Open
Close

Особенности строения клеток. Прокариотические и эукариотические клетки: строение, отличия Прокариотическая и эукариотическая клетка таблица

Единство строения клеток.

Содержание любой клетки отделен от внешней среды особой структурой - плазматической мембраной (плазмалемма). Эта обособленность позволяет создавать внутри клетки совсем особая среда, не похоже на то, что его окружает. Поэтому в клетке могут происходить те процессы, которые не происходят нигде, их называют процессами жизнедеятельности.

Внутренняя среда живой клетки, ограниченное плазматической мембраной, называется цитоплазмой. Она включает гиалоплазму (основную прозрачную вещество) и клеточные органеллы, а также различные непостоянные структуры - включения. К органелл, которые есть в любой клетке, относятся также рибосомы, на которых происходит синтез белка.

Строение клеток эукариот.

Эукариоты - это организмы, клетки которых имеют ядро. Ядро - это самая органеллы эукариотической клетки, в которой хранится и из которой переписывается наследственная информация, записанная в хромосомах. Хромосома - это молекула ДНК, интегрированная с белками. В ядре содержится ядрышко - место, где образуются другие важные органеллы, участвующих в синтезе белка - рибосомы. Но рибосомы только формируются в ядре, а работают они (т.е. синтезируют белок) в цитоплазме. Часть из них находится в цитоплазме свободно, а часть прикрепляется к мембран, образуют сетку, которая получила название эндоплазматической.

Рибосомы - немембранни органеллы.

Эндоплазматическая сеть - это сеть канальцев, ограниченных мембранами. Существует два типа: гладкая и гранулярная. На мембранах гранулярной эндоплазматической сети расположены рибосомы, поэтому в ней происходит синтез и транспортировки белков. А гладкая эндоплазматическая сеть - это место синтеза и транспортировки углеводов и липидов. На ней рибосом нет.

Для синтеза белков, углеводов и жиров необходима энергия, которую в эукариотической клетке производят «энергетические станции» клетки - митохондрии.

Митохондрии - двомембранни органеллы, в которых осуществляется процесс клеточного дыхания. На мембранах митохондрий окисляются органические соединения и накапливается химическая энергия в виде особых энергетических молекул (АТФ).

В клетке также есть место, где органические соединения могут накапливаться и откуда они могут транспортироваться, - это аппарат Гольджи, система плоских мембранных мешочков. Он участвует в транспортировке белков, липидов, углеводов. В аппарате Гольджи образуются также органеллы внутриклеточного пищеварения - лизосомы.

Лизосомы - одномембранни органеллы, характерные для клеток животных, содержат ферменты, которые могут расщеплять белки, углеводы, нуклеиновые кислоты, липиды.

В клетке могут быть органеллы, не имеющие мембранной строения, например рибосомы и цитоскелет.

Цитоскелет - это опорно-двигательная система клетки, включает микрофиламенты, реснички, жгутики, клеточный центр, который производит микротрубочки и центриоли.

Существуют органеллы, характерные только для клеток растений, - пластиды. Бывают: хлоропласты, хромопласты и лейкопласты. В хлоропластах происходит процесс фотосинтеза.

В клетках растений также вакуоли - продукты жизнедеятельности клетки, являющиеся резервуарами воды и растворенных в ней соединений. В эукариотических организмов относятся растения, животные и грибы.

Строение клеток прокариот.

Прокариоты - одноклеточные организмы, в клетках которых нет ядра.

Прокариотические клетки малы по размерам, сохраняют генетический материал в форме кольцевой молекулы ДНК (нуклеоидом). В прокариотических организмов относятся бактерии и цианобактерии, которые раньше называли сине-зелеными водорослями.

Если в прокариот происходит процесс аэробного дыхания, то для этого используются специальные выпячивание плазматической мембраны - мезосомы. Если бактерии фотосинтезирующие, то процесс фотосинтеза происходит на фотосинтетических мембранах - тилакоидов.

Синтез белка в прокариот происходит на рибосомах. В прокариотических клетке мало органелл.

Гипотезы происхождения органелл эукариотических клеток.

Прокариотические клетки появились на Земле раньше, чем эукариотические.

1) симбиотические гипотеза объясняет механизм возникновения некоторых органоидов эукариотической клетки - митохондрий и фотосинтезирующих пластид.

2) Инвагинацыонная гипотеза - утверждает, что происхождение эукариотической клетки исходит из того, что предковой формы был аэробный прокариот. Органеллы в нем возникли в результате впячивания и отслоение частей оболочки с последующей функциональной специализацией в ядро, митохондрии, хлоропласты других органелл.

Строение эукариотической и прокариотической клеток. Эукариотическая клетка. Строение прокариотической клетки. Сравнение прокариотической и эукариотической клеток.

У современных и ископаемых организмов известны два типа клеток: прокариотическая и эукариотическая. Они столь резко различаются по особенностям строения, что это послужило для выделения двух надцарств живого мира - прокариот, т.е. доядерных, и эукариот, т.е. настоящих ядерных организмов. Промежуточные формы между этими крупнейшими таксонами живого пока неизвестны.

Основные признаки и отличия прокариотических и эукариотических клеток (таблица):

Признаки

Прокариоты

Эукариоты

ЯДЕРНАЯ МЕМБРАНА

Отсутствует

Имеется

ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА

Имеется

Имеется

МИТОХОНДРИИ

Отсутствуют

Имеются

ЭПС

Отсутствует

Имеется

РИБОСОМЫ

Имеются

Имеются

ВАКУОЛИ

Отсутствуют

Имеются (особенно характерны для растений)

ЛИЗОСОМЫ

Отсутствуют

Имеются

КЛЕТОЧНАЯ СТЕНКА

Имеется, состоит из сложного гетерополимерного вещества

Отсутствует в животных клетках, в растительных состоит из целлюлозы

КАПСУЛА

Если имеется, то состоит из соединений белка и сахара

Отсутствует

КОМПЛЕКС ГОЛЬДЖИ

Отсутствует

Имеется

ДЕЛЕНИЕ

Простое

Митоз, амитоз, мейоз

Основное отличие прокариотических клеток от эукариотических заключается в том, что их ДНК не организована в хромосомы и не окружена ядерной оболочкой. Эукариотические клетки устроены значительно сложнее. Их ДНК, связанная с белком, организована в хромосомы, которые располагаются в особом образовании, по сути самом крупном органоиде клетки - ядре. Кроме того, внеядерное активное содержимое такой клетки разделено на отдельные отсеки с помощью эндоплазматической сети, образованной элементарной мембраной. Эукариотические клетки обычно крупнее прокариотических. Их размеры варьируют от 10 до 100 мкм, тогда как размеры клеток прокариот (различных бактерий, цианобактерий - сине- зеленых водорослей и некоторых других организмов), как правило, не превышают 10 мкм, часто составляя 2-3 мкм. В эукариотической клетке носители генов - хромосомы - находятся в морфологически оформленном ядре, отграниченном от остальной клетки мембраной. В исключительно тонких, прозрачных препаратах живые хромосомы можно видеть с помощью светового микроскопа. Чаще же их изучают на фиксированных и окрашенных препаратах.

Хромосомы состоят из ДНК, которая находится в комплексе с белками- гистонами, богатыми аминокислотами аргинином и лизином. Гистоны составляют значительную часть массы хромосом.

Эукариотическая клетка имеет разнообразные постоянные внутриклеточные структуры - органоиды (органеллы), отсутствующие в прокариотической клетке.

Прокариотические клетки могут делиться на равные части перетяжкой или почковаться, т.е. образовывать дочернюю клетку меньшего размера, чем материнская, но никогда не делятся путем митоза. Клетки эукариотических организмов, напротив, делятся путем митоза (исключая некоторые очень архаичные группы). Хромосомы при этом "расщепляются" продольно (точнее, каждая нить ДНК воспроизводит около себя свое подобие), и их "половинки" - хроматиды (полноценные копии нити ДНК) расходятся группами к противоположным полюсам клетки. Каждая из образующихся затем клеток получает одинаковый набор хромосом.

Рибосомы прокариотической клетки резко отличаются от рибосом эукариот по величине. Ряд процессов, свойственных цитоплазме многих эукариотических клеток, - фагоцитоз, пиноцитоз и циклоз (вращательное движение цитоплазмы) - у прокариот не обнаружен. Прокариотической клетке в процессе обмена веществ не требуется аскорбиновая кислота, но эукариотические не могут без нее обходиться.

Существенно различаются подвижные формы прокариотических и эукариотических клеток. Прокариоты имеют двигательные приспособления в виде жгутиков или ресничек, состоящих из белка флагеллина. Двигательные приспособления подвижных эукариотических клеток получили название ундулиподиев, закрепляющихся в клетке с помощью особых телец кинетосом. Электронная микроскопия выявила структурное сходство всех ундулиподиев эукариотических организмов и резкие их отличия от жгутиков прокариот

1. Строение эукариотической клетки.

Клетки, образующие ткани животных и растений, значительно различаются по форме, размерам и внутреннему строению. Однако все они обнаруживают сходство в главных чертах процессов жизнедеятельности, обмена веществ, в раздражимости, росте, развитии, способности к изменчивости.
Клетки всех типов содержат два основных компонента, тесно связанных между собой, — цитоплазму и ядро. Ядро отделено от цитоплазмы пористой мембраной и содержит ядерный сок, хроматин и ядрышко. Полужидкая цитоплазма заполняет всю клетку и пронизана многочисленными канальцами. Снаружи она покрыта цитоплазматической мембраной. В ней имеются специализированные структуры-органоиды, присутствующие в клетке постоянно, и временные образования — включения. Мембранные органоиды : наружная цитоплазматическая мембрана (HЦM), эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы, митохондрии и пластиды. В основе строения всех мембранных органоидов лежит биологическая мембрана. Все мембраны имеют принципиально единый план строения и состоят из двойного слоя фосфолипидов, в который с различных сторон ива разную глубину погружены белковые молекулы. Мембраны органоидов отличаются друг от друга лишь наборами входящих в них белков.

Цитоплазматическая мембрана. У всех клеток растений, многоклеточных животных, у простейших и бактерий клеточная мембрана трехслойна: наружный и внутренний слои состоят из молекул белков, средний — из молекул липидов. Она ограничивает цитоплазму от внешней среды, окружает все органоиды клетки и представляет собой универсальную биологическую структуру. В некоторых клетках наружная оболочка образована несколькими мембранами, плотно прилегающими друг к другу. В таких случаях клеточная оболочка становится плотной и упругой и позволяет сохранить форму клетки, как, например, у эвглены и инфузории туфельки. У большинства растительных клеток, помимо мембраны, снаружи имеется еще толстая целлюлозная оболочка — клеточная стенка . Она хорошо различима в обычном световом микроскопе и выполняет опорную функцию за счет жесткого наружного слоя, придающего клеткам четкую форму.
На поверхности клеток мембрана образует удлиненные выросты — микроворсинки, складки, впячивания и выпячивания, что во много раз увеличивает всасывающую или выделительную поверхность. С помощью мембранных выростов клетки соединяются друг с другом в тканях и органах многоклеточных организмов, на складках мембран располагаются разнообразные ферменты, участвующие в обмене веществ. Отграничивая клетку от окружающей среды, мембрана регулирует направление диффузии веществ и одновременно осуществляет активный перенос их внутрь клетки (накопление) или наружу (выделение). За счет этих свойств мембраны концентрация ионов калия, кальция, магния, фосфора в цитоплазме выше, а концентрация натрия и хлора ниже, чем в окружающей среде. Через поры наружной мембраны из внешней среды внутрь клетки проникают ионы, вода и мелкие молекулы других веществ. Проникновение в клетку относительно крупных твердых частиц осуществляется путем фагоцитоза (от греч. "фаго” — пожираю, "питое” — клетка). При этом наружная мембрана в месте контакта с частицей прогибается внутрь клетки, увлекая частицу в глубь цитоплазмы, где она подвергается ферментативному расщеплению. Аналогичным путем в клетку попадают и капли жидких веществ; их поглощение называется пиноцитозом (от греч. "пино” — пью, "цитос” — клетка). Наружная клеточная мембрана выполняет и другие важные биологические функции.
Цитоплазма на 85 % состоит из воды, на 10 % — из белков, остальной объем приходится на долю липидов, углеводов, нуклеиновых кислот и минеральных соединений; все эти вещества образуют коллоидный раствор, близкий по консистенции глицерину. Коллоидное вещество клетки в зависимости от ее физиологического состояния и характера воздействия внешней среды имеет свойства и жидкости, и упругого, более плотного тела. Цитоплазма пронизана каналами различной формы и величины, которые получили название эндоплазматической сети. Их стенки представляют собой мембраны, тесно контактирующие со всеми органоидами клетки и составляющие вместе с ними единую функционально-структурную систему для осуществления обмена веществ и энергии и перемещения веществ внутри клетки.

В стенках канальцев располагаются мельчайшие зернышки—гранулы, называемые рибосомами. Такая сеть канальцев называется гранулярной. Рибосомы могут располагаться на поверхности канальцев разрозненно или образуют комплексы из пяти-семи и более рибосом, называемые полисомами. Другие канальцы гранул не содержат, они составляют гладкую эндоплазматическую сеть. На стенках располагаются ферменты, участвующие в синтезе жиров и углеводов.

Внутренняя полость канальцев заполнена продуктами жизнедеятельности клетки. Внутриклеточные канальцы, образуя сложную ветвящуюся систему, регулируют перемещение и концентрацию веществ, разделяют различные молекулы органических веществ и этапы их, синтеза. На внутренней и внешней поверхности мембран, богатых ферментами, осуществляется синтез белков, жиров и углеводов, которые либо используются в обмене веществ, либо накапливаются в цитоплазме в качестве включений, либо выводятся наружу.

Рибосомы встречаются во всех типах клеток — от бактерий до клеток многоклеточных организмов. Это округлые тельца, состоящие из рибонуклеиновой кислоты (РНК) и белков почти в равном соотношении. В их состав непременно входит магний, присутствие которого поддерживает структуру рибосом. Рибосомы могут быть связаны с мембранами эндоплазматической сети, с наружной клеточной мембраной или свободно лежать в цитоплазме. В них осуществляется синтез белков. Рибосомы кроме цитоплазмы встречаются в ядре клетки. Они образуются в ядрышке и затем поступают в цитоплазму.

Комплекс Гольджи в растительных клетках имеет вид отдельных телец, окруженных мембранами. В животных клетках этот органоид представлен цистернами, канальцами и пузырьками. В мембранные трубки комплекса Гольджи из канальцев эндоплазматической сети поступают продукты секреции клетки, где они химически перестраиваются, уплотняются, а затем переходят в цитоплазму и либо используются самой клеткой, либо выводятся из нее. В цистернах комплекса Гольджи происходит синтез полисахаридов и их объединение с белками, в результате чего образуются гликопротеиды.

Митохондрии — небольшие тельца палочковидной формы, ограниченные двумя мембранами. От внутренней мембраны митохондрии отходят многочисленные складки — кристы, на их стенках располагаются разнообразные ферменты, с помощью которых осуществляется синтез высокоэнергетического вещества — аденозинтрифосфорной кислоты (АТФ). В зависимости от активности клетки и внешних воздействий митохондрии могут перемещаться, изменять свои размеры, форму. В митохондриях найдены рибосомы, фосфолипиды, РНК и ДНК. С присутствием ДНК в митохондриях связывают способность этих органоидов к размножению путем образования перетяжки или почкованием в период деления клетки, а также синтез части митохондриальных белков.

Лизосомы - мелкие овальные образования, ограниченные мембраной и рассеянные по всей цитоплазме. Встречаются во всех клетках животных и растений. Они возникают в расширениях эндоплазматической сети и в комплексе Гольджи, здесь заполняются гидролитическими ферментами, а затем обособляются и поступают в цитоплазму. В обычных" условиях лизосомы переваривают частицы, попадающие в клетку путем фагоцитоза, и органоиды отмирающих клеток. Продукты лизиса выводятся через мембрану лизосомы в цитоплазму, где они включаются в состав новых молекул. При разрыве лизоеомной мембраны ферменты поступают в цитоплазму и переваривают ее содержимое, вызывая гибель клетки.
Пластиды есть только в растительных клетках и встречаются, у большинства зеленых растений. В пластидах синтезируются и накапливаются органические вещества. Различают пластиды трех видов: хлоропласты, хромопласты и лейкопласты.

Хлоропласты — зеленые пластиды, содержащие зеленый пигмент хлорофилл. Они находятся в листьях, молодых стеблях, незрелых плодах. Хлоропласты окружены двойной мембраной. У высших растений внутренняя часть хлоропластов заполнена полужидким веществом, в котором параллельно друг другу уложены пластинки. Парные мембраны пластинок, сливаясь, образуют стопки, содержащие хлорофилл. В каждой стопке хлоропластов высших растений чередуются слои молекул белка и молекул липидов, а между ними располагаются молекулы хлорофилла. Такая слоистая структура обеспечивает максимум свободных поверхностей и облегчает захват и перенос энергии в процессе фотосинтеза.
Хромопласты — пластиды, в которых содержатся растительные пигменты (красный или бурый, желтый, оранжевый). Они сосредоточены в цитоплазме клеток цветков, стеблей, плодов, листьев растений и придают им соответствующую окраску. Хромопласты образуются из лейкопластов или хлоропластов в результате накопления пигментов каротиноидов.

Лейкопласты—бесцветные пластиды, располагающиеся в неокрашенных частях растений: в стеблях, корнях, луковицах и др. В лейкопластах одних клеток накапливаются зерна крахмала, в лейкопластах других клеток — масла, белки.

Все пластиды возникают из своих предшественников — пропластид. В них выявлена ДНК, которая контролирует размножение этих органоидов.

Клеточный центр, или центросома, играет важную роль при делении, клетки и состоит из двух центриолей. Он встречается у всех клеток животных и растений, кроме цветковых, низших грибов и некоторых, простейших. Центриоли в делящихся клетках принимают участие в формировании веретена деления и располагаются на его полюсах. В делящейся клетке первым делится клеточный центр, одновременно образуется ахроматиновое веретено, ориентирующее хромосомы при расхождении их к полюсам. В дочерние клетки отходит по одной центриоле.
У многих растительных и животных клеток имеются органоиды специального назначения : реснички, выполняющие функцию движения (инфузории, клетки дыхательных путей), жгутики (простейшие одноклеточные, мужские половые клетки у животных и растений и др.).

Включения - временные элемеаты, возникающие в клетке на определенной стадии ее жизнедеятельности в результате синтетической функции. Они либо используются, либо выводятся из клетки. Включениями являются также запасные питательные вещества: в растительных клетках—крахмал, капельки жира, белки, эфирные масла, многие органические кислоты, соли органических и неорганических кислот; в животных клетках - гликоген (в клетках печени и мышцах), капли жира (в подкожной клетчатке); Некоторые включения накапливаются в клетках как отбросы — в виде кристаллов, пигментов и др.

Вакуоли — это полости, ограниченные мембраной; хорошо выражены в клетках растений и имеются у простейших. Возникают в разных участках расширений эндоплазматической сети. И постепенно отделяются от нее. Вакуоли поддерживают тургорное давление, в них сосредоточен клеточный или вакуолярный сок, молекулы которого определяют его осмотическую концентрацию. Считается, что первоначальные продукты синтеза - растворимые углеводы, белки, пектины и др. — накапливаются в цистернах эндоплазматической сети. Эти скопления и представляют собой зачатки будущих вакуолей.
Цитоскелет . Одной из отличительных особенностей эукариотической клетки является развитие в ее цитоплазме скелетных образований в виде микротрубочек и пучков белковых волокон. Элементы цитоскелета тесно связаны с наружной цитоплазматической мембраной и ядерной оболочкой, образуют сложные переплетения в цитоплазме. Опорные элемеиты цитоплазмы определяют форму клетки, обеспечивают движение внутриклеточных структур и перемещение всей клетки.

Ядро клетки играет основную роль в ее жизнедеятельности, с его удалением клетка прекращает свои функции и гибнет. В большинстве животных клеток одно ядро, но встречаются и многоядерные клетки (печень и мышцы человека, грибы, инфузории, зеленые водоросли). Эритроциты млекопитающих развиваются из клеток-предшественников, содержащих ядро, но зрелые эритроциты утрачивают его и живут недолго.
Ядро окружено двойной мембраной, пронизанной порами, посредством которых оно тесно связано с каналами эндоплазматической сети и цитоплазмой. Внутри ядра находится хроматин — спирализованные участки хромосом. В период деления клетки они превращаются в палочковидные структуры, хорошо различимые в световой микроскоп. Хромосомы — это сложный комплекс белков с ДНК, называемый нуклеопротеидом.

Функции ядра состоят в регуляции всех жизненных отправлений клетки, которую оно осуществляет при помощи ДНК и РНК-материальных носителей наследственной информации. В ходе подготовки к делению клетки ДНК удваивается, в процессе митоза хромосомы расходятся и передаются дочерним клеткам, обеспечивая преемственность наследственной информации у каждого вида организмов.

Кариоплазма — жидкая фаза ядра, в которой в растворенном виде находятся продукты жизнедеятельности ядерных структур.

Ядрышко — обособленная, наиболее плотная часть ядра.

В состав ядрышка входят сложные белки и РНК, свободные или связанные фосфаты калия, магния, кальция, железа, цинка, а также рибосомы. Ядрышко исчезает перед началом деления клетки и вновь формируется в последней фазе деления.

Таким образом, клетка обладает тонкой и весьма сложной организацией. Обширная сеть цитоплазматических мембран и мембранный принцип строения органоидов позволяют разграничить множество одновременно протекающих в клетке химических реакций. Каждое из внутриклеточных образований имеет свою структуру и специфическую функцию, но только при их взаимодействии возможна гармоничная жизнедеятельность клетки.На основе такого взаимодействия вещества из окружающей среды поступают в клетку, а отработанные продукты выводятся из нее во внешнюю среду — так совершается обмен веществ. Совершенство структурной организации клетки могло возникнуть только в результате длительной биологической эволюции, в процессе которой выполняемые ею функции постепенно усложнялись.
Простейшие одноклеточные формы представляют собой и клетку, и организм со всеми его жизненными проявлениями. В многоклеточных организмах клетки образуют однородные группы — ткани. В свою очередь ткани формируют органы, системы, и их функции определяются общей жизнедеятельностью целостного организма.

2. Прокариотическая клетка.

К прокариотам относят бактерии и сине-зелёные водоросли (цианеи). Наследственный аппарат прокариот представлен одной кольцевой молекулой ДНК, не образующей связей с белками и содержащей по одной копии каждого гена — гаплоидные организмы. В цитоплазме имеется большое количество мелких рибосом; отсутствуют или слабо выражены внутренние мембраны. Ферменты пластического обмена расположены диффузно. Аппарат Гольджи представлен отдельными пузырьками. Ферментные системы энергетического обмена упорядоченно расположены на внутренней поверхности наружной цитоплазматической мембраны. Снаружи клетка окружена толстой клеточной стенкой. Многие прокариоты способны к спорообразованию в неблагоприятных условиях существования; при этом выделяется небольшой участок цитоплазмы содержащий ДНК, и окружается толстой многослойной капсулой. Процессы метаболизма внутри споры практически прекращаются. Попадая в благоприятные условия, спора преобразуется в активную клеточную форму. Размножение прокариот происходит простым делением надвое.

Средняя величина прокариотических клеток 5 мкм. У них нет никаких внутренних мембран, кроме впячиваний плазматической мембраны. Пласты отсутствуют. Вместо клеточного ядра имеется его эквивалент (нуклеоид), лишенный оболочки и состоящий из одной-единственной молекулы ДНК. Кроме того бактерии могут содержать ДНК в форме крошечных плазмид, сходных с внеядерными ДНК эукариот.
В прокариотических клетках, способных к фотосинтезу (сине-зеленые водоросли, зеленые и пурпурные бактерии) имеются различно структурированные крупные впячивания мембраны - тилакоиды, по своей функции соответствующие пластидам эукариот. Эти же тилакоиды или - в бесцветных клетках - более мелкие впячивания мембраны (а иногда даже сама плазматическая мембрана) в функциональном отношении заменяют митохондрии. Другие, сложно дифференцированные впячивания мембраны называют мезасомами; их функция не ясна.
Только некоторые органеллы прокариотической клетки гомологичны соответствующим органеллам эукариот. Для прокариот характерно наличие муреинового мешка - механически прочного элемента клеточной стенки

Сравнительная характеристика клеток растений, животных, бактерий, грибов

При сравнении бактерий с эукариотами можно выделить единственное сходство - наличие клеточной стенки, а вот сходства и различия эукариотических организмов заслуживают более пристального внимания. Следует начать сравнение с компонентов, которые свойственны и растениям, и животным, и грибам. Это ядро, митохондрии, Аппарат (комплекс) Гольджи, эндоплазматический ретикулум (или эндоплазматическая сеть) и лизосомы. Они характерны для всех организмов, имеют сходное строение и выполняют одинаковые функции. Теперь следует акцентировать внимание на различиях. Растительная клетка, в отличие от животной, имеет клеточную стенку, состоящую из целлюлозы. Кроме того, существую органеллы свойственные растительным клеткам - пластиды и вакуоли. Наличие этих компонентов обусловлено необходимостью растений поддерживать форму, при отсутствии скелета. Есть отличия и в особенностях роста. У растений он происходит в основном за счет увеличения размера вакуолей и растяжения клеток, в то время как у животных происходит увеличение объема цитоплазмы, а вакуоль вовсе отсутствует. Пластиды (хлоропласты, лейкопласты, хромопласты) характерны преимущественно для растений, поскольку их основная задача - это обеспечить автотрофный способ питания. У животных в противовес растениям существуют пищеварительные вакуоли, которые обеспечивают гетеротрофный способ питания. Грибы занимают особое положение и для их клеток характерны признаки свойственные и для растений, и для животных. Подобно животным грибам присущ гетеротрофный тип питания, содержащая хитин клеточная оболочка, а основным запасающим веществом является гликоген. В то же время для них, как для растений, характерен неограниченный рост, неспособность к передвижению и питание путем всасывания.

Сохранить в соцсетях:

1. Вспомните примеры многоядерных клеток.

Ответ. Многоядерная клетка, тип клетки, имеющей много ядер. Ядра образуются в том случае, когда в клетке неоднократно делится только ядро, а клетка в целом и ее оболочка остаются прежними. Из таких клеток состоят, например, волокна поперечно-полосатой мускулатуры; они образуют ткань, известную под названием синцитий (соклетие). Многоядерные клетки имеются также у некоторых водорослей и грибов.

2. Какую форму могут иметь бактерии?

Ответ. По особенностям морфологии выделяют следующие группы бактерий: кокки (более или менее сферические), бациллы (палочки или цилиндры с закругленными концами), спириллы (жесткие спирали) и спирохеты (тонкие и гибкие волосовидные формы). Некоторые авторы склонны объединять две последние группы в одну – спириллы.

Вопросы после §18

1. Какую форму имеет ДНК у бактерий?

Ответ. Единственная кольцевая молекула ДНК, находящаяся в клетках прокариот и условно называемая бактериальной хромосомой, находится в центре клетки, однако эта молекула ДНК не окружена мембраной и располагается непосредственно в цитоплазме в виде туго скрученных спиралей

2. Могут ли бактерии размножаться половым путём?

Ответ. Половое размножение у прокариот наблюдается гораздо реже, чем бесполое, однако оно очень важно, так как при обмене генетической информацией бактерии передают друг другу устойчивость к неблагоприятным воздействиям (например, к лекарствам). При половом процессе бактерии могут обмениваться как участками бактериальной хромосомы, так и особыми маленькими кольцевыми двуцепочечными молекулами ДНК – плазмидами. Обмен может происходить через цитоплазматический мостик между двумя бактериями или с помощью вирусов, усваивающих участки ДНК одной бактерии и переносящих их в другие бактериальные клетки, которые они заражают.

3. Когда у бактерий образуются споры и какова их функция?

Ответ. В неблагоприятных условиях (холод, жара, засуха и т. д.) многие бактерии способны образовывать споры. При спорообразовании вокруг бактериальной хромосомы образуется особая плотная оболочка, а остальное содержимое клетки отмирает. Спора может десятилетиями находиться в неактивном состоянии, а в благоприятных условиях из неё снова прорастает активная бактерия. Недавно немецкие исследователи сообщили, что им удалось «оживить» споры бактерий, которые образовались 180 млн лет назад при высыхании древних морей!

4. Что такое мезосомы и какие функции они выполняют?

Ответ. Клеточная мембрана прокариот образует многочисленные впячивания внутрь клетки – мезосомы. На них располагаются ферменты, обеспечивающие реакции обмена веществ в прокариотической клетке.

Рассмотрите таблицу 3. Выделите основные отличия прокариотических и эукариотических клеток.

Ответ. Эукариоты представляют собой надцарство живых организмов. В переводе с греческого языка «эукариот» обозначает «владеющий ядром» . Соответственно эти организмы в своем составе имеют ядро, в котором закодирована вся генетическая информация. К ним относятся грибы, растения и животные.

Прокариоты – это живые организмы, в клетках которых ядро отсутствует. Характерными представителями прокариот являются бактерии и цианобактерии.

Эукариоты и прокариоты сильно отличаются по размеру друг от друга. Так средний диаметр эукариотической клетки - до 40 мкм и более, а прокариотической – 0,3-5,0 мкм мм.

Прокариоты имеют кольцевую ДНК, которая располагается в нуклеоиде. Эта клеточная область отделена от остальной цитоплазмы при помощи мембраны. ДНК никак не связана с РНК и белками, отсутствуют хромосомы.

ДНК эукариотических клеток линейная, располагается в ядре, в котором имеются хромосомы.

Прокариоты размножаются в основном простым делением пополам, в то время как эукариоты делятся при помощи митоза, мейоза или сочетанием этих двух способов.

У эукариотических клеток имеются органеллы, характеризующиеся наличием собственного генетического аппарата: митохондрии и пластиды. Они окружены мембраной и имеют способность к размножению посредством деления.

В прокариотических клетках также встречаются органеллы, но в меньшем количестве и не ограниченные мембраной.

Жгутики эукариот имеют достаточно сложное строение. Некоторые прокариоты также имеют жгутики, они разнообразны и имеют простое строение.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Тема: «Сравнение клеток прокариот и эукариот». Разработала: Левша Т.Г. Учитель биологии МБОУ гимназия № 9 г. Воронеж Все живые организмы на Земле принято подразделять на доклеточные формы, которые не имеют типичного клеточного строения (это вирусы и бактериофаги), и клеточные, имеющие типичное клеточное строение. Эти организмы в свою очередь подразделяют на две категории: 1) доядерные или прокариоты, которые не имеют типичного ядра. К ним относят бактерии и сине-зеленые водоросли; 2) ядерные эукариоты, которые имеют типичное четко оформленное ядро. Это все остальные организмы. Растения, грибы, животные. Прокариоты возникли гораздо раньше эукариот (в архейскую эру). Это очень маленькие клетки размером от 0,1 до 10 мкм. Иногда встречаются гигантские клетки до 200 мкм. Каждая эукариотическая клетка имеет обособленное ядро, в котором заключен отграниченный от матрикса ядерной мембраной генетический материал (это главное отличие от прокариотических клеток). Генетический материал сосредоточен преимущественно в виде хромосом, имеющих сложное строение и состоящих из нитей ДНК и белковых молекул. Деление клеток происходит посредством митоза (а для половых клеток – мейоза). Среди эукариотов есть как одноклеточные, так и многоклеточные организмы.

2 слайд

Описание слайда:

Цель: Систематизировать и обобщить знания о строении клеток растений, животных, грибов, бактерий. Продолжить развитие умения сравнивать строение клеток прокариот и эукариот, объяснять причины их сходства и различия. Сформировать убежденность в том, что разные организмы гомологичны по происхождению и строению. Существует несколько теорий происхождения эукариотических клеток, одна из них – эндосимбионтическая. В гетеротрофную анаэробную клетку проникла аэробная клетка типа бактериоподобной, которая послужила базой для появления митохондрий. В эти клетки начали проникать спирохетоподобные клетки, которые дали начало формированию центриолей. Наследственный материал отгородился от цитоплазмы, возникло ядро, появился митоз. В некоторые эукариотические клетки проникли клетки типа сине-зеленых водорослей, которые положили начало появлению хлоропластов. Так впоследствии возникло царство растений.

3 слайд

Описание слайда:

Строение бактериальной клетки Клеточная стенка Плазматическая мембрана нить ДНК Рибосома Мезосомы Жгутики Капсула Цитоплазма Включения Бактериальная клетка ограничена оболочкой. Внутренний слой оболочки представлен цитоплазматической мембраной, над которой находится клеточная стенка, над клеточной стенкой у многих бактерий - слизистая капсула. Строение и функции цитоплазматической мембраны эукариотической и прокариотической клеток не отличаются. Мембрана может образовывать складки, называемые мезосомами. Они могут иметь разную форму (мешковидные, трубчатые, пластинчатые и др.). На поверхности мезосом располагаются ферменты. Клеточная стенка толстая, плотная, жесткая, состоит из муреина и других органических веществ. Внутреннее пространство заполнено цитоплазмой. Генетический материал представлен кольцевыми молекулами ДНК. Эти ДНК можно условно разделить на «хромосомные» и плазмидные. «Хромосомная» ДНК - одна, прикреплена к мембране, содержит несколько тысяч генов, в отличие от хромосомных ДНК эукариот она не линейная, не связана с белками. Зона, в которой расположена эта ДНК, называется нуклеоидом. Плазмиды - внехромосомные генетические элементы. Представляют собой небольшие кольцевые ДНК, не связаны с белками, не прикреплены к мембране, содержат небольшое число генов, принимающие участие в половом процессе (F-фактор). Плазмида, способная объединяться с хромосомой, называется эписомой. В бактериальной клетке отсутствуют все мембранные органоиды, характерные для эукариотической клетки (митохондрии, пластиды, ЭПС, аппарат Гольджи, лизосомы). В цитоплазме бактерий находятся рибосомы 70S-типа и включения. Функция рибосом: сборка полипептидной цепочки. У многих бактерий имеются жгутики и пили. Жгутики не ограничены мембраной, имеют волнистую форму и состоят из сферических субъединиц белка флагеллина. Эти субъединицы расположены по спирали и образуют полый цилиндр диаметром 10–20 нм. Жгутик прокариот по своей структуре напоминает одну из микротрубочек эукариотического жгутика. Пили - прямые нитевидные структуры на поверхности бактерий. Представляют собой короткие полые цилиндры из белка пилина. Пили служат для прикрепления бактерий к субстрату и друг к другу. Во время конъюгации образуются особые F-пили, по которым осуществляется передача генетического материала от одной бактериальной клетки к другой.

4 слайд

Описание слайда:

Строение растительной клетки Мембрана Цитоплазма Хлоропласты Клеточная стенка Ядро ЭПС Вакуоль Рибосомы Митохондрии Растительные клетки имеют особенности, которые характерны только для них – наличие пластид. Пластиды характерны только для растительных клеток. Различают три основных типа пластид: лейкопласты - бесцветные пластиды в клетках неокрашенных частей растений, хромопласты - окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты - зеленые пластиды. Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр - от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом. Группа тилакоидов, уложенных наподобие стопки монет, называется граной. В хлоропласте содержится в среднем 40–60 гран, расположенных в шахматном порядке. Граны связываются друг с другом уплощенными каналами - ламеллами. В мембраны тилакоидов встроены фотосинтетические пигменты (хлорофилл)и ферменты, обеспечивающие синтез АТФ. Внутреннее пространство заполнено стромой. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа. Пластиды имеют общее происхождение, между ними возможны взаимопревращения. Вакуоли - одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).

5 слайд

Описание слайда:

Строение животной клетки Ядро Ядрышко Гранулярная ЭПС Аппарат Гольджи Плазматическая мембрана Рибосомы Лизосомы Клеточный центр Митохондрии Цитоплазма В животной клетке имеются лизосомы - одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки. После отделения от аппарата Гольджи становятся - лизосомами. Они могут содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом. В клетках находится клеточный центр, который включает в себя две центриоли и центросферу. Центриоль представляет собой цилиндр, стенка которого образована девятью группами из трех слившихся микротрубочек (9 триплетов), соединенных между собой через определенные интервалы поперечными сшивками. Центриоли объединены в пары, где они расположены под прямым углом друг к другу. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками.

6 слайд

Описание слайда:

Строение грибной клетки Клеточная стенка Цитоплазма Ядро с ядрышком Включения Вакуоль У множества клеток грибов имеется клеточная стенка. У большинства основным полисахаридом является хитин, у оомицетов – целлюлоза. Также в состав клеточной стенки входят белки, липиды и полифосфаты. Внутри находится протопласт, окружённый цитоплазматической мембраной. Протопласт имеет строение типичное для эукариот. В цитоплазме клеток грибов различимы рибосомы, митохондрии, аппарат Гольджи, ЭПС. В цитоплазме часто присутствуют микротельца - округлые или овальные мембранные структуры. Возможно, они являются предшественниками лизосом или пероксисом – органелл, содержащих соответственно гидролитические ферменты или каталазу. В растущих участках гиф содержаться везикулы, происходящие от ЭПС. Они участвуют в транспорте веществ от аппарата Гольджи к месту синтеза клеточной стенки. В клетке гриба находится от 1 до 20-30 ядер. Их размер обычно около 2-3 мкм. Ядра грибов имеют типичное строение. Они окружены оболочкой из двух мембран. Есть запасающие вакуоли, содержащие волютин, липиды, гликоген, жирные кислоты и другие вещества. Ядер одно или несколько.

7 слайд

Описание слайда:

Геном грибов, как и у всех эукариот, состоит из ядерных и митохондриальных ДНК. Кроме того, к элементам, отвечающим за наследственность, относят плазмиды. По размеру и строению ядерного генома настоящие грибы занимают как бы промежуточное положение между прокариотами и остальными эукариотами. Грибные плазмиды могут находиться в ядре, митохондриях или в цитоплазме и представляют собой линейные или кольцевые молекулы ДНК. Между клеточной стенкой и цитоплазматической мембраной располагаются ломасомы – мембранные структуры, имеющие вид многочисленных пузырьков.

8 слайд

Описание слайда:

Признаки сравнения Прокариоты Эукариоты Клеточная стенка Ядро Ядрышко Хромосомы, их строение ДНК Плазмиды-внехромосомныедобавочные кольца ДНК Клеточная стенка – жёсткая оболочка клетки, расположенная снаружи от цитоплазматической мембраны и выполняющая структурные, защитные и транспортные функции. Обнаруживается у большинства бактерий, архей, грибов и растений. Клетки животных и многих простейших не имеют клеточной стенки. Плазматическая (клеточная) мембрана – поверхностная, периферическая структура, окружающая протоплазму растительных и животных клеток. Ядро – обязательная часть клетки у многих одноклеточных и всех многоклеточных организмов. Термин «ядро» (лат. nucleus) впервые применил Р. Броун в 1833 году, когда описывал шарообразные структуры, наблюдаемые им в клетках растений. Цитоплазма – внеядерная часть клетки, в которой содержатся органоиды. Ограничена от окружающей среды плазматической мембраной. Хромосомы – структурные элементы ядра клетки, содержащие ДНК, в которой заключена наследственная информация организма.

9 слайд

Описание слайда:

Признаки сравнения Прокариоты Эукариоты Клеточная стенка Содержитмуреин,цианобактерии– целлюлозу +муреин+пектиновые вещества. У растений – целлюлозу. У грибов – хитин. У животных – нет. Ядро Ядрышко Обособленного ядра нет. Отсутствует. Обособленноеядро, от цитоплазмы отделенное двойной мембраной.Есть. Хромосомы, их строение 1 кольцеваяхромосома. Хромосомылинейные. Определённое для каждого вида. ДНК ДвухцепочечнаяДНК не связанная с белками гистонами. ДвухцепочечнаяДНК связана с белками гистонами. Плазмиды-внехромосомныегенетические элементы Имеются в цитоплазме. У митохондрийи пластид.

10 слайд

Описание слайда:

Признаки сравнения Прокариоты Эукариоты Одномембранныеорганоиды Двухмембранныеорганоиды Рибосомы Клеточный центр Эндоплазматический ретикулум (ЭПС) – клеточный органоид; система канальцев, пузырьков и «цистерн», отграниченных мембранами. Расположена в цитоплазме клетки. Участвует в обменных процессах, обеспечивая транспорт веществ из окружающей среды в цитоплазму и между отдельными внутриклеточными структурами. Комплекс Гольджи (аппарат Гольджи) – органоид клетки, участвующий в формировании продуктов ее жизнедеятельности (различных секретов, коллагена, гликогена, липидов и др.), в синтезе гликопротеидов. Лизосомы – структуры в клетках животных и растительных организмов, содержащие ферменты, способные расщеплять (т. е лизировать - отсюда и название) белки, полисахариды, пептиды, нуклеиновые кислоты. Вакуоли – полости, заполненные жидкостью (клеточным соком), в цитоплазме растительных и животных клеток. Митохондрии – органеллы животных и растительных клеток. В митохондрии протекают окислительно-восстановительные реакции, обеспечивающие клетки энергией. Число митохондрий в одной клетке от единиц до нескольких тысяч. У прокариот отсутствуют (их функцию выполняет клеточная мембрана). Хлоропласты – внутриклеточные органоиды растительной клетки, в которых осуществляется фотосинтез; окрашены в зеленый цвет (в них присутствует хлорофилл). Рибосомы – внутриклеточные частицы, состоящие из рибосомной РНК и белков. Присутствуют в клетках всех живых организмов.

11 слайд

Описание слайда:

Признаки сравнения Прокариоты Эукариоты Одномембранныеорганоиды Отсутствуют. Их функцию выполняют выросты клеточной мембраны. ЭПС, аппаратГольджи, вакуоли, лизосомыи т.д. Двухмембранныеорганоиды Отсутствуют. Митохондрии, пластиды. Рибосомы Мельче,чем у эукариот – 70S. В цитоплазме свободно. Крупные, 80S. В цитоплазмесвободно или связаныс ЭПС. В пластидах и митохондриях - 70S. Клеточный центр Отсутствуют. Имеются у животных, грибов, у водорослейи мхов.

12 слайд

Описание слайда:

Признаки сравнения Прокариоты Эукариоты Мезосома Организация генома Способы деления клетки Аэробное клеточное дыхание Фотосинтез Мембрана в клетках прокариот может образовывать складки, которые называются мезосомами. Они могут иметь разную форму (мешковидные, трубчатые, пластинчатые). На поверхности мезосом располагаются ферменты. Реснички – тонкие нитевидные и щетинковидные выросты клеток, способные совершать движения. Характерны для инфузорий, ресничных червей, у позвоночных и человека - для эпителиальных клеток дыхательных путей, яйцеводов, матки. Жгутики – нитевидные подвижные цитоплазматические выросты клетки, свойственные многим бактериям, всем жгутиковым, зооспорам и сперматозоидам животных и растений. Служат для передвижения в жидкой среде. Микротрубочки – белковые внутриклеточные структур, входящие в состав цитоскелета. Представляют собой полые внутри цилиндры диаметром 25 нм. В клетках микротрубочки играют роль структурных компонентов и участвуют во многих клеточных процессах, включая митоз, цитокенез и везикулярный транспорт.

13 слайд

Выберите рубрику Биология Тесты по биологии Биология. Вопрос — ответ. Для подготовки к ЕНТ Учебно-методическое пособие по биологии 2008 г Учебная литература по биологии Биология-репетитор Биология. Справочные материалы Анатомия, физиология и гигиена человека Ботаника Зоология Общая биология Вымершие животные Казахстана Жизненные ресурсы человечества Действительные причины голода и нищеты на Земле и возможности их устранения Пищевые ресурсы Ресурсы энергии Книга для чтения по ботанике Книга для чтения по зоологии Птицы Казахстана. Том I География Тесты по географии Вопросы и ответы по географии Казахстана Тестовые задания, ответы по географии для поступающих в ВУЗы Тесты по географии Казахстана 2005 Информация История Казахстана Тесты по Истории Казахстана 3700 тестов по истории Казахстана Вопросы и ответы по истории Казахстана Тесты по истории Казахстана 2004 Тесты по истории Казахстана 2005 Тесты по истории Казахстана 2006 Тесты по истории Казахстана 2007 Учебники по истории Казахстана Вопросы историографии Казахстана Вопросы социально-экономического развития Советского Казахстана Ислам на территории Казахстана. Историография советского Казахстана (очерк) История Казахстана. Учебник для студентов и школьников. ВЕЛИКИЙ ШЕЛКОВЫЙ ПУТЬ НА ТЕРРИТОРИИ КАЗАХСТАНА И ДУХОВНАЯ КУЛЬТУРА В VI-XII вв. Древние государства на территории Казахстана: Уйсуны, Канглы, Хунну Казахстан в древности Казахстан в эпоху средневековья (XIII — 1 пол. XV вв.) Казахстан в составе Золотой Орды Казахстан в эпоху монгольского владычества Племенные союзы Саков и Сарматов Раннесредневековый Казахстан (VI-XII вв.) Средневековые государства на территории Казахстана в XIV-XV вв ХОЗЯЙСТВО И ГОРОДСКАЯ КУЛЬТУРА РАННЕСРЕДНЕВЕКОВОГО КАЗАХСТАНА (VI-XII вв.) Экономика и культура средневековых государств Казахстана XIII-XV вв. КНИГА ДЛЯ ЧТЕНИЯ ПО ИСТОРИИ ДРЕВНЕГО МИРА Религиозные верования. Распространение ислама Хунну: археология, происхождение культуры, этническая история Хуннский некрополь Шомбуузийн Бэльчээр в горах монгольского Алтая Школьный курс истории Казахстана Августовский переворот 19-21 августа 1991 года ИНДУСТРИАЛИЗАЦИЯ Казахско-китайские отношения в XIX веке Казахстан в годы застоя (60-80-е годы) КАЗАХСТАН В ГОДЫ ИНОСТРАННОЙ ИНТЕРВЕНЦИИ И ГРАЖДАНСКОЙ ВОЙНЫ (1918-1920 ГГ.) Казахстан в годы перестройки Казахстан в новое время КАЗАХСТАН В ПЕРИОД ГРАЖДАНСКОГО ПРОТИВОСТОЯНИЯ НАЦИОНАЛЬНО-ОСВОБОДИТЕЛЬНОЕ ДВИЖЕНИЕ 1916 ГОДА КАЗАХСТАН В ПЕРИОД ФЕВРАЛЬСКОЙ РЕВОЛЮЦИИ И ОКТЯБРЬСКОГО ПЕРЕВОРОТА 1917 г. КАЗАХСТАН В СОСТАВЕ СССР Казахстан во второй половине 40-х — середине 60-х годов. Общественно-политическая жизнь КАЗАХСТАНЦЫ В ВЕЛИКОЙ ОТЕЧЕСТВЕННОЙ ВОЙНЕ Каменный век Палеолит (древнекаменный век) 2,5 млн.-12 тыс. до н.э. КОЛЛЕКТИВИЗАЦИЯ МЕЖДУНАРОДНОЕ ПОЛОЖЕНИЕ НЕЗАВИСИМОГО КАЗАХСТАНА Национально-освободительные восстания Казахского народа в ХVIII-ХIХ вв. НЕЗАВИСИМЫЙ КАЗАХСТАН ОБЩЕСТВЕННО-ПОЛИТИЧЕСКАЯ ЖИЗНЬ В 30-е ГОДЫ. НАРАЩИВАНИЕ ЭКОНОМИЧЕСКОЙ МОЩИ КАЗАХСТАНА. Общественно-политическое развитие независимого Казахстана Племенные союзы и ранние государства на территории Казахстана Провозглашение суверенитета Казахстана Регионы Казахстана в раннем железном веке Реформы управления Казахстаном СОЦИАЛЬНО-ЭКОНОМИЧЕСКОЕ РАЗВИТИЕ В ХIХ-НАЧАЛЕ XX ВЕКА Средние века ГОСУДАРСТВА В ПЕРИОД РАСЦВЕТА СРЕДНЕВЕКОВЬЯ (Х-ХIII вв.) Казахстан в XIII-первой половине XV веков Раннесредневековые государства (VI-IX вв.) Укрепление Казахского ханства в XVI-XVII веках ЭКОНОМИЧЕСКОЕ РАЗВИТИЕ: УСТАНОВЛЕНИЕ РЫНОЧНЫХ ОТНОШЕНИЙ История России ИСТОРИЯ ОТЕЧЕСТВА XX ВЕК 1917 ГОД НОВАЯ ЭКОНОМИЧЕСКАЯ ПОЛИТИКА ОТТЕПЕЛЬ ПЕРВАЯ РУССКАЯ РЕВОЛЮЦИЯ (1905-1907) ПЕРЕСТРОЙКА ПОБЕДИВШАЯ ДЕРЖАВА (1945-1953) РОССИЙСКАЯ ИМПЕРИЯ В МИРОВОЙ ПОЛИТИКЕ. ПЕРВАЯ МИРОВАЯ ВОЙНА РОССИЯ В НАЧАЛЕ XX ВЕКА Политические партии и общественные движения в начале XX века. РОССИЯ МЕЖДУ РЕВОЛЮЦИЕЙ И ВОЙНОЙ (1907-1914) СОЗДАНИЕ В СССР ТОТАЛИТАРНОГО ГОСУДАРСТВА (1928-1939) Обществознание Различные материалы по учебе Русский язык Тесты по русскому языку Вопросы и ответы по русскому языку Учебники по русскому языку Правила русского языка