующими ту или иную функцию организма.

Ганглии - это скопление нейронов, расположенных вне пределов центральной нервной системы. Различают спинномозговые, черепно-мозговые ганглии и ганглии автономной нервной системы. Ганглии образованы преимущественно афферентными нейронами, но в их состав могут входить вставочные и эфферентные нейроны.

Взаимодействие нейронов

Место функционального взаимодействия или контакта двух клеток (место, где одна клетка оказывает влияние на другую клетку) английский физиолог Ч. Шеррингтон назвал синапсом.

Синапсы бывают периферическими и центральными. Примером периферического синапса является нервно-мышечный синапс, когда нейрон образует контакт с мышечным волокном. Синапсы в нервной системе называются центральными, когда контактируют два нейрона. Выделяется пять типов синапсов, в зависимости от того, какими частями контактируют нейроны: 1) аксо-дендритный (аксон одной клетки контактирует с дендритом другой); 2) аксо-соматический (аксон одной клетки контактирует с сомой другой клетки); 3) аксо-аксональный (аксон одной клетки контактирует с аксоном другой клетки); 4) дендро-дендритный (дендрит одной клетки контактирует с дендритом другой клетки); 5) сомо-соматический (контактируют сомы двух клеток). Основная масса контактов - аксо-дендритных и аксо-соматических.

Синаптические контакты могут быть между двумя возбудительными нейронами, двумя тормозными нейронами или между возбудительным и тормозным нейронами. При этом нейроны, которые оказывают воздействие, называют пресинаптическими, а нейроны, на которые оказывается воздействие - постсинаптическими. Пресинаптический возбудительный нейрон повышает возбудимость постсинаптического нейрона. В этом случае синапс называют возбудительным. Пресинаптический тормозный нейрон оказывает противоположное действие - снижает возбудимость постсинаптического нейрона. Такой синапс называют тормозным. Каждый из пяти типов центральных синапсов имеет свои морфологические особенности, хотя общая схема их строения одинакова.

Строение синапса

Рассмотрим строение синапса на примере аксо-соматического. Синапс состоит из трех частей: пресинаптического окончания, синаптической щели и постсинаптической мембраны (рис.8 А, Б).

А-Синаптические входы нейрона. Синаптические бляшки окончаний пресинаптичесиих аксонов образуют соединения на дендритах и теле (соме)- постсинаптического нейрона.

Рис. 8 А. Строение синапсов

Пресинаптическое окончание представляет собой расширенную часть терминали аксона. Синаптическая щель - это пространство между двумя контактирующими нейронами. Диаметр синаптической щели составляет 10-20 нм. Мембрана пресинаптического окончания, обращенная к синаптической щели, называется пресинаптической мембраной. Третья часть синапса - постсинаптическая мембрана, которая расположена напротив пресинаптической мембраны.

Пресинаптическое окончание заполнено пузырьками (везикулами) и митохондриями. В везикулах находятся биологически активные вещества - медиаторы. Медиаторы синтезируются в соме и по микротрубочкам транспортируются в пресинаптическое окончание. Наиболее часто в качестве медиатора выступают адреналин, норадреналин, ацетилхолин, серотонин, гамма-аминомасляная кислота (ГАМК), глицин и другие. Обычно синапс содержит один из медиаторов в большем количестве по сравнению с другими медиаторами. По типу медиатора принято обозначать синапсы: адреноэргические, холинэргические, серотонинэргические и др.

В состав постсинаптической мембраны входят особые белковые молекулы - рецепторы, которые могут присоединить молекулы медиаторов.

Синаптическая щель заполнена межклеточной жидкостью, в которой находятся ферменты, способствующие разрушению медиаторов.

На одном постсинаптическом нейроне может находиться до 20000 синапсов, часть из которых являются возбудительными, а часть - тормозными (рис.8 Б).

Б. Схема выброски медиатора и процессов, происходящих в гипотетическом центральном синапсе.

Рис. 8 Б. Строение синапсов

Помимо химических синапсов, в которых при взаимодействии нейронов участвуют медиаторы, в нервной системе встречаются электрические синапсы. В электрических синапсах взаимодействие двух нейронов осуществляется посредством биотоков. В центральной нервной системе преобладают химические стимулы.

В некоторых межнейронах синапсах электрическая и химическая передача осуществляется одновременно - это смешанный тип синапсов.

Влияние возбудительных и тормозных синапсов на возбудимость постсинаптического нейрона суммируется и эффект зависит от места расположения синапса. Чем ближе синапсы расположены к аксональному холмику, тем они эффективнее. Напротив, чем дальше расположены синапсы от аксонального холмика (например, на окончании дендритов), тем они менее эффективны. Таким образом, синапсы, расположенные на соме и аксональном холмике, оказывают влияние на возбудимость нейрона быстро и эффективно, а влияние удаленных синапсов медленно и плавно.

Нейронные сети

Благодаря синаптическим связям нейроны объединены в функциональные единицы - нейронные сети. Нейронные сети могут быть образованы нейронами, расположенными на небольшом расстоянии. Такую нейронную сеть называют локальной. Кроме того, в сеть могут быть объединены нейроны, удаленные друг от друга, из разных областей мозга. Самый высокий уровень организации связей нейронов отражает соединение нескольких областей центральной нервной системы. Такую нервную сеть называют путем или системой . Различают нисходящие и восходящие пути. По восходящим путям информация передается от нижележащих областей мозга к вышележащим (например, от спинного мозга к коре полушарий большого мозга). Нисходящие пути связывают кору больших полушарий мозга со спинным мозгом.

Самые сложные сети называются распределительными системами. Они образуются нейронами разных отделов мозга, управляющих поведением, в которых участвует организм как единое целое.

Некоторые нервные сети обеспечивают конвергенцию (схождение) импульсов на ограниченном количестве нейронов. Нервные сети могут быть построены также по типу дивергенции (расхождение). Такие сети обуславливают передачу информации на значительные расстояния. Кроме того, нервные сети обеспечивают интеграцию (суммирование или обобщение) различного рода информации (рис.9).


Рис. 9. Нервная ткань.

Крупный нейрон с множеством дендритов получает информацию через синаптический контакт с другим нейроном (в левом верхнем углу). С помощью миелинизированного аксона образуется синаптический контакт с третьим нейроном (внизу). Поверхности нейронов изображены без клеток глии, которые окружают отросток, направленный к капилляру (справа вверху).


Рефлекс как основной принцип работы нервной системы

Одним из примеров нервных сетей может быть рефлекторная дуга, необходимая для осуществления рефлекса. И.М. Сеченов в 1863 г. в работе “Рефлексы головного мозга” развил представление о том, что рефлекс является основным принципом работы не только спинного, но и головного мозга.

Рефлекс - это ответная реакция организма на раздражение при участии центральной нервной системы. Для каждого рефлекса имеется своя рефлекторная дуга - путь, по которому возбуждение проходит от рецептора до эффектора (исполнительного органа). В состав любой рефлекторной дуги входят пять составных частей: 1) рецептор - специализированная клетка, предназначенная для восприятия раздражителя (звуковой, световой, химический и т.д.), 2) афферентный путь, который представлен афферентными нейронами, 3) участок центральной нервной системы, представленный спинным или головным мозгом; 4) эфферентный путь состоит из аксонов эфферентных нейронов, выходящих за пределы центральной нервной системы; 5) эффектор - рабочий орган (мышца или железа и т.д.).

Простейшая рефлекторная дуга включает два нейрона и называется моносинаптической (по числу синапсов). Более сложная рефлекторная дуга представлена тремя нейронами (афферентным, вставочным и эфферентным) и называется трехнейронной или дисинаптической. Однако большинство рефлекторных дуг включает большое количество вставочных нейронов, и называются полисинаптическими (рис. 10 А, Б).

Рефлекторные дуги могут проходить только через спинной мозг (отдергивание руки при прикосновении к горячему предмету) или только головной мозг (закрывание век при струе воздуха, направленной в лицо), или как через спинной, так и через головной мозг.


Рис. 10А. 1 - вставочный нейрон; 2 - дендрит; 3 - тело нейрона; 4 - аксон; 5 -синапс между чувствительным и вставочным нейронами; 6 - аксон чувствительного нейрона; 7 - тело чувствительного нейрона; 8 - аксон чувствительного нейрона; 9 - аксон двигательного нейрона; 10 - тело двигательного нейрона; 11 - синапс между вставочным и двигательными нейронами; 12 - рецептор в коже; 13 - мышца; 14 - симпатический гаглий; 15 - кишка.

Рис. 10Б. 1 - моносинаптическая рефлекторная дуга, 2 - полисинаптическая рефлекторная дуга, 3К - задний корешок спинного мозга, ПК - передний корешок спинного мозга.

Рис. 10. Схема строения рефлекторной дуги


Рефлекторные дуги замыкаются в рефлекторные кольца с помощью обратных связей. Понятие обратной связи и ее функциональная роль были указаны Беллом в 1826 г. Белл писал, что между мышцей и центральной нервной системой устанавливаются двусторонние связи. С помощью обратной связи в центральную нервную систему поступают сигналы о функциональном состоянии эффектора.

Морфологической основой обратной связи являются рецепторы, расположенные в эффекторе, и афферентные нейроны, связанные с ними. Благодаря обратным афферентным связям осуществляется тонкая регуляция работы эффектора и адекватная реакция организма на изменения окружающей среды.

Оболочки мозга

Центральная нервная система (спинной и головной мозг) имеют три соединительно-тканные оболочки: твердую, паутинную и мягкую. Самая наружная из них твердая мозговая оболочка (она срастается с надкостницей, выстилающей поверхность черепа). Паутинная оболочка лежит под твердой оболочкой. Она плотно прижата к твердой и между ними нет свободного пространства.

Непосредственно к поверхности мозга примыкает мягкая мозговая оболочка, в которой много кровеносных сосудов, питающих мозг. Между паутинной и мягкой оболочками имеется пространство, заполненное жидкостью - ликвором. По составу ликвор близок к плазме крови и межклеточной жидкости и играет противоударную роль. Кроме того, в ликворе содержатся лимфоциты, обеспечивающие защиту от чужеродных веществ. Он же участвует в обмене веществ между клетками спинного, головного мозга и кровью (рис.11 А).


1 - зубчатая связка, отросток которой проходит через расположенную сбоку паутинную оболочку, 1а - зубчатая связка, прикрепленная к твердой мозговой оболочке спинного мозга, 2 - паутинная оболочка, 3 - задний корешок, проходящий в канале, образованном мягкой и паутинной оболочками, За - задний корешок, проходящий через отверстие в твердой мозговой оболочке спинного мозга, 36 - дорсальные ветви спинномозгового нерва, проходящие через паутинную оболочку, 4 - спинномозговой нерв, 5 -спинномозговой узел, 6 - твердая оболочка спинного мозга, 6а - твердая мозговая оболочка, отвернутая в сторону, 7 - мягкая оболочка спинного мозга с задней спинномозговой артерией.

Рис. 11А. Оболочки спинного мозга

Полости мозга

Внутри спинного мозга располагается спинномозговой канал, который, переходя в головной мозг, расширяется в продолговатом мозге и образует четвертый желудочек. На уровне среднего мозга желудочек переходит в узкий канал - Сильвиев водопровод. В промежуточном мозге Сильвиев водопровод расширяется, образуя полость третьего желудочка, который плавно переходит на уровне полушарий головного мозга в боковые желудочки (I и II). Все перечисленные полости также заполнены ликвором (рис. 11 Б)

Рис 11Б. Схема желудочков мозга и их отношение к поверхностным структурам полушарий головного мозга.

а - мозжечок, б - затылочный полюс, в - теменной полюс, г - лобный полюс, д - височный полюс, е - продолговатый мозг.

1 - боковое отверстие четвертого желудочка (отверстие Люшка), 2 - нижний рог бокового желудочка, 3 - водопровод, 4 - recessusinfundibularis, 5 - recrssusopticus, 6 - межжелудочковое отверстие, 7 - передний рог бокового желудочка, 8 - центральная часть бокового желудочка, 9 - сращение зрительных бугров (massainter-melia), 10 - третий желудочек, 11 -recessuspinealis, 12 - вход в боковой желудочек, 13 - задний pro бокового желудочка, 14 - четвертый желудочек.

Рис. 11. Оболочки (А) и полости мозга (Б)

РАЗДЕЛ II. СТРОЕНИЕ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Спинной мозг

Внешнее строение спинного мозга

Спинной мозг представляет собой уплощенный тяж, расположенный в позвоночном канале. В зависимости от параметров тела человека его длина составляет 41-45 см, средний диаметр 0.48-0.84 см, вес около 28-32 г. В центре спинного мозга проходит спинномозговой канал, заполненный ликвором, а передней и задней продольными бороздами он поделен на правую и левую половины.

Спереди спинной мозг переходит в головной мозг, а сзади заканчивается мозговым конусом на уровне 2-го позвонка поясничного отдела позвоночника. От мозгового конуса отходит соединительно-тканная концевая нить (продолжение концевых оболочек), которая прикрепляет спинной мозг к копчику. Концевая нить окружена нервными волокнами (конский хвост) (рис. 12).

На спинном мозге выделяется два утолщения - шейное и поясничное, от которых отходят нервы, иннервирующие, соответственно, скелетные мышцы рук и ног.

В спинном мозге выделяют шейный, грудной, поясничный и крестцовый отделы, каждый из которых подразделяется на сегменты: шейный - 8 сегментов, грудной - 12, поясничный - 5, крестцовый 5-6 и 1 - копчиковый. Таким образом, общее количество сегментов - 31 (рис. 13). Каждый сегмент спинного мозга имеет парные спинномозговые корешки - передние и задние. По задним корешкам в спинной мозг поступает информация от рецепторов кожи, мышц, сухожилий, связок, суставов, поэтому задние корешки называют сенсорными (чувствительными). Перерезка задних корешков выключает тактильную чувствительность, но не приводит к утрате движений.


Рис. 12. Спинной мозг.

a - вид спереди (вентральная его поверхность);

б - вид сзади (дорсальная его поверхность).

Твердая и паутинная оболочки разрезаны. Сосудистая оболочка снята. Римскими цифрами обозначен порядок расположения шейных (с), грудных (th), поясничных (t)

и крестцовых (s) спинномозговых нервов.

1 - шейное утолщение

2 - спинальный ганглий

3 - твердая оболочка

4 - поясничное утолщение

5 - мозговой конус

6 - концевая нить

Рис. 13. Спинной мозг и спинномозговые нервы (31 пара).

По передним корешкам спинного мозга нервные импульсы поступают к скелетным мышцам тела (за исключением мышц головы), вызывая их сокращение, поэтому передние корешки называют двигательными или моторными. После перерезки передних корешков с одной стороны наблюдается полное выключение двигательных реакций, чувствительность к прикосновению или давлению при этом сохраняется.

Передние и задние корешки каждой стороны спинного мозга объединяются в спинномозговые нервы. Спинномозговые нервы называют сегментарными, их количество соответствует числу сегментов и составляет 31 пару (рис. 14)


Распределение зон спинномозговых нервов по сегментам было установлено путем определения размеров и границ участков кожи (дерматомов), иннервируемых каждым нервом. Дерматомы расположены на поверхности тела по сегментарному принципу. К шейным дерматомам относятся задняя поверхность головы, шея, плечи и передняя поверхность предплечий. Грудные сенсорные нейроны иннервируют оставшуюся поверхность предплечья, грудь и большую часть живота. Сенсорные волокна поясничных, крестцовых и копчиковых сегментов подходят к остальной части живота и ногам.

Рис. 14. Схема дерматомов. Иннервация поверхности тела 31 парой спинномозговых нервов (С - шейные, Т - грудные, L - поясничные, S - крестцовые).

Внутреннее строение спинного мозга

Спинной мозг построен по ядерному типу. Вокруг спинномозгового канала расположено серое вещество, на периферии - белое. Серое вещество образовано сомами нейронов и ветвящимися дендритами, не имеющими миелиновых оболочек. Белое вещество - это совокупность нервных волокон, покрытых миелиновыми оболочками.

В сером веществе различают передние и задние рога, между которыми лежит межуточная зона. В грудном и поясничном отделах спинного мозга имеются боковые рога.

Серое вещество спинного мозга образовано двумя группами нейронов: эфферентными и вставочными. Основную массу серого вещества составляют вставочные нейроны (до 97%) и только 3% составляют эфферентные нейроны или мотонейроны. Мотонейроны расположены в передних рогах спинного мозга. Среди них различают a- и g-мотонейроны: a-мотонейроны иннервируют волокна скелетных мышц и представляют собой крупные клетки с относительно длинными дендритами; g-мотонейроны представлены мелкими клетками и иннервируют рецепторы мышц, повышая их возбудимость.

Вставочные нейроны участвуют в переработке информации, обеспечивая согласованную работу сенсорных и двигательных нейронов, а также связывают правую и левую половины спинного мозга и его различные сегменты (рис. 15 А,Б,В)


Рис. 15А. 1 - белое вещество мозга; 2 - спинномозговой канал; 3 - задняя продольная борозда; 4 - задний корешок спинномозгового нерва; 5 –спинно-мозговой узел; 6 - спинномозговой нерв; 7 -серое вещество мозга; 8 - передний корешок спинномозгового нерва; 9 - передняя продольная борозда

Рис. 15Б. Ядра серого вещества в грудном отделе

1,2,3- чувствительные ядра заднего рога; 4, 5 - вставочные ядра бокового рога; 6,7, 8,9,10 - двигательные ядра переднего рога; I, II, III - передний, боковой и задний канатики белого вещества.


Изображены контакты между чувствительными, вставочными и двигательными нейронами в сером веществе спинного мозга.

Рис. 15. Поперечный разрез спинного мозга

Проводящие пути спинного мозга

Белое вещество спинного мозга окружает серое вещество и образует столбы спинного мозга. Различают передние, задние и боковые столбы. Столбы - это тракты спинного мозга, образованные длинными аксонами нейронов, идущими вверх по направлению к головному мозгу (восходящие пути) либо вниз - от головного мозга к ниже расположенным сегментам спинного мозга (нисходящие пути).

По восходящим путям спинного мозга передается информация от рецепторов мышц, сухожилий, связок, суставов и кожи к головному мозгу. Восходящие пути являются также проводниками температурной и болевой чувствительности. Все восходящие пути перекрещиваются на уровне спинного (или головного) мозга. Таким образом, левая половина головного мозга (кора полушарий и мозжечок) получают информацию от рецепторов правой половины тела и наоборот.

Основные восходящие пути: от механорецепторов кожи и рецепторов опорно-двигательного аппарата - это мышцы, сухожилия, связки, суставы - пучки Голля и Бурдаха или соответственно они же - нежный и клиновидный пучки представлены задними столбами спинного мозга.

От этих же рецепторов информация поступает в мозжечок по двум путям, представленным боковыми столбами, которые называются передним и задним спиномозжечковыми трактами. Кроме того, в боковых столбах проходят еще два пути - это боковой и передний спинно-таламические пути, передающие информацию от рецепторов температурной и болевой чувствительности.

Задние столбы обеспечивают более быстрое проведение информации о локализации раздражений, чем боковой и передний спинно-таламические пути (рис. 16 А).

1 - пучок Голля, 2 - пучок Бурдаха, 3 - дорсальный спинно-мозжечковый тракт, 4 - вентральный спинно-мозжечковый тракт. Нейроны группы I-IV.

Рис. 16А. Восходящие пути спинного мозга

Нисходящие пути , проходя в составе передних и боковых столбов спинного мозга, являются двигательными, так как они влияют на функциональное состояние скелетных мышц тела. Пирамидный путь начинается, в основном, в двигательной коре полушарий и проходит к продолговатому мозгу, где большая часть волокон перекрещивается и переходит на противоположную сторону. После этого пирамидный путь разделяется на боковой и передний пучки: соответственно, передний и боковой пирамидные пути. Большинство волокон пирамидных путей оканчивается на вставочных нейронах, а около 20% образуют синапсы на мотонейронах. Пирамидное влияние является возбуждающим. Ретикуло-спинальный путь, руброспинальный путь и вестибулоспинальный путь (экстрапирамидная система) начинаются соответственно от ядер ретикулярной формации, ствола мозга, красных ядер среднего мозга ив вестибулярных ядер продолговатого мозга. Эти пути проходят в боковых столбах спинного мозга, участвуют в координации движений и обеспечении мышечного тонуса. Экстрапирамидные пути, так же как и пирамидные, являются перекрещенными (рис. 16 Б).

Главные нисходящие спинномозговые пути пирамидной (латеральный и передний кортикоспинальные пути) и экстра пирамидной (руброспинальный, ретикулоспинальный и вестибулоспинальный пути) систем.

Рис. 16 Б. Схема проводящих путей

Таким образом, спинной мозг осуществляет две важнейшие функции: рефлекторную и проводниковую. Рефлекторная функция осуществляется за счет двигательных центров спинного мозга: мотонейроны передних рогов обеспечивают работу скелетных мышц туловища. При этом поддерживается сохранение мышечного тонуса, координации работы мышц сгибателей-разгибателей, лежащих в основе движений и сохранение постоянства позы тела и его частей(рис. 17 А,Б,В). Мотонейроны, расположенные в боковых рогах грудных сегментов спинного мозга, обеспечивают дыхательными движениями (вдох-выдох, регулируя работу межреберных мышц). Мотонейроны боковых рогов поясничного и крестцового сегментов представляют двигательные центры гладких мышц, входящих в состав внутренних органов. Это центры мочеиспускания, дефекации, работы половых органов.

Рис. 17А. Дуга сухожильного рефлекса.

Рис. 17Б. Дуги сгибательного и перекрестного разгибательного рефлекса.


Рис. 17В. Элементарная схема безусловного рефлекса.

Нервные импульсы, возникающие при раздражении рецептора (р) по афферентным волокнам (афф. нерв, показано лишь одно такое волокно) идут к спинальному мозгу (1), где через вставочный нейрон передаются на эфферентные волокна (эфф. нерв), по которым доходят до эффектора. Пунктирные линии - распространение возбуждения от низших отделов центральной нервной системы на ее вышерасположенные отделы (2, 3,4) до коры мозга (5) включительно. Наступающее вследствие этого изменение состояния высших отделов мозга в свою очередь воздействует (см. стрелки) на эфферентный нейрон, влияя на конечный результат рефлекторного ответа.

Рис. 17. Рефлекторная функция спинного мозга

Проводниковую функцию выполняют спинномозговые тракты (рис. 18 А,Б,В,Г,Д).


Рис. 18А. Задние столбы. Это цепь, образованная тремя нейронами, передает информацию от рецепторов давления и прикосновения к соматосенсорной коре.


Рис. 18Б. Латеральный спинно-таламический тракт. По этому пути информация от температурных и болевых рецепторов поступает к обширным областям корытоловного мозга.


Рис. 18В. Передний спинно-таламический тракт. По этому пути в соматосенсорную кору поступает информация от рецепторов давления и прикосновения, а также от болевых и температурных.


Рис. 18Г. Экстрапирамидная система. Руброспинальный и ретикулоспинальный пути, входящие в состав мультинейронного экстрапирамидного пути, идущего от коры больших полушарий к спинному мозгу.


Рис. 18Д. Пирамидный, или кортикоспинальный, путь

Рис. 18. Проводниковая функция спинного мозга

РАЗДЕЛ III. ГОЛОВНОЙ МОЗГ.

Общая схема строения головного мозга (рис. 19)

Головной мозг

Рис 19А. Головной мозг

1. Лобная кора (когнитивная зона)

2. Двигательная кора

3. Зрительная кора

4. Мозжечок 5. Слуховая кора


Рис 19Б. Вид сбоку

Рис 19В. Главные образования медальной поверхности головного мозга на средне-сагиттальном разрезе.

Рис 19Г. Нижняя поверхность головного мозга

Рис. 19. Строение головного мозга

Задний мозг

Задний мозг, включающий продолговатый мозг и Варолиев мост представляют собой филогенетически древнюю область центральной нервной системы, сохраняя черты сегментарного строения. В заднем мозге локализованы ядра и проводящие восходящие и нисходящие пути. По проводящим путям в задний мозг поступают афферентные волокна от вестибулярных и слуховых рецепторов, от рецепторов кожи и мышц головы, от рецепторов внутренних органов, а также от вышерасположенных структур головного мозга. В заднем мозге расположены ядра V-XII пар черепно-мозговых нервов, часть из которых иннервирует лицевую и глазодвигательную мускулатуру.

Продолговатый мозг

Продолговатый мозг расположен между спинным мозгом, Варолиевым мостом и мозжечком (рис. 20). На вентральной поверхности продолговатого мозга по средней линии проходит передняя срединная борозда, по ее бокам расположено два тяжа - пирамиды, сбоку от пирамид лежат оливы (рис. 20 А-В).

Рис. 20А. 1 - мозжечок 2- ножки мозжечка 3 - Мост 4 - Продолговатый мозг


Рис. 20В. 1 - мост 2 - пирамида 3 - олива 4 - передняя серединная щель 5 - передняя боковая борозда 6 - пере крест переднего канатика 7 - передний канатик 8 -боковой канатик

Рис. 20. Продолговатый мозг

На задней стороне продолговатого мозга тянется задняя медиальная борозда. По ее бокам лежат задние канатики, которые идут к мозжечку в составе задних ножек.

Серое вещество продолговатого мозга

В продолговатом мозге расположены ядра четырех пар черепно-мозговых нервов. К ним относятся ядра языкоглоточного, блуждающего, добавочного и подъязычного нервов. Кроме того, выделяют нежное, клиновидное ядра и улитковые ядра слуховой системы, ядра нижних олив и ядра ретикулярной формации (гигантоклеточное, мелкоклеточное и латеральное), а также дыхательные ядра.

Ядра подъязычного (XII пара) и добавочного (XI пара) нервов - двигательные, иннервируют мышцы языка и мышцы, осуществляющие движение головы. Ядра блуждающего (X пара) и языкоглоточного (IX пара) нервов - смешанные, иннервируют мышцы глотки, гортани, щитовидную железу, осуществляют регуляцию глотания, жевания. Эти нервы состоят из афферентных волокон, идущих от рецепторов языка, гортани, трахеи и от рецепторов внутренних органов грудной и брюшной полости. Эфферентные нервные волокна иннервируют кишечник, сердце и сосуды.

Ядра ретикулярной формации не только активизируют кору больших полушарий, поддерживая сознание, но и образуют дыхательный центр, который обеспечивает дыхательные движения.

Таким образом, часть ядер продолговатого мозга регулирует жизненно важные функции (это ядра ретикулярной формации и ядра черепно-мозговых нервов). Другая часть ядер входит в состав восходящих и нисходящих путей (нежное и клиновидное ядра, улитковые ядра слуховой системы) (рис. 21).

1-тонкое ядро;

2 - клиновидное ядро;

3 - окончание волокон задних канатиков спинного мозга;

4 - внутренние дугообразные волокна - второй нейрон проприои пути коркового направления;

5 - перекрест петель находится в межоливном петлевом слое;

6 - медиальная петля - продолжение внутренних дугообразных вола

7 - шов, образован перекрестом петель;

8 - ядро оливы - промежуточное ядро равновесия;

9 - пирамидные пути;

10 - центральный канал.

Рис. 21. Внутреннее строение продолговатого мозга

Белое вещество продолговатого мозга

Белое вещество продолговатого мозга образовано длинными и короткими нервными волокнами

Длинные нервные волокна входят в состав нисходящих и восходящих проводящих путей. Короткие нервные волокна обеспечивают согласованную работу правой и левой половин продолговатого мозга.

Пирамиды продолговатого мозга - часть нисходящего пирамидного тракта , идущего в спинной мозг и оканчивающегося на вставочных нейронах и мотонейронах. Кроме того, через продолговатый мозг проходит рубро-спинальный путь. Нисходящие вестибуло-спинальный и ретикуло-спинальный тракты берут начало в продолговатом мозге соответственно от вестибулярных и ретикулярных ядер.

Восходящие спинно-мозжечковые тракты проходят через оливы продолговатого мозга и через ножки мозга и передают информацию от рецепторов опорно-двигательного аппарата к мозжечку.

Нежные и клиновидные ядра продолговатого мозга входят в состав одноименных путей спинного мозга, идущих через зрительные бугры промежуточного мозга до соматосенсорной коры.

Через улитковые слуховые ядра и через вестибулярные ядра проходят восходящие сенсорные пути от слуховых и вестибулярных рецепторов. В проекционную зону височной коры.

Таким образом, продолговатый мозг регулирует деятельность многих жизненно важных функций организма. Поэтому малейшие повреждение продолговатого мозга (травма, отек, кровоизлияние, опухоли), как правило, приводят к летальному исходу.

Варолиев мост

Мост представляет собой толстый валик, который граничит с продолговатым мозгом и ножками мозжечка. Восходящие и нисходящие пути продолговатого мозга проходят через мост, не прерываясь. В области соединения моста и продолговатого мозга выходит вестибулокохлеарный нерв (VIII пара). Вестибулокохлеарный нерв является чувствительным и передает информацию от слуховых и вестибулярных рецепторов внутреннего уха. Кроме того, в Варолиевом мосту расположены смешанные нервы, ядра тройничного нерва (V пара), отводящего нерва (VI пара), лицевого нерва (VII пара). Эти нервы иннервируют мышцы лица, кожу волосистой части головы, язык, боковые прямые мышцы глаза.

На поперечном срезе мост состоит из вентральной и дорсальной части - между ними граница - трапециевидное тело, волокна которого относят к слуховому пути. В области трапециевидного тела есть медиальное парабранхиальное ядро, которое связано с зубчатым ядром мозжечка. Собственное ядро моста осуществляется связь мозжечка с корой головного мозга. В дорсальной части моста лежат ядра ретикулярной формации и продолжаются восходящие и нисходящие пути продолговатого мозга.

Мост выполняет сложные и разнообразные функции, направленные на поддержание позы и сохранение равновесия тела в пространстве при изменении скорости движения.

Очень важным являются вестибулярные рефлексы, рефлекторные дуги которых проходят через мост. Они обеспечивают тонус шейных мышц, возбуждение вегетативных центров, дыхание, частоту сердечных сокращений, деятельность кишечно-сосудистого тракта.

Ядра тройничного, языкоглоточного, блуждающего нервов и моста связаны с захватом, пережевыванием и проглатыванием пищи.

Нейроны ретикулярной формации моста играют особую роль в активации коры больших полушарий и ограничении сенсорного притока нервных импульсов во время сна (рис. 22, 23)



Рис. 22. Продолговатый мозг и мост.

А. Вид сверху (с дорсальной стороны).

Б. Вид сбоку.

В. Вид снизу(с вентральной стороны).

1 - язычок, 2 - передний мозговой парус, 3 - срединное возвышение, 4 - верхняя ямка, 5 - верхняя ножка мозжечка, 6 - средняя ножка мозжечка, 7 - лицевой бугорок, 8 - нижняя ножка мозжечка, 9 - слуховой бугорок, 10 - мозговые полосы, 11 - лента четвертого желудочка, 12 - треугольник подъязычного нерва, 13 - треугольник блуждающего нерва, 14 - areapos-terma, 15 - obex, 16 - бугорок клиновидного ядра, 17 - бугорок нежного ядра, 18 - боковой канатик, 19 - задняя боковая борозда, 19 а - передняя боковая борозда, 20 - клиновидный канатик, 21 - задняя промежуточная борозда, 22 - нежный канатик, 23 - задняя срединная борозда, 23 а - мост - основание), 23 б - пирамида продолговатого мозга, 23 в -олива, 23 г - перекрест пирамид, 24 - ножка мозга, 25 - нижний бугорок, 25 а - ручка нижнего бугорка, 256 - верхний бугорок

1 - трапецивидное тело 2 - ядро верхней оливы 3 - дорсальная содержит ядра VIII, VII, VI, V пар черепных нервов 4 – медальная часть моста 5 –-вентральная часть моста содержит собственные ядра и моста 7 - поперечные ядра моста 8 - пирамидные пути 9 – средняя ножка мозжечка.

Рис. 23. Схема внутреннего строения моста на вронтальном сечении

Мозжечок

Мозжечок представляет собой отдел мозга, расположенный позади полушарий большого мозга над продолговатым мозгом и мостом.

Анатомически в мозжечке выделяют среднюю часть - червь, и два полушария. С помощью трех пар ножек (нижних, средних и верхних) мозжечок связан со стволом мозга. Нижние ножки соединяют мозжечок с продолговатым и спинным мозгом, средние - с мостом, а верхние со средним и промежуточным мозгом (рис. 24).


1 - червь 2 - центральная долька 3 - язычок червя 4 - передний парус мозжечка 5 - верхнее полушарие 6 - передняя ножка мозжечка 8 - ножка клочка 9 – клочок 10 - верхняя полулунная долька 11 - нижняя полулунная долька 12 -нижнее полушарие 13 - двубрюшная долька 14 - долька мозжечка 15 - миндалина мозжечка 16 - пирамида червя 17 - крыло центральной дольки 18 - узелок 19 - верхушка 20 - бороздка 21 - втулочка червя 22 - бугор червя 23 - четырехугольная долька.

Рис. 24. Внутреннее строение мозжечка

Мозжечок построен по ядерному типу - поверхность полушарий представлена серым веществом, составляющим новую кору. Кора образует извилины, которые отделяются друг от друга бороздами. Под корой мозжечка расположено белое вещество, в толще которого выделяют парные ядра мозжечка (рис. 25). К ним относят ядра шатра, шаровидное ядро, пробковое ядро, зубчатое ядро. Ядра шатра связаны с вестибулярным аппаратом, шаровидное и пробковое ядра с движение туловища, зубчатое ядро – с движением конечностей.

1- передние ножки мозжечка; 2 - ядра шатра; 3 - зубчатое ядро; 4 - пробковидное ядро; 5 - белая субстанция; 6 - полушария мозжечка; 7 – червь; 8 шаровидное ядро

Рис. 25. Ядра мозжечка

Кора мозжечка однотипна и состоит из трех слоев: молекулярного, ганглиозного и гранулярного, в которых находятся 5 типов клеток: клетки Пуркинье, корзинчатые, звездчатые, гранулярные и клетки Гольджи (рис.26). В поверхностном, молекулярном слое, расположены дендритные разветвления клеток Пуркинье, представляющие собой один из наиболее сложно устроенных нейронов мозга. Дендритные отростки обильно покрыты шипиками, что свидетельствует о большом количестве синапсов. Кроме клеток Пуркинье в этом слое много аксонов параллельных нервных волокон (Т-образно ветвящиеся аксоны гранулярных клеток). В нижней части молекулярного слоя находятся тела корзинчатых клеток, аксоны которых образуют синаптические контакты в области аксонных холмиков клеток Пуркинье. В молекулярном слое имеются еще и звездчатые клетки.


А. Клетка Пуркинье. Б. Клетки-зерна.

В. Клетка Гольджи.

Рис. 26. Типы нейронов мозжечка.

Под молекулярным слоем расположен ганглиозный слой, в котором находятся тела клеток Пуркинье.

Третий слой – гранулярный – представлен телами вставочных нейронов (клеток-зерен или гранулярных клеток). В гранулярном слое имеются еще клетки Гольджи, аксоны которых поднимаются в молекулярный слой.

В кору мозжечка поступают только два типа афферентных волокон: лазающие и мшистые, по которым в мозжечок приходят нервные импульсы. Каждое лазающее волокно имеет контакт с одной клеткой Пуркинье. Разветвления мшистого волокна образуют контакты в основном с гранулярными нейронами, но не контактируют с клетками Пуркинье. Синапсы мшистого волокна являются возбуждающими (рис. 27).


К коре и ядрам мозжечка поступают возбуждающие импульсы как по лазящим, так и моховидным волокнам. Из мозжечка же сигналы идут лишь от клеток Пуркинье (П), угнетающих активность нейронов в ядрах 1 мозжечка (Я). К собственным нейронам коры мозжечка относятся возбуждащщие клетки-зерна (3) и тормозные корзинчатые нейроны (К), нейроны Гольджи (Г) и звездчатые нейроны (Зв). Стрелками указано направление движения нервных импульсов. Имеются как возбуждающие (+), так и; тормозные (-) синапсы.

Рис. 27. Нервная цепь мозжечка.

Таким образом, в кору мозжечка входят два типа афферентных волокон: лазающие и мшистые. По этим волокнам передается информация от тактильных рецепторов и рецепторов опорно-двигательного аппарата, а также от всех структур мозга, регулирующих двигательную функцию организма.

Эфферентное влияние мозжечка осуществляется через аксоны клеток Пуркинье, которые являются тормозными. Аксоны клеток Пуркинье оказывают свое влияние действие либо непосредственно на мотонейроны спинного мозга, либо косвенно через нейроны ядер мозжечка или другие двигательные центры.

У человека в связи с прямохождением и трудовой деятельностью мозжечок и его полушария достигают наибольшего развития и размера.

При повреждении мозжечка наблюдаются нарушения равновесия и мышечного тонуса. Характер нарушений зависит от места повреждений. Так, при поражении ядер шатра нарушается равновесие тела. Это проявляется в шатающейся походке. При повреждении червя, пробкового и шаровидного ядер – нарушается работа мышц шеи и туловища. У больного возникают трудности при приеме пищи. При поражении полушарий и зубчатого ядра – работа мышц конечностей (тремор), затрудняется его профессиональная деятельность.

Кроме того, у всех больных с повреждением мозжечка в связи с нарушением координации движений и тремором (дрожание) быстро возникает утомление.

Средний мозг

Средний мозг, как и продолговатый и Варолиев мост, относится к стволовым структурам (рис. 28).


1 - комисура поводков

2 - поводок

3 - шишковидная железа

4 - верхнее двухолмие среднего мозга

5 - медиальное коленчатое тело

6 - латеральное коленчатое тело

7 - нижнее двухолмие среднего мозга

8 - верхние ножки мозжечка

9 - средние ножки мозжечка

10 - нижние ножки мозжечка

11- продолговатый мозг

Рис. 28. Задний мозг

Средний мозг состоит из двух частей: крыши мозга и ножек мозга. Крыша среднего мозга представлена четверохолмием, в котором выделяют верхние и нижние бугры. В толще ножек мозга выделяют парные скопления ядер, получивших названия черная субстанция и красное ядро. Через средний мозг проходят восходящие пути к промежуточному мозгу и мозжечку и нисходящие пути - из коры больших полушарий, подкорковых ядер и промежуточного мозга до ядер продолговатого и спинного мозга.

В нижних буграх четверохолмия располагаются нейроны, получающие афферентные сигналы от слуховых рецепторов. Поэтому нижние бугры четверохолмия называют первичным слуховым центром. Через первичный слуховой центр проходит рефлекторная дуга ориентировочного слухового рефлекса, который проявляется в повороте головы в сторону акустического сигнала.

Верхние бугры четверохолмия являются первичным зрительным центром. На нейроны первичного зрительного центра поступают афферентные импульсы от фоторецепторов. Верхние бугры четверохолмия обеспечивают ориентировочный зрительный рефлекс – поворот головы в сторону зрительного стимула.

В осуществлении ориентировочных рефлексов принимают участие ядра бокового и глазодвигательного нервов, которые иннервируют мышцы глазного яблока, обеспечивая его движение.

Красное ядро содержит нейроны разных размеров. От крупных нейронов красного ядра начинается нисходящий рубро-спинальный тракт, который оказывает действие на мотонейроны, тонко регулирует мышечный тонус.

Нейроны черной субстанции содержат пигмент меланин и придают этому ядру темный цвет. Черная субстанция, в свою очередь, посылает сигналы к нейронам ретикулярных ядер ствола мозга и подкорковым ядрам.

Черная субстанция участвует в сложной координации движений. В ней содержатся дофаминергические нейроны, т.е. выделяющие в качестве медиатора – дофамин. Одна часть таких нейронов регулирует эмоциональное поведение, другая – играет важную роль в контроле сложных двигательных актов. Повреждение черной субстанции, приводящее к дегенерации дофаминергических волокон обуславливает неспособность приступить к выполнению произвольных движений головы и рук, когда больной сидит спокойно (болезнь Паркинсона) (рис. 29 А,Б).

Рис. 29А. 1 - холмик 2 - водопровод большого мозга 3 - центральное серое вещество 4 - черная субстанция 5 - медиальная борозда ножки большого мозга

Рис. 29Б. Схема внутреннего строения среднего мозга на уровне нижних холмиков (фронтальное сечение)

1 - ядро нижнего холмика, 2 - двигательный путь экстрапирамидной системы, 3 - дорсальный перекрест покрышки, 4 - красное ядро, 5 - красноядерный - спинномозговой путь, 6 - вентральный перекрест покрышки, 7 - медиальная петля, 8 - латеральная петля, 9 - ретикулярная формация, 10 - медиальный продольный пучок, 11 - ядро среднемозгового тракта тройничного нерва, 12 - ядро бокового нерва, I-V - нисходящие двигательные пути ножки мозга

Рис. 29. Схема внутреннего строения среднего мозга

Промежуточный мозг

Промежуточный мозг образует стенки III желудочка. Главными структурами его являются зрительные бугры (таламус) и подбугровая область (гипоталамус), а также надбугровая область (эпиталамус) (рис. 30 А,Б).

Рис. 30 А. 1 - thalamus (зрительный бугор) - подкорковый центр всех видов чувствительности, "чувствилище" мозга; 2 - epithalamus (надбугорная область); 3 - metathalamus (забугорная область).

Рис. 30 Б. Схемы зрительного мозга ( thalamencephalon ): а - вид сверху б - вид сзади и снизу.

Таламус (зрительный бугор) 1 - передний бурф зрительного бугра, 2 - подушка 3 - межбугорное сращение 4 - мозговая полоска зрительного бугра

Эпиталамус (надбугровая область) 5 - треугольник поводка, 6 - поводок, 7 - спайка поводка, 8 - шишковидное тело (эпифиз)

Метаталамус (забугорная область) 9 - латеральное коленчатое тело, 10 - медиальное коленчатое тело, 11 - III желудочек, 12 - крыша среднего мозга

Рис. 30. Зрительный мозг

В глубине мозговой ткани промежуточного мозга расположены ядра наружных и внутренних коленчатых тел. Наружная граница образована белым веществом, отделяющим промежуточный мозг от конечного.

Таламус (зрительные бугры)

Нейроны таламуса образуют 40 ядер. Топографически ядра таламуса подразделяются на передние, срединные и задние. Функционально эти ядра можно разделить на две группы: специфические и неспецифические.

Специфические ядра входят в состав специфических проводящих путей. Это восходящие пути, которые передают информацию от рецепторов органов чувств к проекционным зонам коры полушарий большого мозга.

Важнейшими из специфических ядер являются латеральное коленчатое тело, участвующее в передаче сигналов от фоторецепторов и медиальное коленчатое тело, передающее сигналы от слуховых рецепторов.

Неспецифические яра таламуса относят к ретикулярной формации. Они выполняют роль интегративных центров и оказывают преимущественно активирующее восходящее влияние на кору полушарий большого мозга(рис. 31 А,Б)


1 - передняя группа (обонятельные); 2 - задняя группа (зрительные); 3 - латеральная группа (общая чувствительность); 4 - медиальная группа (экстрапирамидная система; 5 - центральная группа (ретикулярная формация).

Рис. 31Б. Фронтальный срез головного мозга на уровне середины зрительного бугра. 1а - переднее ядро зрительного бугра. 16 - медиальное ядро зрительного бугра, 1в - латеральное ядро зрительного бугра, 2 - боковой желудочек, 3 - свод, 4 - хвостатое ядро, 5 - внутренняя капсула, 6 - наружная капсула, 7 - внешняя капсула (capsulaextrema), 8 - вентральное ядро зрительного бугра, 9 - субталамическое ядро, 10 - третий желудочек, 11 - ножка мозга. 12 - мост, 13 - межножковая ямка, 14 - ножка гиппокампа, 15 - нижний рог бокового желудочка. 16 - черное вещество, 17 - островок. 18 - бледный шар, 19 - скорлупа, 20 - поля Фореля Н; и ЬЬ. 21 - межталамическое сращение, 22 - мозолистое тело, 23 - хвост хвостатого ядра.

Рис 31. Схема групп ядер зрительного бугра


Активацию нейронов неспецифических ядер таламуса особенно эффективно вызывают болевые сигналы (таламус – высший центр болевой чувствительности).

Повреждения неспецифических ядер таламуса приводят также к нарушению сознания: потерей активной связи организма с окружающей средой.

Подбугорье (гипоталамус)

Гипоталамус образован группой ядер, ррасположенных у основания мозга. Ядра гипоталамуса представляют собой подкорковые центры автономной нервной системы всех жизненно важных функций организма.

Топографически гипоталамус разделяется на преоптическую область, области переднего, среднего и заднего гипоталамуса. Все ядра гипоталамуса парные (рисю 32 А-Г).

1 - водопровод 2 - красное ядро 3 - покрышка 4 - черная субстанция 5 - ножка мозга 6 -сосцевидные тела 7 - переднее продырявленное вещество 8 - обобнятельный треугольник 9 - воронка 10 - зрительный перекрест 11. зрительный нерв 12 - серый бугор 13-заднее продырявленное вещество 14 - наружное коленчатое тело 15 - медиальное коленчатое тело 16 - подушка 17 - зрительный тракт

Рис. 32А. Метаталамус и гипоталамус


а - вид снизу; б - серединное сагиттальное сечение.

Зрительная часть (parsoptica): 1 - конечная пластинка; 2 - зрительный перекрест; 3 - зрительный тракт; 4 - серый бугор; 5 - воронка; 6 - гипофиз;

Обонятельная часть: 7 - сосковидные тела - подкорковые обонятельные центры; 8 - подбугорная область в узком смысле слова является продолжением ножек мозга, содержит черное вещество, красное ядро и Люисово тело, которое является звеном экстрапирамидной системы и вегетативным центром; 9 - подбугорная Монроева борозда; 10 - турецкое седло, в ямке которого находится гипофиз.

Рис. 32Б. Подбугорная область (hypothalamus)

Рис. 32В. Главные ядра гипоталамуса


1 - nucleussupraopticus; 2 - nucleuspreopticus; 3 - nucliusparaventricularis; 4 - nucleusinfundibularus; 5 - nucleuscorporismamillaris; 6 - зрительный перекрест; 7 - гипофиз; 8 - серый бугор; 9 - сосцевидное тело; 10 мост.

Рис. 32Г. Схема нейросекреторных ядер подбугорной обласп (Hypothalamus)

В преоптическую область входят перивентрикулярное, медиальное и латеральное преоптические ядра.

В группу переднего гипоталамуса относят супраоптическое, супрахиазматическое и паравентрикулярное ядра.

Средний гипоталамус составляет вентромедиальное и дорсомедиальное ядра.

В заднем гипоталамусе различают заднее гипоталамическое, перифорникальное и мамиллярное ядра.

Связи гипоталамуса обширны и сложны. Афферентные сигналы в гипоталамус поступают от коры больших полушарий, подкорковых ядер и от таламуса. Основные эфферентные пути доходят до среднего мозга, таламуса и подкорковых ядер.

Гипоталамус является высшим центром регуляции сердечно-сосудистой системы, водно-солевого, белкового, жирового, углеводного обменов. В этой области мозга расположены центры, связанные с регуляцией пищевого поведения. Важная роль гипоталамуса – регуляция. Электрическое раздражение задних ядер гипоталамуса приводит к гипертермии, в результате повышения обмена веществ.

Гипоталамус принимает также участие в поддержании биоритма “сон-бодрствование”.

Ядра переднего гипоталамуса связаны с гипофизом и осуществляют транспорт биологически активных веществ, которые вырабатываются нейронами этих ядер. Нейроны преоптического ядра вырабатывают рилизинг-факторы (статины и либерины), контролирующие синтез и высвобождение гормонов гипофиза.

Нейроны преоптического, супраоптического, паравентрикулярного ядер вырабатывают истинные гормоны – вазопрессин и окситоцин, которые по аксонам нейронов спускаются в нейрогипофиз, где хранятся до высвобождения – поступления в кровь.

Нейроны передней доли гипофиза вырабатывают 4 вида гормонов: 1) соматотропный гормон, регулирующий рост; 2) гонадотропный гормон, способствующий росту половых клеток, желтого тела, усиливает выработку молока; 3) тиреотропный гормон – стимулирует функцию щитовидной железы; 4) адренокортикотропный гормон – усиливает синтез гормонов коры надпочечников.

Промежуточная доля гипофиза выделяет гормон интермедин, влияющий на пигментацию кожи.

Задняя доля гипофиза выделяет два гормона – вазопрессин, влияющий на гладкую мускулатуру артериол, и окситоцин – действует на гладкую мускулатуру матки и стимулирует выделение молока.

Гипоталамус играет также важную роль в эмоциональном и половом поведении.

В состав эпиталамуса (шишковидная железа) входит эпифиз. Гормон эпифиза – мелатонин – тормозит в гипофизе образование гонадотропных гормонов, а это в свою очередь задерживает половое развитие.

Передний мозг

Передний мозг состоит из трех анатомически обособленных частей – коры полушарий большого мозга, белого вещества и подкорковых ядер.

В соответствии с филогенезом коры полушарий большого мозга выделяют древнюю кору (архикортекс), старую кору (палеокортекс) и новую кору (неокортекс). К древней коре относят обонятельные луковицы, в которые поступают афферентные волокна от обонятельного эпителия, обонятельные тракты – расположенные на нижней поверхности лобной доли и обонятельные бугорки – вторичные обонятельные центры.

Старая кора включает кору поясной извилины, кору гиппокампа и миндалину.

Все остальные области коры являются новой корой. Древнюю и старую кору называют обонятельным мозгом (рис. 33).

Обонятельный мозг, помимо функций, связанных с обонянием, обеспечивает реакции настораживания и внимания, принимает участие в регуляции вегетативных функций организма. Эта система играет также важную роль в осуществлении инстинктивных форм поведения (пищевого, полового, оборонительного) и формировании эмоций.

а - вид снизу; б - на сагиттальном сечении мозга

Переферический отдел: 1 - bulbusolfactorius (обонятельная луковица; 2 - tractusolfactories (обонятельный путь); 3 - trigonumolfactorium (обонятельный треугольник); 4 - substantiaperforateanterior (переднее продырявленное вещество).

Центральный отдел - извилины мозга: 5 - сводчатая извилина; 6 - hippocampus расположен в полости нижнего рога бокового желудочка; 7 - продолжение серого облачения мозолистого тела; 8 - свод; 9 - прозрачная перегородка проводящие пути обонятельного мозга.

Рис 33. Обонятельный мозг

Раздражение структур старой коры оказывает влияние на сердечно-сосудистую систему и дыхание, вызывает гиперсексуальность, изменяет эмоциональное поведение.

При электрическом раздражении миндалины наблюдаются эффекты, связанные с деятельностью пищеварительного тракта: облизывание, жевание, глотание, изменение перистальтики кишечника. Раздражение миндалины влияет и на деятельность внутренних органов – почек, мочевого пузыря, матки.

Таким образом, существует связь структур старой коры с вегетативной нервной системой, с процессам, направленными на поддержание гомеостаза внутренних сред организма.

Конечный мозг

В состав конечного мозга входят: кора полушарий, белое вещество и расположенные в его толще подкорковые ядра.

Поверхность полушарий большого мозга складчатая. Борозды – углубления делят ее на доли.

Центральная (Роландова) борозда отделяет лобную долю от теменной доли. Боковая (Сильвиева) борозда отделяет височную долю от теменной и лобной долей. Затылочно-теменная борозда образует границу между теменной, затылочной и височной долями (рис.34 А,Б, рис. 35)


1 - верхняя лобная извилина; 2 - средняя лобная извилина; 3 - предцентральная извилина; 4 - постцентральная извилина; 5 - нижняя теменная извилина; 6 - верхняя теменная извилина; 7 - затылочная извилина; 8 - затылочная бороздка; 9 - внутритеменная борозда; 10 - центральная борозда; 11 - предцентральная извилина; 12 - нижняя лобная борозда; 13 - верхняя лобная борозда; 14 - вертикальная щель.

Рис. 34А. Головной мозг с дорсальной поверхности

1 - обонятельная борозда; 2 - передняя продырявленная субстанция; 3 - крючок; 4 - средняя височная борозда; 5 - нижняя височная борозда; 6 - борозда морского конька; 7 - окольная борозда; 8 - шпорная борозда; 9 - клин; 10 - парагиппокампальная извилина; 11 - затылочно-височная борозда; 12 - нижне-теменная извилина; 13 - обонятельный треугольник; 14 - прямая извилина; 15 - обонятельный тракт; 16 - обонятельная луковица; 17 - вертикальная щель.

Рис. 34Б. Головной мозг с вентральной поверхности


1 - центральная борозда (Роланда); 2 - латеральная борозда (Сильвиева борозда); 3 - предцентральная борозда; 4 - верхняя лобная борозда; 5 - нижняя лобная борозда; 6 - восходящая ветвь; 7 - передняя ветвь; 8 - зацентральная борозда; 9 - внутритеменная борозда; 10- верхняя височная борозда; 11 - нижняя височная борозда; 12 - поперечная затылочная борозда; 13 - затылочная борозда.

Рис. 35. Борозды верхнелатеральной поверхности полушария (левая сторона)

Таким образом, борозды разделяют полушария конечного мозга на пять долей: лобную, теменную, височную, затылочную и островковую долю, которая расположена под височной долей (рис. 36).

Рис. 36. Проекционные (отмечены точками) и ассоциативные (светлые) зоны коры головного мозга. К проекционным зонам относятся двигательная область (лобная доля), соматосенсорная область (теменная доля), зрительная область (затылочная доля) и слуховая область (височная доля).


На поверхности каждой доли также расположены борозды.

Различают борозды трех порядков: первичные, вторичные и третичные. Первичные борозды относительно стабильные и наиболее глубокие. Это границы крупных морфологических отделов мозга. Вторичные борозды отходят от первичных, а третичные от вторичных.

Между бороздами имеются складки – извилины, форма которых определяется конфигурацией борозд.

В лобной доле выделяют верхнюю, среднюю и нижнюю лобные извилины. В височной доле имеются верхняя, средняя и нижняя височные извилин. Передняя центральная извилина (прецентральная) расположена перед центральной бороздой. Задняя центральная извилина (постцентральная) находится за центральной бороздой.

У человека наблюдается большая вариабельность борозд и извилин конечного мозга. Несмотря на эту индивидуальную изменчивость внешнего строения полушарий, это не сказывается на структуре личности и сознания.

Цитоархитектоника и миелоархитектоника новой коры

В соответствии с делением полушарий на пять долей выделяют пять основных областей – лобную, теменную, височную, затылочную и островковую, имеющие различия в строении и выполняющие разные функции. Однако общий план строения новой коры одинаков. Новая кора – это слоистая структура (рис. 37). I - молекулярный слой, образован преимущественно нервными волокнами, идущими параллельно поверхности. Среди параллельных волокон расположено небольшое количество зернистых клеток. Под молекулярным слоем расположен II слой – наружный зернистый. III слой – наружный пирамидный, IV слой, внутренний зернистый, V слой – внутренний пирамидный и VI слой – мультиформный. Название слоев дано по названию нейронов. Соответственно, во II и IV слоях – сомы нейронов имеют округлую форму (клетки-зерна) (наружный и внутренний зернистый слои), а в III и IV слоях сомы имеют пирамидную форму (в наружном пирамидном – малые пирамиды, а во внутреннем пирамидном – большие пирамиды или клетки Беца). VI слой характеризуется наличием нейронов разнообразной формы (веретенообразной, треугольной и др.).

Главные афферентные входы в кору полушарий большого мозга – нервные волокна, идущие из таламуса. Корковые нейроны, которые воспринимают афферентные импульсы, идущие по этим волокнам, называют сенсорными, а зона, где расположены сенсорные нейроны – проекционными зонами коры.

Главные эфферентные выходы из коры – аксоны пирамид V слоя. Это эфферентные, двигательные нейроны, участвующие в регуляции двигательных функций. Большинство нейронов коры – вставочные, участвующие в переработке информации и обеспечивающие межкортикальные связи.

Типичные нейроны коры


Римскими цифрами обозначены клеточные слои I - молекулярный сдой; II - наружный зернистый слой; III - наружный пирамидный слой; IV - внутренний зернистый слой; V - внутренний приамидный слой; VI-мультиформный слой.

а - афферентные волокна; б - типы клеток, выявляемые на препаратах, импрегнированных по методу Голдбжи; в - цитоархитектоника, выявляемая при окрашивании по Нисслю. 1 - горизонтальные клетки, 2 - полоска Кеса, 3 - пирамидные клетки, 4 – звездчатые клетки, 5 - наружная полоска Белларже, 6 - внутренняя полоска Белларже, 7 - видоизмененная пирамидная клетка.

Рис. 37. Цитоархитектоника (А) и миелоархитектоника (Б) коры полушарий большого мозга.

При сохранении общего плана строения было установлено, что разные участки коры (в пределах одной области) отличаются по толщине слоев. В некоторых слоях можно выделить несколько подслоев. Кроме того, имеются различия клеточного состава (разнообразие нейронов, плотность и их расположение). С учетом всех этих различий Бродман выделил 52 участка, которые назвал цитоархитектоническими полями и обозначил арабскими цифрами от 1 до 52 (рис.38 А,Б).

А вид сбоку. Б срединно-сагиттальный; срез.

Рис. 38. Схема расположения полей по Бордману

Каждое цитоархитектоническое поле отличается не только клеточным строением, но и расположением нервных волокон, которые могут идти как в вертикальном, так и в горизонтальном направлениях. Скопление нервных волокон в пределах цитоархитектонического поля называют миелоархитектоникой.

В настоящее время все большее признание находит “колончатый принцип” организации проекционных зон коры.

Согласно этому принципу каждая проекционная зона состоит из большого количества вертикально ориентированных колонок, диаметром приблизительно в 1 мм. Каждая колонка объединяет около 100 нейронов, среди которых имеются сенсорные, вставочные и эфферентные нейроны, связанные между собой синаптическими связями. Одиночная “корковая колонка” участвует в переработке информации от ограниченного количества рецепторов, т.е. выполняет специфическую функцию.

Система волокон полушарий

Оба полушария имеют три типа волокон. По проекционным волокнам возбуждение поступает в кору от рецепторов по специфическим проводящим путям. Ассоциативные волокна связывают между собой различные области одного и того же полушария. Например, затылочную область с височной, затылочную – с лобной, лобную – с теменной областью. Комиссуральные волокна связывают симметричные участки обоих полушарий. Среди комиссуральных волокон выделяют: переднюю, заднюю мозговые спайки и мозолистое тело (рис. 39 А.Б).


Рис. 39А. а - медиальная поверхность полушария;

б - верхнеальтеральная поверхность полушария;

А - лобный полюс;

В - затылочный полюс;

С - мозолистое тело;

1 - дугообразные волокна большого мозга соединяют между собой соседние извилины;

2 - пояс - пучок обонятельного мозга лежит под сводчатой извилиной, простирается из области обонятельного треугольника до крючка;

3 - нижний продольный пучок связывает затылочную и височную область;

4 - верхний продольный пучок связывает лобную, затылочную, височную доли и нижнетеменную дольку;

5 - крючковидный пучек расположен у переднего края островка и соединяет лобный полюс с височным.

Рис. 39Б. Кора головного мозга на поперечном разрезе. Оба полушария соединены пучками белого вещества, образующими мозолистое тело (комиссуральные волокна).

Рис. 39. Схема ассоциативных волокон

Ретикулярная формация

Ретикулярная формация (сетчатое вещество мозга) была описана анатомами в конце прошлого века.

Ретикулярная формация начинается в спинном мозге, где она представлена желатинозной субстанцией основания заднего мозга. Основная ее часть находится в центральном стволе мозга и в промежуточном мозге. Она состоит из нейронов различной формы и размеров, которые имеют обширные ветвящиеся отростки, идущие в разных направлениях. Среди отростков выделяют короткие и длинные нервные волокна. Короткие отростки обеспечивают локальные связи, длинные - формируют восходящие и нисходящие пути ретикулярной формации.

Скопления нейронов образуют ядра, которые находятся на разных уровнях мозга (спинном, продолговатом, среднем, промежуточном). Большинство ядре ретикулярной формации не имеют четких морфологических границ и нейроны этих ядер объединяются только по функциональному признаку (дыхательный, сердечно-сосудистый центр и др.). Однако на уровне продолговатого мозга выделяют ядра с четко обозначенными границами - ретикулярное гигантоклеточное, ретикулярное мелкоклеточное и латеральное ядра. Ядра ретикулярной формации моста по существу являются продолжением ядер ретикулярной формации продолговатого мозга. Наиболее крупные из них - каудальное, медиальное и оральное ядра. Последнее переходит в клеточную группу ядер ретикулярной формации среднего мозга и ретикулярное ядро покрышки мозга. Клетки ретикулярной формации являются началом как восходящих, так и нисходящих путей, дающих многочисленные коллатерали (окончания), которые образуют синапсы на нейронах разных ядер центральной нервной системы.

Волокна ретикулярных клеток, направляющихся в спинной мозг, образуют ретикулоспинальный тракт. Волокна восходящих трактов, начинающихся в спинном мозге, связывают ретикулярную формацию с мозжечком, средним мозгом, промежуточным мозгом и корой полушарий большого мозга.

Выделяют специфические и неспецифические ретикулярной формации. Например, некоторая часть восходящих путей ретикулярной формации получают коллатерали от специфических путей (зрительных, слуховых и т.д.), по которым афферентные импульсы передаются в проекционные зоны коры.

Неспецифические восходящие и нисходящие пути ретикулярной формации влияют на возбудимость различных отделов мозга, в первую очередь коры полушарий большого мозга и спинной мозг. Эти влияния по функциональному значению могут быть как активирующими, так и тормозными, поэтому выделяют: 1) восходящее активирующее влияние, 2) восходящее тормозное влияние, 3) нисходящее активирующее влияние, 4) нисходящее тормозное влияние. На основании этих факторов ретикулярную формацию рассматривают как регулирующую неспецифическую систему мозга.

Наиболее изучено активирующее влияние ретикулярной формации на кору полушарий большого мозга. Большинство восходящих волокон ретикулярной формации диффузно оканчивается в коре полушарий и поддерживает ее тонус, обеспечивает внимание. Примером тормозных нисходящих влияний ретикулярной формации является снижение тонуса скелетных мышц человека во время определенных стадий сна.

Нейроны ретикулярной формации чрезвычайно чувствительны к гуморальным веществам. Это опосредованный механизм влияния различных гуморальных факторов и эндокринной системы на высшие отделы мозга. Следовательно, тонические воздействия ретикулярной формации зависят от состояния всего организма (рис.40).

Рис. 40. Активирующая ретикулярная система (АРС) - нервная сеть, по которой сенсорное возбуждение передается от ретикулярной формации ствола мозга к неспецифическим ядрам таламуса. Волокна от этих ядер регулируют уровень активности коры.


Подкорковые ядра

Подкорковые ядра входят в состав конечного мозга и расположены внутри белого вещества полушарий большого мозга. К ним относят хвостатое тело и скорлупу, объединяемые под общим названием “полосатое тело” (стриатум) и бледный шар, состоящий из чечевицеобразного тела, шелухи и миндалины. Подкорковые ядра и ядра среднего мозга (красное ядро и черная субстанция) составляют систему базальных ганглиев (ядер)(рис.41). К базальным ганглиям поступают импульсы от двигательной коры и мозжечка. В свою очередь, сигналы от базальных ганглиев направляются к двигательной коре, мозжечку и ретикулярной формации, т.е. существуют две нейронные петли: одна связывает базальные ганглии с двигательной корой, другая - с мозжечком.

Рис. 41. Система базальных ганглиев


Подкорковые ядра принимают участие в регуляции двигательной активности, регулируя сложные движения при ходьбе, поддержании позы, при еде. Они организуют медленные движения (перешагивание через препятствия, вдевание нитки в иголку и т.д.).

Имеются данные, что полосатое тело участвует в процессах запоминания двигательных программ, так как раздражение этой структуры приводит к нарушению обучения и памяти. Полосатое тело оказывает тормозное влияние на различные проявления двигательной активности и на эмоциональные компоненты двигательного поведения, в частности на агрессивные реакции.

Основными медиаторами базальных ганглиев являются: дофамин (особенно в черной субстанции) и ацетилхолин. Поражение базальных ганглиев вызывает медленные извивающиеся непроизвольные движения, на фоне которых возникают резкие сокращения мышц. Непроизвольные порывистые движения головы и конечностей. Болезнь Паркинсона, основными симптомами которой является тремор (дрожание) и мышечная ригидность (резкое повышение тонуса мышц-разгибателей). Из-за ригидности больной с трудом может начать движение. Постоянный тремор препятствует выполнению мелких движений. Болезнь Паркинсона возникает при поражении черной субстанции. В норме черная субстанция оказывает тормозное влияние на хвостатое ядро, скорлупу и бледный шар. При ее разрушении тормозные влияния устраняются, в результате чего усиливается возбуждающее базальных ганглиев на кору головного мозга и ретикулярную формацию, что вызывает характерные симптомы болезни.

Лимбическая система

Лимбическая система представлена расположенными на границе отделами новой коры (неокортекса) и промежуточного мозга. Она объединяет комплексы структур разного филогенетического возраста, часть из которых является корковыми, а часть - ядерными.

К корковым структурами лимбической системы относят гиппокампальную, парагиппокампальную и поясную извилины (старя кора). Древняя кора представлена обонятельной луковицей и обонятельными бугорками. Новая кора - часть лобной, островковой и височной коры.

Ядерные структуры лимбической системы объединяют миндалину и септальные ядра и передние таламические ядра. Многие анатомы причисляют к лимбической системе преоптическую область гипоталамуса и маммилярные тела. Структуры лимбической системы образуют 2-х сторонние связи и связаны с другими отделами головного мозга.

Лимбическая система контролирует эмоциональное поведение и регулирует эндогенные факторы, обеспечивающие мотивации. Положительные эмоции связаны преимущественно с возбуждением адренэргических нейронов, а отрицательные эмоции так же как страх и тревога - с недостатком возбуждения норадренэргических нейронов.

Лимбическая система участвует в организации ориентировочно-исследовательского поведения. Так, в гиппокампе обнаружены нейроны “новизны”, меняющие свою импульсную активность при появлении новых раздражителей. Гиппокамп играет существенную роль в поддержании внутренней среды организма, участвует в процессах обучения и памяти.

Следовательно, лимбическая система организует процессы саморегуляции поведения, эмоции, мотивации и памяти (рис.42).

Рис. 42. Лимбическая система


Автономная нервная система

Автономная (вегетативная) нервная система обеспечивает регуляцию внутренних органов, усиливая или ослабляя их деятельность, осуществляет адаптивно-трофическую функцию, регулирует уровень метаболизма (обмен веществ) в органах и тканях (рис.43, 44).

1 - симпатический ствол; 2 - шейно-грудной (звездчатый) узел; 3 – средний шейный узел; 4 - верхний шейный узел; 5 - внутренняя сонная артерия; 6 - чревное сплетение; 7 - верхнее брыжечное сплетение; 8 - нижнее брыжечное сплетение

Рис. 43. Симпатическая часть вегетативной нервной системы,


III- глазодвигательный нерв; YII - лицевой нерв; IX - языкоглоточный нерв; X - блуждающий нерв.

1 - ресничный узел; 2 - крылонебный узел; 3 - ушной узел; 4 - подниж-нечелюстной узел; 5 - подъязычный узел; 6 - парасимпатическое крестцовое ядро; 7 - экстрамуральный тазовый узел.

Рис. 44. Парасимпатическая часть вегетативной нервной системы.

Автономная нервная система включает отделы как центральной, так и периферической нервной системы. В отличие от соматической, в автономной нервной системе эфферентная часть состоит из двух нейронов: преганглионарного и постганглионарного. Преганглионарные нейроны расположены в центральной нервной системе. Постганглионарные нейроны участвуют в образовании автономных ганглиев.

В автономной нервной системе различают симпатический и парасимпатический отделы.

В симпатическом отделе преганглионарные нейроны находятся в боковых рогах спинного мозга. Аксоны этих клеток (преганглионарные волокна) подходят к симпатическим ганглиям нервной системы, расположенным по обе стороны позвоночника в виде симпатической нервной цепочки.

В симпатических ганглиях располагаются постганглионарные нейроны. Их аксоны выходят в составе спинномозговых нервов и образуют синапсы на гладких мышцах внутренних органов, желез, стенок сосудов, кожи и других органов.

В парасимпатической нервной системе преганглионарные нейроны располагаются в ядрах ствола мозга. Аксоны преганглионарных нейронов идут в составе глазодвигательного, лицевого, языкоглоточного и блуждающего нервов. Кроме того, преганглионарные нейроны находятся также в крестцовом отделе спинного мозга. Их аксоны идут к прямой кишке, мочевому пузырю, к стенкам сосудов, снабжающих кровью органы, расположенные в области таза. Преганглионарные волокна образуют синапсы на постганглионарных нейронах парасимпатических ганглиев, расположенных вблизи эффектора или внутри него (в последнем случае парасимпатический ганглий называют интрамуральным).

Все отделы автономной нервной системы подчинены высшим отделам центральной нервной системы.

Отмечен функциональный антагонизм симпатической и парасимпатической нервной системы, что имеет большое приспособительное значение (см. табл. 1).


РАЗДЕЛ I V . РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ

Нервная система начинает развиваться на 3-ей неделе внутриутробного развития из эктодермы (наружного зародышевого листка).

На дорсальной (спинной) стороне зародыша происходит утолщение эктодермы. Это формируется нервная пластинка. Затем нервная пластинка изгибается вглубь зародыша и образуется нервная бороздка. Края нервной бороздки смыкаются, формируя нервную трубку. Длинная полая нервная трубка, лежащая сначала на поверхности эктодермы, отделяется от нее и погружается внутрь, под эктодерму. Нервная трубка расширяется на переднем конце, из которого позднее формируется головной мозг. Остальная часть нервной трубки преобразуется в головной мозг (рис. 45).

Рис. 45. Стадии эмбриогенеза нервной системы в поперечном схематическом разрезе, а - медуллярная пластинка; b и с - медуллярная бороздка; d и е- мозговая трубка. 1 - роговой листок (эпидермис); 2 - ганглиозный валик.

Из клеток, мигрирующих из боковых стенок нервной трубки, закладываются два нервных гребня - нервные тяжи. В дальнейшем из нервных тяжей образуются спинальные и автономные ганглии и шванновские клетки, которые формируют миелиновые оболочки нервных волокон. Кроме того, клетки нервного гребня участвуют в образовании мягкой и паутинной оболочек мозга. Во внутреннем слове нервной трубки происходит усиленное деление клеток. Эти клетки дифференцируются на 2 типа: нейробласты (предшественники нейронов) и спонгиобласты (предшественники глиальных клеток). Одновременно с делением клеток головной конец нервной трубки подразделяется на три отдела - первичные мозговые пузыри. Соответственно они называются передний (I пузырь), средний (II пузырь) и задний (III пузырь) мозг. В последующем развитии мозг делится на конечный (большие полушария) и промежуточный мозг. Средний мозг сохраняется как единое целое, а задний мозг делится на два отдела, включающих мозжечок с мостом и продолговатый мозг. Это 5-ти пузырная стадия развития мозга (рис.46,47).

а - пять мозговых путей: 1 - первый пузырь (конечный мозг); 2 - второй пузырь (промежуточный мозг); 3 - третий пузырь (средний мозг); 4- четвертый пузырь (продолговатый мозг); между третьим и четвертым пузырем - перешеек; б - развитие головного мозга (по Р. Синельникову).

Рис. 46. Развитие головного мозга (схема)



А - формирование первичных пузырей (до 4-й недели эмбрионального развития). Б - Е - формирование вторичных пузырей. Б,В - конец 4-й недели; Г - шестая неделя; Д - 8-9-я недели, завершающиеся формированием основных отделов мозга (Е) - к 14 неделе.

3а - перешек ромбовидного мозга; 7 конечная пластинка.

Стадия А: 1, 2, 3 - первичные мозговые пузыри

1 - передний мозг,

2 - средний мозг,

3 - задний мозг.

Стадия Б: передний мозг делится на полушария и базальные ядра (5) и промежуточный мозг (6)

Стадия В: ромбовидный мозг (3а) подразделяется на задний мозг, включающий в себя мозжечок (8), мост (9) стадия Е и продолговатый мозг (10) стадия Е

Стадия Е: образуется спинной мозг (4)

Рис. 47. Развивающийся мозг.

Образование нервных пузырей сопровождается появлением изгибов, обусловленных разной скоростью созревания частей нервной трубки. К 4-ой неделе внутриутробного развития формируются теменной и затылочный изгибы, а в течение 5-ой недели - мостовой изгиб. К моменту рождения сохраняется только изгиб мозгового ствола почти под прямым углом в области соединения среднего и промежуточного мозга (рис 48).

Вид сбоку, иллюстрирующий изгибы в среднемозговой (А), шейной (Б) областях мозга, а также в области моста (В).

1 - глазной пузырь, 2 - передний мозг, 3 - средний мозг; 4 - задний мозг; 5 - слуховой пузырек; 6 - спинной мозг; 7 - промежуточный мозг; 8 - конечный мозг; 9 - ромбическая губа. Римскими цифрами обозначены места отхождения черепно-мозговых нервов.

Рис. 48. Развивающийся мозг (с 3-й по 7-ю неделю развития).


В начале поверхность больших полушарий гладкая, Первыми на 11-12 неделе внутриутробного развития закладывается боковая борозда (Сильвиева), затем центральная (Ролландова) борозда. Довольно быстро происходит закладка борозд в пределах долей полушарий, за счет образования борозд и извилин увеличивается площадь коры (рис.49).


Рис. 49. Вид сбоку на развивающиеся полушария головного мозга.

А- 11-я неделя. Б- 16_ 17 недели. В- 24-26 недели. Г- 32-34 недели. Д - новорожденный. Показано образование боковой щели (5), центральной борозды (7) и других борозд и извилин.

I - конечный мозг; 2 - средний мозг; 3 - мозжечок; 4 - продолговатый мозг; 7 - центральная борозда; 8 - мост; 9 - борозды теменной области; 10 - борозды затылочной области;

II - борозды лобной области.

Нейробласты путем миграции образуют скопления - ядра, формирующие серое вещество спинного мозга, а в стволе мозга - некоторые ядра черепно-мозговых нервов.

Сомы нейробластов имеют округлую форму. Развитие нейрона проявляется в появлении, росте и ветвлении отростков (рис. 50). На мембране нейрона образуется небольшое короткое выпячивание на месте будущего аксона - конус роста. Аксон вытягивается и по нему доставляются питательные вещества к конусу роста. В начале развития у нейрона образуется большее число отростков по сравнению с конечным числом отростков зрелого нейрона. Часть отростков втягивается в сому нейрона, а оставшиеся растут в сторону других нейронов, с которыми они образуют синапсы.

Рис. 50. Развитие веретенообразной клетки в онтогенезе человека. Две последние зарисовки показывают разницу в строении этих клеток у ребенка в возрасте двух лет и взрослого человека


В спинном мозге аксоны имеют небольшую длину и формируют межсегментарные связи. Более длинные проекционные волокна формируются позднее. Несколько позже аксона начинается рост дендритов. Все разветвления каждого дендрита образуются из одного ствола. Количество ветвей и длина дендритов не завершается во внутриутробном периоде.

Увеличение массы мозга в пренатальный период происходит в основном за счет увеличения количества нейронов и количества глиальных клеток.

Развитие коры связано с образование клеточных слоев (в коре мозжечка - три слоя, а в коре полушарий большого мозга - шесть слоев).

В формировании корковых слоев большую роль играют так называемые глиальные клетки. Эти клетки принимают радиальное положение и образуют два вертикально ориентированных длинных отростка. По отросткам этих радиальных глиальных клеток происходит миграция нейронов. Вначале образуются более поверхностные слои коры. Глиальные клетки принимают также участи в образовании миелиновой оболочки. Иногда одна глиальная клетка участвует в образовании миелиновых оболочек нескольких аксонов.

В таблице 2 отражены основные этапы развития нервной системы зародыша и плода.


Таблица 2.

Основные этапы развития нервной системы в пренатальный период.

Возраст зародыша (недели) Развитие нервной системы
2,5 Намечается нервная бороздка
3.5 Образуется нервная трубка и нервные тяжи
4 Образуются 3 мозговых пузыря; формируются нервы и ганглии
5 Формируются 5 мозговых пузырей
6 Намечаются мозговые оболочки
7 Полушария мозга достигают большого размера
8 В коре появляются типичные нейроны
10 Формируется внутренняя структура спинного мозга
12 Формируются общие структурные черты головного мозга; начинается дифференцировка клеток нейроглии
16 Различимы доли головного мозга
20-40 Начинается миелинизация спинного мозга (20 неделя), появляются слои коры (25 недель), формируются борозды и извилины (28-30 недель), начинается миелинизация головного мозга (36-40 недель)

Таким образом, развитие головного мозга в пренатальный период происходит непрерывно и параллельно, однако характеризуется гетерохронией: скорость роста и развития филогенетически более древних образований больше, чем филогенетически более молодых образований.

Ведущую роль в росте и развитии нервной системы во внутриутробный период играют генетические факторы. Вес мозга новорожденного в среднем составляет примерно 350 г.

Морфо-функциональное созревание нервной системы продолжается в постнатальный период. Уже к концу первого года жизни вес мозга достигает 1000 г, тогда как у взрослого человека вес мозга составляет в среднем - 1400 г. Следовательно, основное прибавление массы мозга приходится на первый год жизни ребенка.

Увеличение массы мозга в постнатальный период происходит в основном за счет увеличения количества глиальных клеток. Количество нейронов не увеличивается, так как они теряют способность делиться уже в пренатальном периоде. Общая плотность нейронов (количество клеток в единице объема) уменьшается за счет роста сомы и отростков. У дендритов увеличивается количество ветвлений.

В постнатальном периоде продолжается также миелинизация нервных волокон как в центральной нервной системе, так и нервных волокон, входящих в состав периферических нервов (черепно-мозговых и спинномозговых.).

Рост спинномозговых нервов связан с развитием опорно-двигательного аппарата и формированием нервно-мышечных синапсов, а рост черепно-мозговых нервов с созреванием органов чувств.

Таким образом, если в пренатальном периоде развитие нервной системы происходит под контролем генотипа и практически не зависит от влияния внешней окружающей среды, то в постанатальном периоде все большую роль приобретают внешние стимулы. Раздражение рецепторов вызывает афферентные потоки импульсов, которые стимулируют морфо-функциональное созревание мозга.

Под влиянием афферентных импульсов на дендритах корковых нейронов образуются шипики - выросты, представляющие собой особые постсинаптические мембраны. Чем больше шипиков, тем больше синапсов и тем большее участие принимает нейрон в обработке информации.

На протяжении всего постнатального онтогенеза вплоть до пубертатного периоде также как и в пренатальный период развитие мозга происходит гетерохронно. Так, окончательное созревание спинного мозга происходит раньше, чем головного мозга. Развитие стволовых и подкорковых структур, раньше, чем корковых, рост и развитие возбудительных нейронов обгоняет рост и развитие тормозных нейронов. Это общие биологические закономерности роста и развития нервной системы.

Морфологическое созревание нервной системы коррелирует с особенностями ее функционирования на каждом этапе онтогенеза. Так, более раннее дифференцирование возбудительных нейронов по сравнению с тормозными нейронами обеспечивает преобладание мышечного тонуса сгибателей над тонусом разгибателей. Руки и ноги плода находятся в согнутом положении - это обуславливает позу, обеспечивающую минимальный объем, благодаря чему плод занимает меньшее место в матке.

Совершенствование координации движений, связанных с формированием нервных волокон, происходит на протяжении всего дошкольного и школьного периодов, что проявляется в последовательном освоении позы сидения, стояния, ходьбы, письма и т.д.

Увеличение скорости движений обуславливается в основном процессами миелинизации периферических нервных волокон и увеличения скорости проведения возбуждения нервных импульсов.

Более раннее созревание подкорковых структур по сравнению с корковыми, многие из которых входят в состав лимбической структуры, обуславливают особенности эмоционального развития детей (большая интенсивность эмоций, неумение их сдерживать связана с незрелостью коры и ее слабым тормозным влиянием).

В пожилом и старческом возрасте происходят анатомические и гистологические изменения мозга. Часто происходит атрофия коры лобной и верхней теменной долей. Борозды становятся шире, желудочки мозга увеличиваются, объем белого вещества уменьшается. Происходит утолщение мозговых оболочек.

С возрастом нейроны уменьшаются в размерах, при этом количество ядер в клетках может увеличиться. В нейронах уменьшается также содержание РНК, необходимой для синтеза белков и ферментов. Это ухудшает трофические функции нейронов. Высказывается предположение, что такие нейроны быстрее утомляются.

В старческом возрасте нарушается также кровоснабжение мозга, стенки кровеносных сосудов утолщаются и на них откладываются холестериновые бляшки (атеросклероз). Это также ухудшает деятельность нервной системы.

ЛИТЕРАТУРА

Атлас “Нервная система человека”. Сост. В.М. Асташев. М., 1997.

Блюм Ф., Лейзерсон А., Хофстедтер Л. Мозг, разум и поведение. М.: Мир, 1988.

Борзяк Э.И., Бочаров В.Я., Сапина М.Р. Анатомия человека. - М.: Медицина, 1993. Т.2. 2-е изд., перераб. и доп.

Загорская В.Н., Попова Н.П. Анатомия нервной системы. Программа курса. МОСУ, М., 1995.

Кишш-Сентаготаи. Анатомический атлас человеческого тела. - Будапешт, 1972. 45-е изд. Т. 3.

Курепина М.М., Воккен Г.Г. Анатомия человека. - М.: Просвещение, 1997. Атлас. Изд.2-е.

Крылова Н.В., Искренко И.А. Мозг и проводящие пути (Анатомия человека в схемах и рисунках). М.: Изд-во Российского университета дружбы народов, 1998.

Мозг. Пер. с англ. Под ред. Симонова П.В. - М.: Мир, 1982.

Морфология человека. Под ред. Б.А. Никитюка, В.П. Чтецова. - М.: Изд-во МГУ, 1990. С. 252-290.

Привес М.Г., Лысенков Н.К., Бушкович В.И. Анатомия человека. - Л.: Медицина, 1968. С. 573-731.

Савельев С.В. Стереоскопический атлас мозга человека. М., 1996.

Сапин М.Р., Билич Г.Л. Анатомия человека. - М.: Высшая школа, 1989.

Синельников Р.Д. Атлас анатомии человека. - М.: Медицина, 1996. 6-е изд. Т. 4.

Шаде Дж., Форд Д. Основы неврологии. - М.: Мир, 1982.


Ткань - это совокупность клеток и межклеточного вещества, сходных по строению, происхождению и выполняемым функциям.

Некоторые анатомы продолговатый мозг не включают в задний мозг, а выделяют его в качестве самостоятельного отдела.

Щербатых Ю.В., Туровский Я.А. Анатомия центральной нервной системы для психологов

СПб.: Питер, 1-е издание, 2009 год, 128 стр., формат 14x21 см (60х90/16), Мягкая обложка, ISBN 978-5-91180-271-4 Серия: Учебное пособие

Учебное пособие предназначено для изучения студентами-психологами курса «Анатомия центральной нервной системы». В нем на микро- и макроуровне описываются все основные морфологические структуры, составляющие центральную нервную систему – материальную основу психики человека. Книга снабжена многочисленными схемами и рисунками, которые значительно облегчают студентам изучение такого сложного органа, как человеческий мозг. Пособие составлено на основе требований Государственного образовательного стандарта высшего профессионального образования и предназначено для студентов и преподавателей факультетов психологии, а также может быть полезно студентам биологических, педагогических, медицинских и физкультурных вузов, изучающих анатомию человека.


Введение

Курс «Анатомия центральной нервной системы» предназначен для создания у студентов необходимой основы последующего изучения психологии. В результате его освоения будущие психологи должны четко уяснить неразрывную взаимосвязь структуры и функции, а также знать основные морфологические субстраты, ответственные за проявление психологических явлений. Таким образом, основная задача курса «Анатомия центральной нервной системы» - это формирование целостного представления о строении материальной основы психики - центральной нервной системы.

При написании данного курса авторы применяли несколько подходов: эволюционный, морфофизиологический и интегратив-ный. Первый подход рассматривает мозг человека как продукт двоякого развития - в филогенезе и онтогенезе, причем оба эти процесса связаны воедино в биогенетическом законе. Эволюционный подход способствует созданию естественнонаучной основы для формирования у студентов целостного мировоззрения, которое позволяет понять феномены специфического поведения людей в обществе.

Морфофизиологический подход предполагает достаточно четкую детерминированную связь между нервными структурами и психическими функциями, за которые эти структуры отвечают, причем это касается не только таких простейших психических явлений, какими являются ощущения, но и более сложных психических феноменов: памяти, мышления и речи.

Третьим методическим приемом в этой работе является интег-ративный подход, показывающий организацию человека в виде сложной, иерархически устроенной, саморегулирующейся системы, которая обладает большими адаптационными возможностями благодаря накоплению новой информации центральной нервной системой.

Изложение материала этого курса строится по принципу целостности и иерархичности нервной системы, начиная с клеточного уровня и завершая наиболее сложным этажом центральной нервной системы - корой больших полушарий, которая является материальным субстратом психики человека.

Учебно-методический комплекс составлен на основе требований Государственного образовательного стандарта высшего профессионального образования.


Студент, изучивший курс «Анатомия центральной нервной системы », должен иметь:

1) общее представление о:

Процессах филогенеза и онтогенеза центральной нервной системы человека на основе эволюционного подхода;

Методах, которые используются для изучения анатомии человека на всех уровнях - от микроскопического до макроскопического;

Микроструктуре нервной ткани и строении нервных клеток;

Функциях основных нервных центров головного мозга;

2) конкретные знания :

Структурной организации спинного мозга;

Основных отделов головного мозга;

Основных проводящих путей центральной нервной системы;

Черепно-мозговых нервов;

Сравнительной структурной организации соматической и вегетативной нервной системы;

3) умения :

Находить различные анатомические структуры на изображениях срезов головного мозга в анатомическом атласе;

Самому схематично нарисовать основные срезы головного мозга;

Указать порядок расположения черепных нервов;

Изобразить схему организации спинального соматического и вегетативного рефлекса.


Глава 1

Введение в анатомию ЦНС

Анатомия человека - наука, изучающая строение человеческого организма и закономерности развития этого строения.

Современная анатомия, являясь частью морфологии, не только исследует строение, но и старается объяснить принципы и закономерности формирования определенных структур. Анатомия центральной нервной системы (ЦНС) является частью анатомии человека. Знание анатомии ЦНС необходимо для понимания связи психологических процессов с теми или иными морфологическими структурами как в норме, так и при патологии.

1.1 ♦ История анатомии ЦНС

Уже в первобытные времена существовало знание о расположении жизненно важных органов человека и животных, о чем свидетельствуют наскальные рисунки. В Древнем мире, особенно в Египте, в связи с мумификацией трупов, были описаны некоторые органы, но их функции представлялись не всегда правильно.

Большое влияние на развитие медицины и анатомии оказали ученые Древней Греции. Выдающимся представителем греческой медицины и анатомии был Гиппократ (ок. 460-377 гг. до н. э.). Он считал основой строения организма четыре «сока»: кровь (sanguis)у слизь (phlegmd), желчь (chole) и черную желчь (melaina chole). От преобладания одного из этих соков, по его мнению, зависят виды темперамента человека: сангвиник, флегматик, холерик и меланхолик. Так возникла «гуморальная» (жидкостная) теория строения организма. Подобная классификация, но, разумеется, уже с иным смысловым содержанием, сохранилась до наших дней.

В Древнем Риме наиболее яркими представителями медицины были Цельс и Гален. Авл Корнелий Цельс (I в. до н. э) - автор восьмитомного трактата «О медицине», в котором он собрал воедино известные ему знания по анатомии и практической медицине античного времени. Большой вклад в развитие анатомии сделал римский врач Гален (ок. 130-200 гг. н. э), который первый ввел в науку метод вивисекции животных и написал классический трактат «О частях человеческого тела», в котором впервые дал анатомо-физиологическое описание целостного организма. Гален считал человеческое тело состоящим из плотных и жидких частей, и свои научные выводы основывал на наблюдениях над больными людьми и на результатах вскрытия трупов животных. Он явился и основоположником экспериментальной медицины, проводя различные эксперименты на животных. Однако анатомические концепции этого ученого были не лишены недостатков. Например, Гален большую часть своих научных изысканий проводил на свиньях, организм которых, хотя и близок к человеческому, все же имеет ряд существенных отличий от него. В частности, Гален придавал большое значение открытой им «чудесной сети» (rete mirabile) - кровеносному сплетению у основания мозга, так как полагал, что именно там образуется «животный дух», управляющий движениями и ощущениями. Эта гипотеза просуществовала почти 17 веков, пока анатомы не доказали, что подобная сеть есть у свиней и быков, но отсутствует у человека.

В эпоху Средневековья вся наука в Европе, в том числе и анатомия, была подчинена христианской религии. Врачи того времени как правило ссылались на ученых античности, чей авторитет был подкреплен церковью. В это время в анатомии не было сделано существенных открытий. Были запрещены препарирование трупов, вскрытия, изготовление скелетов и анатомических препаратов. Положительную роль в преемственности античной и европейской науки сыграл мусульманский Восток. В частности, в Средние века у врачей пользовались популярностью книги Ибн Сины (980-1037), известного в Европе как Авиценна, автора «Канона врачебной науки», содержащего важные анатомические сведения.

Анатомы эпохи Возрождения добились разрешения на проведение вскрытий. Благодаря этому были созданы анатомические театры для проведения публичных вскрытий. Зачинателем этого титанического труда явился Леонардо да Винчи, а основоположником анатомии как самостоятельной науки - Андрей Везалий (1514-1564). Андрей Везалий изучал медицину в Сор-боннском университете и очень скоро осознал недостаточность существовавших тогда анатомических знаний для практической деятельности врача. Положение осложнялось запретом церкви на вскрытие трупов - единственный источник изучения человеческого тела в то время. Везалий, несмотря на реальную опасность со стороны инквизиции, систематически изучал строение человека и создал первый действительно научный атлас человеческого тела. Для этого ему приходилось тайком выкапывать свежезахороненные трупы казненных преступников и на них проводить свои исследования. При этом он разоблачил и устранил многочисленные ошибки Галена, чем заложил аналитический период в анатомии, в течение которого было сделано множество открытий описательного характера. В своих трудах Везалий уделил основное внимание планомерному описанию всех органов человека, в результате чего ему удалось открыть и описать много новых анатомических фактов (рис. 1.1).

Рис. 1.1. Рисунок вскрытого мозга из атласа Андрея Везалия (1543 г.)

За свою деятельность Андрей Везалий подвергся преследованию со стороны церкви, был отправлен на покаяние в Палестину, попал в кораблекрушение и умер на острове Занте в 1564 г.

После работ А. Везалия анатомия стала развиваться более быстрыми темпами, кроме того, церковь уже не так жестко преследовала вскрытие трупов врачами и анатомами. В результате H3y J чение анатомии стало неотъемлемой частью подготовки врачей во всех университетах Европы (рис. 1.2).

Рис. 1.2. Рембрандт Харменс ван Рейн. Урок анатомии доктора Тульпа (конец XVII века)

Попытки связать анатомические структуры с психической деятельностью породили в конце XVIII века такую науку, как френология. Ее основатель, австрийский анатом Франц Галь, пытался доказать наличие жестко определенных связей между особенностью строения черепа и психическими особенностями людей. Однако спустя некоторое время объективные исследования показали необоснованность френологических утверждений (рис. 1.3).

Рис. 1.3. Рисунок из атласа по френологии, изображающий «бугры скрытности, жадности и чревоугодия» на голове человека (1790 г.)

Следующие открытия в области анатомии ЦНС были связаны с совершенствованием микроскопической техники. Сначала Август фон Валлер предложил свой метод валлеровской дегенерации, позволяющий прослеживать пути нервных волокон в организме человека1 (Так было установлено, что периферические нервы - это длинные отростки клеток, располагающиеся в спинном и головном мозге), а затем открытие новых способов окрашивания нервных структур Э. Гольджи и С. Рамон-и-Кахалом позволило выяснить, что помимо нейронов в нервной системе существует еще огромное количество вспомогательных клеток - нейроглий.

Вспоминая историю анатомических исследований ЦНС, следует отметить, что такой выдающийся психолог, как Зигмунд Фрейд, начинал свою карьеру в медицине именно как невролог - т. е. исследователь анатомии нервной системы.

В России развитие анатомии было тесно связано с концепцией нервизма, провозглашающей преимущественное значение нервной системы в регулировании физиологических функций. В середине XIX века киевский анатом В. Бец (1834-1894) открыл в V слое коры головного мозга гигантские пирамидные клетки (клетки Беца) и выявил различие в клеточном составе разных участков мозговой коры. Тем самым он положил начало учению о цитоархитектонике мозговой коры.

Крупный вклад в анатомию головного и спинного мозга внес выдающийся невропатолог и психиатр В. М. Бехтерев (1857- 1927), который расширил учение о локализации функций в коре мозга, углубил рефлекторную теорию и создал анатомо-физио-логическую базудая диагностики и понимания проявлений нервных болезней. Кроме того, В. М. Бехтерев открыл ряд мозговых центров и проводников.

В настоящее время фокус анатомических исследований нервной системы из макромира переместился в микромир. Ныне наиболее значительные открытия совершаются в области микроскопии не только отдельных клеток и их органоидов, но и на уровне отдельных биомакромолекул.

Анатомическая терминология

Для правильного представления о структурах головного и спинного мозга необходимо знать некоторые элементы анатомической номенклатуры.

Тело человека представлено в трех плоскостях, соответственно горизонтальной, сагиттальной и фронтальной.

Горизонтальная плоскость проходит, как следует из ее названия, параллельно горизонту, сагиттальная делит тело человека на две симметричные половины (правую и левую), фронтальная плоскость разделяет тело на переднюю и заднюю части.

В горизонтальной плоскости выделяют две оси.

Если объект находится ближе к спине, то о нем говорят, что он расположен дорсально, если ближе к животу - вентрально.

Если объект расположен ближе к средней линии, к плоскости симметрии человека, то о нем говорят как о расположенном медиально, если дальше - то латерально.

Во фронтальной плоскости также выделяют две оси: медио-латеральную и ростро-каудальную.

Если объект расположен ближе к нижней части тела (у животных - к задней, или хвостовой), то о нем говорят как о каудальном, а если к верхней (ближе к голове) - то он расположен рострально.

В сагиттальной плоскости человека также выделяют две оси: ростро-каудальную и дорсо-вентральную.

Таким образом, взаиморасположение любых анатомических объектов можно охарактеризовать их взаиморасположением в трех плоскостях и осях.


Вопросы и задания

/.

1. Какое значение имеет анатомия ЦНС для психологов?

2. Перечислите макроскопические методы анатомии.

3. Как называются анатомические плоскости, условно разделяющие тело человека?

4. Как называются анатомические оси, условно проходящие через тело человека?

П. Выберите правильный вариант ответа.

1. Какой метод анатомии относится к прижизненным инвазивным методам:

а) рентгенография;

б)рентгеновская томография;

в)рентгенография (с введением контрастных веществ);

г) ядерно-магнитно-резонансная томография?

2. Какие методы из арсенала физиологии можно использовать для выявления связей анатомических структур с психическими процессами:

а) электроэнцефалография;

б)раздражение участков ЦНС;

в)разрушение участков ЦНС;

г) любой из вышеназванных?

3. Какая плоскость делит тело человека на две симметричные половины:

а) сагиттальная;

б) фронтальная;

в) горизонтальная;

г) ни одна из вышеназванных?

4. Как называется расположение объекта ближе к средней линии (к плоскости симметрии человека):

а) рострально;

б)латерально;

в) медиально;

г) каудально?

5. На какие две части условно делит тело человека фронтальная плоскость:

а) на верхнюю и нижнюю;

б) на правую и левую;

в) на переднюю и заднюю;

г) ни один ответ не верен?

6. «Вентрально» - это ближе к...

а) правому боку;

б) животу;

в) середине тела;


Глава 2

Общая схема строения ЦНС

В нервной системе выделяют центральную и периферическую нервную систему. Периферическая нервная система представлена корешками спинного мозга, нервными сплетениями, нервными узлами (ганглиями), нервами, периферическими нервными окончаниями (рис. 2.1). В свою очередь, нервные окончания могут быть:

а) эфферентными (двигательными), которые передают возбуждение от нервов к мышцам и железам;

б) афферентными (чувствительными), передающими информацию от рецепторов к центральной нервной системе.

Рис. 2.1. Составные части периферической нервной системы

Центральная нервная система человека состоит из головного и спинного мозга.

Спинной мозг представляет собой трубку с небольшим каналом посредине, окруженную нейронами и их отростками. Головной мозг является расширением спинного мозга. У далеких предков хордовых животных (например, у ланцетника) нервная трубка одинакового диаметра на всем протяжении, и головной мозг практически отсутствует. У рыб головной мозг уже хорошо развит, и с каждой ступенью эволюции он увеличивается. Наивысшего развития головной мозг достигает у человека, который имеет самый большой показатель цефализации (отношения массы мозга к массе тела) среди всех других живых существ.

Макроскопически (невооруженным глазом) на срезе мозга можно выделить белое и серое вещество. Белое вещество представляет собой пучки нервных волокон и формирует проводящие пути. Так как большая часть длинных нервных отростков покрыта слоем белого жироподобного вещества (миелина), то их скопления имеют белый цвет. Серое вещество - это тела нейронов, формирующих нервные центры. Серое вещество в центральной нервной системе образует два типа скоплений (структур): ядерные структуры (ядра спинного мозга, ствола мозга и больших полушарий), в которых клетки лежат тесными группами, и экранные структуры (кора больших полушарий и мозжечка), в которых клетки лежат слоями.

Головной мозг залегает в полости черепа. Топографической границей со спинным мозгом является плоскость, проходящая через нижний край большого затылочного отверстия. Средняя масса головного мозга составляет 1400 г с индивидуальными вариациями от 1100 до 2000 г. Между массой мозга и интеллектуальными способностями человека нет однозначной связи. Так, мозг И. С. Тургенева достигал массы почти 2 кг, а у французского писателя Анатоля Франса весил чуть больше одного килограмма. Тем не менее, их вклад в мировую литературу равновелик.

Анатомически в головном мозге можно различить полушария, ствол и мозжечок (малый мозг). Ствол включает в себя продолговатый мозг, мост, средний мозг и промежуточный мозг (рис. 2.2).


Рис. 2.2. Анатомические отделы головного мозга

Существует и другая классификация отделов головного мозга, которая ориентируется на особенности развития того или иного отдела (в процессе онтогенеза). Если отделы головного мозга выделять, опираясь на процессы эмбрионального развития (в соответствии со стадией трех мозговых пузырей), то головной мозг можно разделить на передний, средний и задний (ромбовидный) мозг. В соответствии с таким подходом к переднему мозгу относят большие полушария и промежуточный мозг, к среднему - средний мозг, к ромбовидному (развивающемуся из заднего мозгового пузыря) - продолговатый мозг, задний мозг и перешеек ромбовидного мозга (рис. 2.3).

Рис. 2.3. Онтогенетическая классификация отделов головного мозга

Левое и правое полушария конечного мозга разделены продольной щелью, дном которой является мозолистое тело. С мозжечком их разграничивает поперечная щель. Вся поверхность полушарий покрыта бороздами и извилинами, наиболее крупная из них - боковая, или сильвиева, она отделяет лобную долю полушарий от височной.

На сагиттальном разрезе мозга видны медиальная поверхность полушарий большого мозга, структуры ствола мозга и мозжечка (рис. 2.4). Кора полушарий отделена бороздой от мозолистого тела. Мозолистое тело является большой спайкой мозга, имеет волокнистую структуру. Под мозолистым телом располагается тонкая белая полоска - свод.

Рис. 2.4. Сагиттальный разрез головного мозга человека:

1 - полушарие переднего мозга; 2 - мозжечок; 3 - продолговатый мозг;

4 - мост; 5 -средний мозг; 6 - промежуточный мозг; 7 - мозолистое тело

От головного мозга отходят 12 пар черепно-мозговых нервов, иннервирующих преимущественно голову, ряд мышц шеи и затылка, а также осуществляющих парасимпатическую иннервацию внутренних органов. От спинного мозга отходит 31 пара спинномозговых нервов, иннервирующих туловище и внутренние органы.

Полости мозга и ликвор

В процессе эмбрионального развития полости мозговых пузырей преобразуются в желудочки мозга. В левом и правом полушариях соответственно расположены I и II желудочки, в промежуточном мозге - III желудочек, в ромбовидном мозге - IV желудочек. Третий и четвертый желудочки соединены сильвиевым водопроводом, проходящем в среднем мозге. Полости мозга заполнены спинномозговой (цереброспинальной) жидкостью - ликвором. Они сообщаются между собой, а также со спинномозговым каналом и подпаутинным пространством (пространством под одной из оболочек мозга) (рис. 2.5).

Рис. 2.5. Схема полостей мозга

Цереброспинальная жидкость продуцируется сосудистыми сплетениями желудочков мозга, имеющими железистое строение, а всасывается венами мягкой оболочки мозга. Процессы образования и всасывания ликвора протекают непрерывно, обеспечивая 4-5-кратный обмен цереброспинальной жидкости в течение одних суток. В полости черепа присутствует относительная недостаточность всасывания ликвора (т. е. ликвора всасывается меньше, чем продуцируется), а во внутрипозвоночном канале преобладает относительная недостаточность выработки ликвора (ликвора продуцируется меньше, чем всасывается). При нарушении ликвородинамики между головным и спинным мозгом в полости черепа развивается чрезмерное накопление ликвора, а в субарахноидальном пространстве спинного мозга жидкость быстро всасывается и концентрируется.

Циркуляция ликвора зависит от пульсации сосудов мозга, дыхания, движений головы, интенсивности образования и всасывания самого ликвора.

Из боковых желудочков мозга, где, повторимся, доминирует образование ликвора над его всасыванием, цереброспинальная жидкость попадает в III желудочек мозга и далее, по водопроводу мозга, - в IV желудочек, откуда через отверстия Лушки ликвор попадает в большую цистерну и наружное субарахноидальное пространство головного мозга, центральный канал и субарахноидальное пространство спинного мозга и в конечную цистерну спинного мозга.

Мозговые оболочки

Головной и спинной мозг окружены оболочками, выполняющими защитные функции. Выделяют твердую, паутинную и мягкую мозговую оболочку.

Твердая мозговая оболочка расположена наиболее поверхностно.

Паутинная (арахноидальная) оболочка занимает срединное положение.

Мягкая оболочка непосредственно прилегает к поверхности мозга. Она как бы «окутывает мозг», заходя во все борозды, и отделена от паутинной оболочки субарахноидальным пространством, заполненным цереброспинальной жидкостью. Между мягкой и паутинной оболочками натянуты тяжи и пластинки, таким образом, проходящие в них сосуды оказываются «подвешенными». Субарохноидальное пространство формирует расширения, или цистерны, заполненные ликвором. Выделяют мостомозжечковую (большую) цистерну, межножковую цистерну, хиазмальную цистерну, конечную цистерну (спинного мозга).

От твердой мозговой оболочки паутинная отделена капиллярным субдуральным пространством. Имеет в своем составе два листка. Наружный листок прикрепляется к черепу изнутри и выстилает внутренний канал позвоночника, составляя их надкостницу. Внутренний листок сращен с наружным (образуя в местах сращения так называемые мозговые синусы - ложа для оттока венозной крови от мозга и головы). Между наружным листком и костями черепа и позвонками находится эпидуральное пространство.


Вопросы и задания

/. Выполните задания и ответьте на вопросы.

1. Что входит в центральную нервную систему человека?

2. Что входит в периферическую нервную систему человека?

3. Какие отделы входят в ствол головного мозга?

4. Сколько мозговых желудочков имеется в головном мозге?

5. Перечислите оболочки головного мозга.

6. У каких животных имеется трубчатая нервная система?

1. Какие структуры относятся к центральной нервной системе:

а) нервные узлы (ганглии);

б) нервные окончания;

г) ни один из ответов не верен?

2. Как устроены экранные структуры ЦНС:

а) из скоплений нервов;

б) из скоплений нервных клеток, образующих ядра;

в) из скоплений нервных клеток, лежащих слоями;

г) из скоплений нервных клеток и нервов?

3. Какая нервная структура не относится к стволу головного мозга:

а) мозжечок;

в) продолговатый мозг;

г) средний мозг?

4. Из какого мозгового пузыря формируется промежуточный

а) из переднего;

б) из среднего;

в) из заднего;

г) из ромбовидного?

5. Какие желудочки мозга соединяет между собой сильвиев водопровод:

6. Под какой из мозговых оболочек находится ликвор:

а) под твердой;

б) под паутинной;

в) под мягкой;

г) ни под одной из перечисленных?


Глава 3

Глава 4

Нейроглия

Несмотря на то, что глиоциты не способны непосредственно, подобно нейронам, участвовать в переработке информации, их функция чрезвычайно важна для обеспечения нормальной жизнедеятельности мозга. На один нейрон приходится примерно десять глиальных клеток. Как видно из рис. 4.2, нейроглия неоднородна, в ней выделяют микроглию и макроглию , причем последняя еще разделяется на несколько типов клеток, каждый из которых выполняет свои, специфические функции.

Рис. 4.2 . Разновидности глиальных клеток

Микроглия. Представляет собой мелкие, продолговатой формы клетки, с большим количеством сильноветвящихся отростков. У них очень мало цитоплазмы, рибосом, слабо развитая эндо-плазматическая сеть и имеются мелкие митохондрии. Микро-глиальные клетки являются фагоцитами и играют значительную роль в иммунитете ЦНС. Они могут фагоцитировать (пожирать) болезнетворные микроорганизмы, попавшие в нервную ткань, поврежденные или погибшие нейроны или ненужные клеточные структуры. Их активность возрастает при различных патологических процессах, протекающих в нервной ткани. Например, их количество резко увеличивается после радиационного поражения мозга. В этом случае вокруг поврежденных нейронов собирается до двух десятков фагоцитов, которые утилизируют погибшую клетку .

Рис. 4.3 . Нейроглиальные взаимоотношения (по Ф. Блум, А. Лейзерсон и Л. Хофстедтер, 1988)

Функции астроцитов различны:

Астроциты. Это клетки звездчатой формы. На поверхности астроцитов имеются образования - мембраны, которые увеличивают площадь поверхности. Эта поверхность граничит с межклеточным пространством серого вещества. Часто астроциты располагаются между нервными клетками и кровеносными сосудами мозга (рис. 4.3).

1) создание пространственной сети, опоры для нейронов, своего рода «клеточного скелета»;

2) изоляция нервных волокон и нервных окончаний как друг от друга, так и от других клеточных элементов. Скапливаясь на поверхности ЦНС и на границах серого и белого вещества, астроциты изолируют отделы друг от друга;

3) участие в формировании гематоэнцефалического барьера (барьера между кровью и тканью мозга) - обеспечивается поступление питательных веществ из крови к нейронам;

4) участие в регенерационных процессах в ЦНС;

5) участие в метаболизме нервной ткани - поддерживается активность нейронов и синапсов.

Олигодендроциты. Это мелкие овальные клетки с тонкими, короткими, маловетвящимися, немногочисленными отростками (откуда они и получили свое название). Находятся в сером и белом веществе вокруг нейронов, входят в состав оболочек и в состав нервных окончаний. Их основные функции - трофическая (участие в обмене веществ нейронов с окружающей тканью) и изолирующая (образование миелиновой оболочки вокруг нервов, что необходимо для лучшего проведения сигналов). Вариантом олигодендроцитов в периферической нервной системе являются шванновские клетки. Чаще всего они имеют округлую, продолговатую форму. В телах мало органелл, а в отростках много митохондрий и эндоплазматической сети.

Существует два основных варианта шванновских клеток. В первом случае одна глиальная клетка многократно обматывается вокруг осевого цилиндра аксона, формируя так называемое «мякотное» волокно (рис. 4.4). Такие волокна называются «миелинизированными» из-за миелина - жироподобного вещества, образующего мембрану шванновской клетки. Так как миелин имеет белый цвет, то скопления аксонов, покрытых миелином, образует «белое вещество» мозга. Между отдельными глиальными клетками, покрывающими аксон, имеются узкие промежутки - перехваты Ранвье, по имени ученого, их открывшего. В связи с тем, что электрические импульсы движутся по миелинизированному волокну скачкообразно от одного перехвата к другому, такие волокна обладают очень высокой скоростью проведения нервных импульсов.

Рис. 4.4. Олигодендроциты (по Ф. Блум, А. Лейзерсон и Л. Хофстедтер, 1988)

Во втором варианте в одну шванновскую клетку погружается сразу несколько осевых цилиндров, образуя нервное волокно кабельного типа. Такое нервное волокно будет иметь серый цвет, и оно характерно для вегетативной нервной системы, обслуживающей внутренние органы. Скорость проведения сигналов в нем"на 1-2 порядка ниже, чем в миелинизированном волокне.

Эпендимоциты. Эти клетки выстилают желудочки мозга, секретируя спинномозговую жидкость. Они участвуют в обмене ликвора и растворенных в нем веществ. На поверхности клеток, обращенных в спинномозговой канал, имеются реснички, которые своим мерцанием способствуют движению цереброспинальной жидкости.

Таким образом, нейроглия выполняет следующие функции:

1) формирование «скелета» для нейронов;

2) обеспечение защиты нейронов (механическая и фагоцитирующая);

3) обеспечение питания нейронов;

4) участие в образовании миелиновой оболочки;

5) участие в регенерации (восстановлении) элементов нервной ткани.

Нейроны

Ранее отмечалось, что нейрон - это высокоспециализированная клетка нервной системы. Как правило, он имеет звездчатую форму, благодаря чему в нем различают тело (сому) и отростки (аксон и дендриты). Аксон у нейрона всегда один, хотя он может ветвиться, образуя два и более нервных окончания, а дендритов может быть достаточно много. По форме тела можно выделить звездчатые, шаровидные, веретенообразные, пирамидные, грушевидные и т. д. Некоторые разновидности нейронов, отличающихся по форме тела, приведены на рис. 4.5.

Рис. 4.5. Классификация нейронов по форме тела:

1 - звездчатые нейроны (мотонейроны спинного мозга); 2 - шаровидные нейроны (чувствительные нейроны спинномозговых узлов); 3 - пирамидные клетки (кора больших полушарий); 4 - грушевидные клетки (клетки Пуркинье мозжечка); 5 - веретенообразные клетки (кора больших полушарий)

Другой, более распространенной классификацией нейронов является их разделение на группы по числу и строению отростков. В зависимости от их количества нейроны делятся на униполярные (один относток), биполярные (два отростка) и мультиполярные (рис.4.6.).

Униполярные клетки (без дендритов) не характерны для взрослых людей и налюдаются только в процессе эмбриогенеза. Вместо них в организме человека имеется так назвываемые псевдоумниполярные клетки, у которых единственный аксон разделяется на две ветви сразу же после выхода из тела клетки. Биполярные нейроны имеют один дентдрит и один аксон. Они имеются в сетчатке глаза и передают возбуждение от фоторецепторов к ганглионарным клеткам, образующим зрительный нерв. Мультиполярные нейроны (имеющие большое количество дендритов) состалвяют большинство клеток нервной системы.

Размеры нейронов колеблются от 5 до 120 мкм и составляют в среднем 10-30 мкм. Самыми большими нервными клетками человеческого тела являются мотонейроны спинного мозга и гигантские пирамиды Беца коры больших полушарий. И те и другие клетки являются по своей природе двигательными, и их величина обусловлена необходимостью принять на себя огромное количество других нейронов. Подсчитано, что на некоторых нейронах спинного мозга имеется до 10 тысяч синапсов.

Рис. 4.6 . Классификация нейронов по количеству отростков:

1 - биполярные нейроны; 2 - псевдоуниполярные нейроны;

3 - мультиполярные нейроны

Третья классификация нейронов - по выполняемым функциям. Согласно этой классификации, все нервные клетки можно разделить на чувствительные, вставочные и двигательные (см. рис. 6.5). Так как «двигательные» клетки могут посылать приказы не только мышцам, но и железам, то нередко к их аксонам применяют термин эфферентный, т. е. направляющий импульсы от центра к периферии. Тогда чувствительные клетки будут называться афферентными (по которым нервные импульсы движутся от периферии к центру).

Таким образом, все классификации нейронов можно свести к трем, наиболее часто применяемым (рис. 4.7).

Рис. 4.7. Варианты классификаций нервных клеток


Вопросы и задания

/. Выполните задания и ответьте на вопросы.

1. Из каких компонентов состоит нервная ткань?

2. Какую функцию выполняют глиальные клетки?

3. Какую форму могут иметь нервные клетки?

4. На какие типы (в зависимости от количества отростков) делятся нейроны?

5. Как подразделяются нервные клетки в соответствии с выполняемой ими функцией?

II. Выберите правильный вариант ответа.

1. Что является структурно-функциональной единицей нервной системы:

а) нейроглия;
б)нейрон;
в)астроцит;

г) олигодендроцит?

2. Какие клетки нервной ткани способны к фагоцитозу:
а) астроциты;

б) олигодендроциты;
в)микроглия;

г) шванновские клетки?

3. Какие глиальные клетки обеспечивают питание нейронов:

а) астроциты;

б) олигодендроциты;
в)микроглия;

г) шванновские клетки?

4. Какую функцию выполняют олигодендроциты:

а) принимают участие в формировании гематоэнцефали-ческого барьера;

б)участвуют в регенерационных процессах;

в) образуют миелиновую оболочку вокруг нейронов и их аксонов;

г) обеспечивают поступление питательных веществ?

5. В каком отделе ЦНС встречаются пирамидные нейроны:

а) в спинном мозге;

б) в среднем мозге;

в) в мозжечке;

г) в коре больших полушарий?

6. Как называются нейроны, имеющие много коротких отростков:

а) униполярные;

б) биполярные;

в) мультиполярные;

г) псевдоуниполярные?


Глава 5

Организация нервной клетки

Год выпуска: 2005

Жанр: Анатомия

Формат: PDF

Качество: Отсканированные страницы

Описание: Введение в учебные планы подготовки студентов-психологов курса анатомии центральной нервной системы (ЦНС) отражает очевидную необходимость в подобных знаниях. Особенность данного курса, по мнению авторов учебноего пособия "Анатомия центральной нервной системы" - сочетание морфологии и отдельных аспектов онто-и филогенеза нервной системы, а также его логическая связь с последующими курсами: физиологии нервной системы, физиологии высшей нервной деятельности и т.д. Изложение курса анатомии центральной нервной системы студентам-психологам требует специфического подбора материала. С одной стороны, строение структур ЦНС необходимо описывать достаточно подробно, с другой - материал не должен быть перегружен множеством деталей анатомии мозга и латинской терминологией, что характерно для фундаментальных медицинских атласов и учебников по анатомии. Авторы попытались сохранить баланс между академичностью изложения курса и его доступностью.
Мы старались достаточно полно проиллюстрировать учебное пособие "Анатомия центральной нервной системы", с тем чтобы по возможности облегчить понимание такого сложного материала, как строение центральной нервной системы. Кроме того, прилагается краткий словарь латинских терминов, сгруппированных согласно расположению отделов ЦНС. Внутри каждого раздела термины расположены исходя из соотношения между обозначаемыми анатомическими структурами. Знание латинских терминов поможет студентам разобраться в терминологии фундаментальных работ по анатомии.

1. Общие сведения
2. Нервная ткань
2.1. Нейроны
2.2. Типы нейронов
2.3. Глия
2.4. Строение нервов
3. Развитие нервной системы в филогенезе
3.1. Нервная система беспозвоночных животных
3.2. Нервная система позвоночных животных
4. Развитие нервной системы в онтогенезе
5. Вегетативная нервная система

5.1. Парасимпатический отдел вегетативной нервной системы
5.2. Симпатический отдел вегетативной нервной системы
6. Центральная нервная система
6.1. Спинной мозг
6.2. Головной мозг
6.2.1. Продолговатый мозг
6.2.2. Задний мозг
6.2.2.1. Варолиев мост
6.2.2.2. Мозжечок
6.2.3. Средний мозг
6.2.4. Промежуточный мозг
6.2.4.1. Таламус
6.2.4.2. Гипоталамус
6.2.4.3. Субталамус
6.2.4.4. Эпиталамус
6.2.4.5. Гипофиз
6.2.5. Конечный мозг
6.2.5.1. Базальные ганглии
6.2.5.2. Проводящие пути больших полушарий
6.2.5.3. Кора
7. Органы чувств
7.1. Зрительная система
7.2. Слух и равновесие
7.2.1. Органы слуха
7.2.2. Вестибулярная система
7.3. Вкусовая система
7.4. Обонятельная система
7.5. Кожная рецепция
7.6. Проприоцепция и интероцепция
Словарь латинских терминов
Список литературы

АТОМИЯ ЦНС ДЛЯ ПСИХОЛОГОВ

Анатомия человека - наука, изучающая строение человеческого организма и закономерности развития этого строения. Современная анатомия, являясь частью морфологии, не только исследует строение, но и старается объяснить принципы и закономерности формирования определенных структур. Анатомия центральной нервной системы (ЦНС) является частью анатомии человека. Знание анатомии ЦНС необходимо для понимания связи психологических процессов с теми или иными морфологическими структурами как в норме, так и при патологии. Общая схема ЦНС.

В нервной системе выделяют центральную и периферическую нервную систему. Периферическая нервная система представлена корешками спинного мозга, нервными сплетениями, нервными узлами (ганглиями), нервами, периферическими нервными окончаниями. В свою очередь, нервные окончания могут быть: а) эфферентными (двигательными), которые передают возбуждение от нервов к мышцам и железам; б) афферентными (чувствительными), передающими информацию от рецепторов к центральной нервной системе. ЦНС человека состоит из головного и спинного мозга. Спинной мозг представляет собой трубку с небольшим каналом посредине, окруженную нейронами и их отростками. Головной мозг является расширением спинного мозга. Макроскопически (невооруженным глазом) на срезе мозга можно выделить белое и серое вещество. Белое вещество представляет собой пучки нервных волокон и формирует проводящие пути. Так как большая часть длинных нервных отростков покрыта слоем белого жироподобного вещества (миелина), то их скопления имеют белый цвет. Серое вещество- это тела нейронов, формирующих нервные центры. Серое вещество в центральной нервной системе образует два типа скоплений (структур): ядерные структуры (ядра спинного мозга, ствола мозга и больших полушарий), в которых клетки лежат тесными группами, и экранные структуры (кора больших полушарий и мозжечка), в которых клетки лежат слоями. Головной мозг залегает в полости черепа. Топографической границей со спинным мозгом является плоскость, проходящая через нижний край большого затылочного отверстия. Средняя масса головного мозга составляет 1400 г с индивидуальными вариациями от 1100 до 2000 г. Между массой мозга и интеллектуальными способностями человека нет однозначной связи. Так, мозг И. С. Тургенева достигал массы почти 2 кг, а у французского писателя Анатоля Франса весил чуть больше одного килограмма. Тем не менее, их вклад в мировую литературу равновелик. Анатомически в головном мозге можно различить полушария, ствол и мозжечок (малый мозг). Ствол включает в себя продолговатый мозг, мост, средний мозг и промежуточный мозг. Существует и другая классификация отделов головного мозга, которая ориентируется на особенности развития того или иного отдела (в процессе онтогенеза). Если отделы головного мозга выделять, опираясь на процессы эмбрионального развития (в соответствии со стадией трех мозговых пузырей), то головной мозг можно разделить на передний, средний и задний (ромбовидный) мозг. В соответствии с таким подходом к переднему мозгу относят большие полушария и промежуточный мозг, к среднему - средний мозг, к ромбовидному (развивающемуся из заднего мозгового пузыря) - продолговатый мозг, задний мозг и перешеек ромбовидного мозга. Левое и правое полушария конечного мозга разделены продольной щелью, дном которой является мозолистое тело. С мозжечком их разграничивает поперечная щель. Вся поверхность полушарий покрыта бороздами и извилинами, наиболее крупная из них - боковая, или сильвиева, она отделяет лобную долю полушарий от височной. На сагиттальном разрезе мозга видны медиальная поверхность полушарий большого мозга, структуры ствола мозга и мозжечка. Кора полушарий отделена бородой от мозолистого тела. Мозолистое тело является большой спайкой мозга, имеет волокнистую структуру. Под мозолистым телом располагается тонкая белая полоска- свод. От головного мозга отходят 12 черепно-мозговых нервов, иннервирующих преимущественно голову, ряд мышц шеи и затылка, а также осуществляющих парасимпатическую иннервацию внутренних органов. От спинного мозга отходит 31 пара спинномозговых нервов, иннервирующих туловище и внутренние органы. ПОЛОСТИ МОЗГА И ЛИКВОР.

В процессе эмбрионального развития полости мозговых пузырей преобразуются в желудочки мозга. В левом и правом полушариях соответственно расположены I и II желудочки, в промежуточном мозге - III желудочек, в ромбовидном мозге -IV желудочек. Третий и четвертый желудочки соединены сильвиевым водопроводом, проходящем в среднем мозге. Полости мозга заполнены спинномозговой (цереброспинальной) жидкость - ликвором. Они сообщаются между собой, а также со спинномозговым каналом и подпаутинным пространством (пространством под одной из оболочек мозга). Цереброспинальная жидкость продуцируется сосудистыми сплетениями желудочков мозга, имеющими железистое строение, а всасывается венами мягкой оболочки мозга. Процессы образования и всасывания ликвора протекают непрерывно, обемпечивая 4-5 кратный обмен цереброспинальной жидкости в течение одних суток. В полости черепа присутствует относительная недостаточность всасывания ликвора (т.е. ликвора всасывается меньше, чем продуцируется), а во внутрипозвоночном канале преобладает относительная недостаточность выработки ликвора (ликвора продуцируется меньше, чем всасывается). При нарушении ликвородинамики между головным и спинным мозгом в полости черепа развивается чрезмерное накопление ликвора, а в субарахноидальном пространстве спинного мозга жидкость быстро всасывается и концентрируется. Циркуляция ликвора зависит от пульсации сосудов мозга, дыхания, движений головы, интенсивности образования и всасывания самого ликвора. Из боковых желудочков мозга, где доминирует образование ликвора над его всасыванием,цереброспинальная жидкость попадает в III желудочек мозга и далее, по водопроводу мозга, - в IV желудочек, откуда через отверстия Лушки ликвор попадает в большую цистерну и наружное субарахноидальное пространство головного мозга, центральный канал и субарахноидальное пространство спинного мозга и в конечную цистерну спинного мозга. МОЗГОВЫЕ ОБОЛОЧКИ. Головной и спиной мозг окружены оболочками, выполняющими защитные функции. Выделяют твердую, паутинную и мягкую мозговую оболочку. Твердая мозговая оболочка расположена наиболее поверхностно. Паутинная (арахноидальная) оболочка занимает срединное положение. Мягкая оболочка непосредственно прилегает к поверхности мозга. Она как бы "окутывает мозг", заходя во все борозды, и отделена от паутинной оболочки субарахноидальным пространством, заполненым цереброспинальной жидкостью. Между мягкой и паутинной оболочками натянуты тяжи и пластинки, таким образом, проходящие в них сосуды оказываются "подвешенными". Субарохноидальное пространство формирует расширения, или цистерны, заполненные ликвором. Выделяют мостомозжечковую (большую) цистерну, хиазмальную цистерну, конечную цистерну (спинного мозга). От твердой мозговой оболочки паутинная отделена капиллярным субдуральным пространством. Имеет в своем составе два листка. Наружный листок прикрепляется к черепу изнутри и выстилает внутренний канал позвоночника, составляя их надкостницу. Внутренний листок сращен с наружным (образуя в местах сращения так называемые мозговые синусы - ложа для оттока венозной крови от мозга и головы). Между наружным листком и костями черепа и позвонками находится эпидуральное пространство. ОНТОГЕНЕЗ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ. Онтогенез- процесс индивидуального развития организма от момента его зарождения(зачатия) до смерти. В основе онтогенеза лежит цепь строго определенных последовательных биохимических, физиологических и морфологических изменений, специфичных для каждого из периодов индивидуального развития организма конкретного вида. В соответствии с этими изменениями выделяют эмбриональный(зародышевый, или пренатальный) и постэмбриональный(послезародышевый, или постнатальный) периоды. Первый охватывает время от оплодотворения до рождения, второй - от рождения до смерти. Согласно биогенетическому закону, в онтогенезе нервная система повторяет этапы филогенеза. В начале происходит дифференцировка зародышевых листков, затем из клеток эктодермального зародышевого листка образуется мозговая, или медуллярная, пластинка. Ее края в результате неравномерного размножения ее клеток сближаются, а центральная часть, наоборот, погружается в тело зародыша. Затем края пластинки смыкаются - образуется медуллярная трубка. В дальнейшем из задней ее части, отстающей в росте, образуется спинной мозг, из передней, развивающейся более интенсивно, - головной мозг. Канал медуллярной трубки превращается в центральный канал спинного мозга и желудочки головного мозга. Нервная трубка представляет собой эмбриональный зачаток всей нервной системы человека. Из нее в дальнейшем формируется головной и спинной мозг, а также периферические отделы нервной системы. При смыкании нервного желобка по бокам в области его приподнятых краев(нервных валиков) с каждой стороны выделяется группа клеток, которая по мере обособления нервной трубки от кожной эктодермы образует между нервными валиками и эктодермой сплошной слой - ганглиозную пластинку. Последняя служит исходным материалом для клеток чувствительных нервных узлов (спинальных и криниальных) и узлов вегетативной нервной системы, иннервирующей внутренние органы. Нервная трубка на ранней стадии своего развития состоит из одного слоя клеток цилиндрической формы, которые в дальнейшем интенсивно размножаются митозом и количество их увеличивается; в результате стенка нервной трубки утолщается. В этой стадии развития в ней можно выделить три слоя: внутренний эпендимный слой, характеризующийся активным митотическим делением клеток; средний слой - мантийный (плащевой), клеточный состав которого пополняется как за счет митотического деления клеток этого слоя, так и путем перемещения их из внутреннего эпендимного слоя; наружный слой, называемый краевой вуалью. Последний слой образуется отростками клеток двух предыдущих слоев. В дальнейшем клетки внутреннего слоя превращаются в эпендемоциты, выстилающие центральный канал спинного мозга. Клеточные элементы мантийного слоя дифференцируются в двух направлениях: часть их превращается в нейроны, другая часть в глиальные клетки. Вследствие интенсивного развития передней части медуллярной трубки образуются мозговые пузыри: вначале появляются два пузыря, затем задний пузырь делится еще на два. Образовавшиеся три пузыря дают начало переднему, среднему и ромбовидному мозгу. Впоследствии из переднего пузыря развиваются два пузыря, дающие начало конечному и промежуточному мозгу. А задний пузырь, в свою очередь, делится на два пузыря, из которых образуется задний мозг и продолговатый, или добавочный, мозг. Таким образом, в результате деления нервной трубки и образования пяти мозговых пузырей с последующим их развитием формируются следующие отделы нервной системы: - передний мозг, состоящий из конечного и промежуточного мозга; - ствол мозга, включающий в себя ромбовидный и средний мозг. Конечный , или большой мозг представлен двумя полушариями (в него входит кора большого мозга, белое вещество, обонятельный мозг, банальные ядра). К промежуточному мозгу относят эпиталамус, передний и задний таламус, гипоталамус. Ромбовидный мозг состоит из продолговатого мозга и заднего, включающего в себя мост и мозжечок, средний мозг - из ножек мозга, покрышки и крышки среднего мозга. Из недифференцированной части медуллярной трубки развивается спинной мозг. Полость конечного мозга образуют боковые желудочки, полость промежуточного мозга - III желудочек, среднего мозга - водопровод среднего мозга (сильвиев водопровод), ромбовидного мозга - IV желудочек и спинного мозга - центральный канал. В дальнейшем идет быстрое развитие всей центральной нервной системы, но наиболее активно развивается конечный мозг, который начинает делиться продольной щелью большого мозга на два полушария. Затем на поверхности каждого из них появляются борозды, определяющие будущие доли и извилины. На 4-м месяце развития плода появляется поперечная щель большого мозга, на 6- м центральная борозда и другие главные борозды, в последующие месяцы - второстепенные и после рождения - самые мелкие борозды. В процессе развития нервной системы важную роль играет миелинизация нервных волокон, в результате которой нервные волокна покрываются защитным слоем миелина и значительно вырастает скорость проведения нервных импульсов. К концу 4-ого месяца внутриутробного развития миелин выявляется в нервных волокнах, составляющих восходящие или афферентные(чувствительные) системы боковых канатиков спинного мозга, тогда как в волокнах нисходящих, или эфферентных (двигательных) систем, миелин обнаруживается на 6 - м месяце. Приблизительно в это же время наступает миелинизация нервных волокон задних канатиков. Миелинизация нервных волокон корково -спинномозговых путей начинается на последнем месяце утробной жизни и продолжается в течение года после рождения. Это свидетельствует о том, что процесс миелинизации нервных волокон распространяется вначале на филогенетически более древние, а затем - на более молодые структуры. От последовательности миелинизации определенных нервных структур зависит очередность формирования их функций. Формирование функции также зависит и от дифференциации клеточных элементов и их постепенного созревания, которое длится в течение первого десятилетия. В постнатальном периоде постепенно происходит окончательное созревание всей нервной системы, играющей особую роль в мозговых механизмах условно - рефлекторной деятельности, формирующейся с первых дней жизни. Еще один важный этап в онтогенезе - это период полового созревания, когда проходит и половая дифференцировка мозга. В течение всей жизни человека мозг активно изменяется, приспосабливаясь к условиям внешней и внутренней среды, часть этих изменений носит генетически запрограммированный характер, часть является относительно свободной реакцией на условия существования. Онтогенез нервной системы заканчивается только со смертью человека.