Open
Close

После 1 го деления мейоза происходит. Профаза первого деления мейоза

Определение понятия

Мейоз - это двойное деление половых клеток, происходящее с уменьшением набора хромосом с двойного диплоидного до одинарного гаплоидного, при котором хромосомы правильно распределяются на четыре дочерние клетки. © 2015-2017 Сазонов В.Ф., © 2015-2016 kineziolog.bodhy.ru, © 2016-2017 сайт .

Результат мейоза - гаметы, т.е. половые клетки с одинарным гаплоидным набором хромосом вместо двойного диплоидного.

Для того чтобы получить одинарный набор хромосом вместо двойного, в мейозе проходит два деления подряд. Причём главная задача - получение одинарного хромосомного набора вместо двойного - решается уже в первом делении. Поэтому первое деление мейоза так и называется - редукционное , т.е. сокращающее. Второе деление мейоза решает второстепенную задачу - разделяет каждую хромосому на 2 сестринские хроматиды и равномерно распределяет эти хроматиды на 2 клетки.

Запоминалка для стадий профазы I мейоза:

"Лето знойное пышет двойной духотой".

Лептотена, зиготена, пахитена, диплотена, диакинез.

1. Лептотена (тонкие нити). Хромосомы слабо конденсированы, поэтому они тонкие и плохо заметны. Они уже удвоенные после прошедшего в интерфазе синтетического периода, и каждая хромосома состоит из двух сестринских хроматид. Но эти сестринские хроматиды настолько сближены, что хромосомы имеют вид одиночных тонких нитей. Теломеры хромосом всё ещё прикреплены к ядерной мембране.

2. Зиготена (попарно слипшиеся нити). Начинается самое главное событие для всего мейоза - гомологичные хромосомы объединяются в пары. Это важнейший шаг для перехода от диплоидного (двойного) набора хромосом к гаплоидному (одинарному). Например, у человека после слипания гомологичных хромосом вместо 46 отдельных хромосомных образований теперь можно будет насчитать всего 23, что соответствует не диплоидному, а гаплоидному набору, хотя хромосом по-прежнему 46 и их комплект в клетке по-прежнему диплоидный. Обратите внимание на то, что этот процесс объединения гомологичных хромосом отсутствует в митозе. Итак, происходит конъюгация (слипание) гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют "бивалент " ("би-" означает "двойной"), или "тетрада " ("тетра" означает "четыре"). Каждый двойной хромосомный бивалент состоит из четырёх хроматид, поэтому одновременно он является хроматидной тетрадой. Начинается распад ядерной оболочки на фрагменты, центриоли расходятся к разным полюсам клетки, образуется веретено деления, исчезают ядрышки. Продолжается конденсация (уплотнение) двухроматидных хромосом, находящихся уже в виде бивалентов. Кстати, именно на стадии зиготены созревающие мужские половые клетки перемещаются сквозь слой гемато-тестикулярного барьера, созданный сплошными отростками поддерживающих клеток (сустентоцитов), и становятся забарьерными структурами. Они попадают во внутренний отдел семенных канальцев, отделённый от остальных тканей организма и защищённый от действия иммунной системы, что позволяет им вырабатывать белки, являющиеся антигенами для собственного организма.

3. Пахитена (толстые пухлые нити). Процесс спирализации хромосом продолжается, причем в гомологичных хромосомах он происходит синхронно. Становится хорошо заметно, что хромосомы двухроматидные. Важнейшим событием пахитены является кроссинговер – обмен участками между несестринскими хроматидами гомологичных хромосом. Кроссинговер приводит к первой во время мейоза рекомбинации генов.

4. Диплотена (двойные нити). Хромосомы в бивалентах перекручиваются и начинают отталкиваться друг от друга. Процесс отталкивания начинается в области центромеры и распространяется по всей длине бивалентов. Однако они все еще остаются связанными друг с другом в некоторых точках. Их называют хиазмы. Эти точки появляются в местах кроссинговера.

5. Диакинез (раздвижение). Хромосомы максимально укорачиваются и утолщаются за счет спирализации хроматид, ядерная оболочка почти полностью разрушена. Происходит сползание хиазм к концам хроматид.

Видео: Мейоз

Видео: Мейоз

Рис. 1: Сперматогенез

Рис. 2.

Рис. Овогенез (оогенез).

Рис. Сопоставление мужского и женского вариантов гаметогенеза. Источник изображения:

Мейозом (редукционным делением) называют такое непрямое деление клеток, при котором дочерние клетки получают гаплоидный (одинарный) набор хромосом.

Процесс уменьшения диплоидного (двойного) набора хромосом до одинарного (гаплоидного) называется редукцией числа хромосом, поэтому процесс непрямого деления клеток, сопровождающийся появлением гаплоидного набора хромосом у дочерних клеток, называется редукционным.

Мейоз состоит из двух последовательно протекающих мейотических делений, между которыми интерфаза практически отсутствует.

Первое мейотическое деление, как и при митозе, начинается с профазы (следует помнить, что исходные (родительские) клетки имеют диплоидный набор хромосом, но тетраплоидное количество ядерного вещества). Профаза длится от нескольких часов до нескольких недель. За это время двухроматидные хромосомы (каждая) спирализуются и выявляются в своей структуре. Гомологичные (парные) хромосомы сближаются и конъюгируют (переплетаются). При конъюгации двух гомологичных хромосом образуется единая структура, состоящая из четырех хроматид, называемая бивалентом.

Конъюгация гомологичных хромосом приводит к тому, что возникающие биваленты способствуют обновлению ядерного вещества у хромосом за счет кроссинговера.

Кроссинговер - обмен ядерным веществом у конъюгировавших гомологичных хромосом.

В ряде случаев кроссинговера при конъюгации не происходит и вновь возникшие хромосомы после конъюгации остаются неизменными. Кроссинговер имеет большое значение в передаче признаков родителей потомкам, так как в результате его протекания происходит перекомбинация генов, что может способствовать либо гибели организмов, либо лучшей их выживаемости в условиях среды обитания.

В остальном профаза-I не отличается от таковой для обычного митоза, и ее результат тот же. После профазы-I клетка вступает в метафазу-I.

Метафаза-I аналогична таковой для метафазы обычного митоза, но имеет и свои особенности. В ней каждая бивалента прикрепляется к тянущим нитям веретена, разделяется на хромосомы и набор к концу метафазы остается диплоидным (в митозе он становился тетраплоидным). После завершения метафазы-I клетка вступает в анафазу-I.

Анафаза-I протекает аналогично анафазе в митозе, при этом к полюсам клетки, случайно распределяясь, расходятся гомологичные хромосомы. В конце анафазы-I около полюсов клетки возникает гаплоидный набор хромосом (с диплоидным количеством ядерного вещества, так как каждая хромосома содержит две хроматидные нити). По числу хромосом это деление будет редукционным, так как число хромосом по сравнению с родительской клеткой уменьшилось вдвое, т. е. произошла редукция числа хромосом, но не ядерного вещества. Наличие в клетке двойного количества ядерного вещества является побудительной причиной для второго мейотического деления.

Телофаза-I следует за анафазой-I и существенно не отличается от телофазы митоза, но имеет свои специфические особенности. После возникновения первичной мембраны между клетками происходит восстановление клеточного центра, перетяжка отделяет одну клетку от другой. Но в отличие от митоза, деспирализации хромосом не происходит, ядра не образуется. Длительность телофазы-I невелика. Интерфаза между первым и вторым делением отсутствует. Сразу после телофазы-I клетка вступает во второе мейотическое деление (в него вступают одновременно обе клетки, возникшие в результате первого деления).

Второе мейотическое деление начинается с профазы-II. Профаза-II сильно отличается от профазы-I, так как у родительских клеток нет ядра, хромосомы четко выражены и спирализированы. Процессы этой фазы сводятся к тому, что центриоли клеточного центра расходятся к разным полюсам клеток и возникает веретено деления. Хромосомы концентрируются на экваторе клеток, и далее наступает метафаза-II.

Метафаза-II напоминает метафазу-I, т. е. хромосомы прикрепляются к тянущим нитям веретена, между хроматидными нитями возникает пространство, центриоли делятся и в клетках возникает диплоидный набор хромосом (а был гаплоидный). Далее клетки вступают в анафазу-II.

Анафаза-II протекает так же, как и при митозе. В результате анафазы-II около каждого полюса двух родительских клеток возникает гаплоидное число хромосом и гаплоидное количество ядерного вещества, далее клетки вступают в телофазу-II.

Телофаза-II протекает так же, как и при митозе.

В результате мейоза в целом возникает четыре дочерние клетки, обладающие гаплоидным набором хромосом (n) и гаплоидным количеством ядерного вещества (с). Эти клетки в зависимости от процесса могут быть все равноценные (например, сперматозоиды при сперматогенезе) либо различные (одна яйцеклетка и три сопутствующие клетки, которые затем редуцируются при овогенезе). При мейозе образуются и споры растений (при спорогенезе).

Биологическая роль мейоза состоит в том, что он создает предпосылки для реализации полового процесса. В конечном счете мейоз непосредственно (гаметогенез у животных) или опосредованно (спорогенез у растений) создает предпосылки к осуществлению полового процесса (слияния гамет), который приводит к обновлению наследственного (ядерного) вещества у потомства, что позволяет последнему легче приспособиться к условиям существования в среде обитания.

Общая характеристика гаметогенеза

Гаметогенез - процесс образования половых клеток (гамет). Гаметами называют половые клетки, с помощью которых реализуется половой процесс. По характеру гамет различают два типа половых клеток: мужские половые клетки (сперматозоиды или спермии) и женские половые клетки (яйцеклетки).

Сперматозоиды являются мужскими половыми клетками, имеющими органоиды - жгутики (как правило, один). Спермии жгутиков не имеют и состоят только из головки. Сперматозоид образован жгутиком и головкой, которая состоит из ядра и слоя цитоплазмы. Главная биологическая функция сперматозоида и спермия - достичь яйцеклетки и слиться с ней. Поэтому мужские гаметы имеют короткий срок жизни и небольшой запас питательных веществ. Спермии характерны для растений и приспособлены к пассивному перемещению в процессе оплодотворения.

Женские половые гаметы являются яйцеклетками. Это крупные неподвижные клетки, богатые запасом питательных веществ. Их главная биологическая функция - обеспечить развитие зародыша после слияния с мужской гаметой. Аналогично протекает и спорогенез у растений.

По характеру формирования гамет различают сперматогенез и овогенез (оогенез).

Общая характеристика сперматогенеза

Сперматогенез - процесс формирования мужских половых клеток (мужских гамет, сперматозоидов).

У животных сперматогенез осуществляется в мужских половых железах - семенниках (яичках). Мужская половая железа имеет три зоны: I - зона размножения клеток; II - зона роста клеток; III - зона созревания клеток.

В зоне размножения клетки митотически делятся и в конечном итоге образуют сперматогонии. Сперматогонии переходят в зону роста, растут до определенного размера и переходят в зону созревания.

В зоне созревания сперматогонии превращаются в сперматоциты 1-го порядка, которые способны к мейозу, что делает возможным образование (в будущем) мужских гамет. При образовании сперматозоидов, сперматоциты 1-го порядка подвергаются собственно сперматогенезу, т. е. вступают в мейотическое деление. Они имеют диплоидный набор хромосом и тетраплоидное количество ядерного вещества. В результате первого мейотического деления из сперматоцитов 1-го порядка образуются сперматоциты 2-го порядка. Они имеют гаплоидный набор хромосом, но диплоидное количество ядерного вещества.

Сперматоциты 2-го порядка вступают во второе мейотическое деление и из них образуются по два сперматозоида (из двух сперматоцитов 1-го порядка образуется четыре сперматозоида). На этом сперматогенез завершается.

Итак, при сперматогенезе из одной исходной клетки (сперматоцита 1-го порядка) образуется четыре равноценных гаметы - сперматозоида, обладающих гаплоидным набором хромосом и гаплоидным количеством ядерного вещества.

Общая характеристика овогенеза (оогенеза)

Овогенез (оогенез) - образование женских гамет (яйцеклеток).

Яйцеклетка - женская половая клетка, обладающая достаточно крупными размерами, содержащая большое количество питательных веществ, не способная к передвижению.

Овогенез реализуется в женских половых железах - в яичниках. В результате овогенеза из одной исходной клетки образуется одна женская гамета, обладающая гаплоидным набором хромосом и гаплоидным количеством ядерного вещества.

Основными клетками яичников, участвующими в овогенезе, являются оогонии - клетки с диплоидным набором хромосом, которые в дальнейшем способны образовывать ооциты. Из оогониев образуются ооциты 1-го порядка. Эти ооциты имеют диплоидный набор хромосом и тетраплоидное количество ядерного вещества и способны к мейозу. Ооциты 1-го порядка представляют собой особое состояние клеток и отличаются от оогониев, так как последние способны к митозу, а первые - к мейозу.

Ооциты 1-го порядка вступают в первое мейотическое деление, в результате которого образуются две неравноценные клетки - ооцит 2-го порядка (крупная клетка с гаплоидным набором хромосом, но диплоидным количеством ядерного вещества; в этой клетке сосредоточена практически вся масса исходной клетки - ооцита 1-го порядка) и вторая клетка - первое полярное тельце (подобна ооциту 2-го порядка, за исключением массы тела, которая очень мала по сравнению с массой ооцита 2-го порядка).

Следовательно, при овогенезе из одной исходной клетки образуется только одна яйцеклетка.

Особенности сперматогенеза и овогенеза у растений

У растений при гаметогенезе мейотического деления не происходит, так как гаметы образуются в организмах полового поколения (в гаметофитах), клетки которого являются гаплоидными из-за того, что гаметофит развивается из спор. Споры образуются при спорогенезе, при котором осуществляется мейоз, поэтому споры обладают гаплоидным набором хромосом и гаплоидным количеством ядерного вещества. Схема спорогенеза в целом напоминает сперматогенез, отличаясь от такового лишь тем, что в результате спорогенеза образуются гаплоидные споры, а при сперматогенезе - гаплоидные сперматозоиды.

Сперматогенез у растений происходит в антеридиях и не сопровождается мейозом. Овогенез у высших растений происходит в архегониях (кроме покрытосеменных растений). Более подробно этот вопрос будет рассмотрен в подразделе, посвященном развитию растений.

Вслед за телофазой I деления следует короткая интерфаза, в которой не происходит синтеза ДНК, и клетки приступают к следующему делению, которое по морфологии последовательности не отличается от митотического деления: парные сестринские хроматиды, связанные в центромерных участках, проходят профазу и метафазу; в анафазе они разъединяются и расходятся по одной в дочерние клетки. Таким образом, при II мейотическом делении клетка с 2с количеством ДНК и 2n числом хроматид, делясь, дает начало двум клеткам с гаплоидным содержанием ДНК и хромосом.

  • Метафаза 1

    В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. Содержание генетического материала не изменяется (2п2хр).

  • Анафаза 1

    В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна — число хромосом уменьшается вдвое (происходит редукция). Содержание генетического материала становится 1n2хр у каждого полюса.

  • Телофаза 1 и цитокинез

    В телофазе происходит формирование ядер и разделение цитоплазмы — образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома — две хроматиды (1n2хр).

    Деление ядра и цитоплазмы связаны. Важную роль при этом играет митотическое веретено. В животных клетках уже в анафазе в плоскости экватора веретена появляется борозда деления. Она закладывается под прямым углом к длинной оси митотического веретена. Образование борозды обусловлено активностью сократимого кольца, которое располагается под мембраной клетки. Оно состоит из тончайших нитей - актиновых филаментов. Сократимое кольцо обладает силой, достаточной для того, чтобы согнуть тонкую стеклянную иглу, введенную в клетку. По мере углубления борозды толщина сократимого кольца не увеличивается, так как часть филаментов теряется при уменьшении его радиуса. После завершения цитокинеза сократимое кольцо полностью распадается, плазматическая мембрана в области борозды деления стягивается. Некоторое время в зоне контакта вновь образованных клеток сохраняется тельце из остатков тесно упакованных микротрубочек.

    В растительных клетках, имеющих жесткую клеточную оболочку, цитоплазма разделяется путем образования новой стенки на границе между дочерними клетками. В растительных клетках нет сократимого кольца. В плоскости экватора клетки формируется фрагмопласт, постепенно расширяющийся от центра клетки к ее периферии, пока растущая клеточная пластинка не достгнет плазматической мембраны материнской клетки. Мембраны сливаются, полностью разделяя образовавшиеся клетки.

    После цитокинеза наступает Интерфаза 2— короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.

  • Второе деление мейоза

    В ходе второго деления мейоза уменьшения числа хромосом не происходит. Сущность эквационного деления заключается в образовании четырех гаплоидных клеток с однохроматидными хромосомами (в состав каждой хромосомы входит одна хроматида).

  • Образование гамет

    Гаметогенез — процесс созревания половых клеток. В ходе гаметогенеза различают образование мужских (сперматозоиды или спермии) и женских (яйцеклеток) половых клеток.

    Гаметогенез закономерно присутствует в жизненном цикле ряда простейших, водорослей, грибов, споровых и голосеменных растений, а также многоклеточных животных.

    В группах, для которых характерен зиготический (например, грибы) или спорический мейоз (например, сосудистые растения) он предшествует гаметогенезу и, как правило, отделён от него значительным временным промежутком, поскольку формирование гамет происходит на гаплоидных особях.

    В группах, для которых характерен жизненный цикл с гаметической редукцией (например, многоклеточные животные) мейоз сопряжён с гаметогенезом, однако и здесь нельзя говорить о полной идентичности этих процессов. Так, зрелый сперматозоид, готовый к оплодотворению, формируется лишь по завершении мейоза, в то время как ооцит созревает до его завершения, более того, половой процесс происходит ещё до завершения мейоза в ооците

  • Мейоз - это способ разделения эукариотических клеток, в результате которого из одной материнской образуются 4 дочерние клетки с вдвое меньшим набором хромосом. Этот тип разделения включает 2 последовательных деления, каждый из которых состоит из 4 фаз: профазы, метафазы, анафазы и телофазы. Набор хромосом перед разделением в материнских клетках диплоидный, а в дочерних клетках - гаплоидный. Состояние наследственной информации после разделения видоизмененный благодаря процессам конъюгации и кроссинговера. Мейоз впервые описал немецкий биолог А. Гертриг в 1876 году на примере яиц морских ежей. Однако важность мейоза в наследственности была описана только в 1890 году немецким биологом А. Вайсманом.

    Этапы и фазы мейоза

    I этап - редукционное деление, или Мейоз I:

    Профаза И - фаза спирализации (конденсации ) двохроматидних хромосом. Она является самой длительной по времени в мейозе, при ней происходит ряд процессов.

    спирализация двохроматидних хромосом. Хромосомы укорачиваются и уплотняются и приобретают вид палочковидных структур. После этого гомологичные хромосомы сближаются и конъюгируют (тесно прилегают друг к другу по всей длине, обвиваются, перекрещиваются).

    Так образуются комплексы с 4 хроматид, соединенных между собой в определенных местах, так называемые тетради, или биваленты.

    Конъюгация (сближение и слияние участков гомологичных хромосом) и кроссинговер (обмен определенными участками между гомологичными хромосомами). В результате кроссинговера образуются новые комбинации наследственного материала. Таким образом, кроссинговер является одним из источников наследственной изменчивости. Через некоторое время гомологичные хромосомы начинают отходить друг от друга. При этом становится заметным, что каждая из них состоит из двух хроматид.

    Различие центриолей к полюсам.

    Исчезновение ядрышек.

    Распад ядерной оболочки на фрагменты.

    Формирование веретена деления.

    Метафаза И - фаза расположения тетрадь на экваторе:

    Короткие нити прикрепляются к центромер только с одной стороны и хромосомы располагаются двумя линиями;

    На экваторе клетки располагаются тетради.

    Анафаза И - фаза различия двохроматидних гомологичных хромосом.

    Каждая тетрада разделяется на двохроматидни хромосомы;

    Нити веретена деления сокращаются и растягивают двохроматидни хромосомы к полюсам. В конце анафазы у каждого из полюсов клетки оказывается гаплоидный (половинный) набор хромосом. Расхождения хромосом каждой пары является событием случайным, что является еще одним источником наследственной изменчивости.

    Телофаза И - фаза деспирализации двохроматидних хромосом:

    Образование двух клеток с гаплоидным набором двохроматидних хромосом;

    В клетках животных и некоторых растений хромосомы деспирализуються и делится цитоплазма материнской клетки, но в клетках большинства видов растений цитоплазма не делится.

    Результатом мейоза и является образование из одной материнской клетки двух дочерних клеток с гаплоидным набором двохроматидних хромосом.

    Интерфаза между делениями мейоза короткая или отсутствует, поскольку синтез ДНК не происходит.

    II этап - митотический или Мейоз II

    Профаза II - фаза спирализации двохроматидних хромосом.

    Метафаза II - фаза расположения двохроматидних хромосом на экваторе.

    ■ короткие нити прикрепляются к центромер;

    ■ на экваторе клетки в один ряд располагаются двохроматидни хромосомы.

    Анафаза II - фаза различия однохроматидних хромосом к полюсам клеток:

    ■ каждая хромосома разделяется на хроматиды;

    ■ нити веретена деления сокращаются и растягивают хроматиды к полюсам.

    Телофаза II - фаза деспирализации однохроматидних хромосом:

    ■ образования двух клеток с гаплоидным набором однохроматидних хромосом.

    Итак, общим результатом мейоза является образование из одной материнской клетки 4 дочерних клеток с гаплоидным набором однохроматидних хромосом.

    Биологическое значение мейоза: 1) обеспечивает видоизменение наследственного материала; 2) поддерживает постоянство кариотипа при половом размножении; 3) лежит в основе полового размножения.

    Сравнительная характеристика митоза и мейоза

    признаки

    митоз

    мейоз

    количество делений

    Количество образованных клеток 3 одной

    Набор хромосом перед делением в клетках

    диплоидный

    диплоидный

    Набор хромосом в дочерних клетках

    Диплоидный (2п1с)

    Гаплоидный (1п1с)

    Состояние наследственной информации в клетках

    неизмененный

    видоизмененный

    Различия процессов в профазе митоза и профазе 1 мейоза

    Отсутствие конъюгации и кроссинговера

    Наличие конъюгации и кроссинговера

    Различия процессов в метафазе митоза и метафазе 1 мейоза

    На экваторе хромосомы располагаются в один ряд

    На экваторе хромосомы располагаются в два ряда в виде тетрад

    Различия процессов в анафазе митоза и анафазе 1 мейоза

    Расходятся однохроматидни хромосомы

    Расходятся двохроматидни хромосомы

    Различия процессов в телофазе митоза и телофазе 1 мейоза

    Образуются две диплоидные клетки с однохроматиднимы хромосомами

    Образуются две гаплоидные клетки с двохроматиднимы хромосомами

    Кроме митоза, клетки эукариот могут делиться и другими способами разделения. Это амитоз и Эндомитоз.

    Амитоз (прямой разделение ) - разделение, которое происходит без спирализации хромосом и без образования веретена деления. Осуществляется перешнуровуванням ядра, образованием перегородки и тому подобное. Основными признаками амитозу являются: а) ядро делится путем перетяжки на две или несколько равных или неравных частей; б) точного распределения ДНК и хромосом между двумя или несколькими частями ядра не бывает; в) ядрышко и ядерная мембрана не исчезают. Амитоз, как правило, наблюдается в обреченных на гибель клетках, в облученных клетках и тому подобное.

    Эндомитоз - разделение, которое сопровождается репродукцией хромосом без образования веретена деления при сохранении ядерной оболочки. Все фазы митотического деления происходят внутри ядра. Встречается Эндомитоз в клетках различных тканей, которые интенсивно функционируют, и результатом такого разделения может быть: а) многократное увеличение числа хромосом в клетке (например, в клетках печени, мышечных волокнах) б) увеличение плоидности клетки при сохранении в ней постоянного количества политенных (багатохроматидних) хромосом (например, в клетках амеб, инфузорий, эвглен, слюнных желез двукрылых насекомых, зародышевого мешка некоторых растений).

    БИОЛОГИЯ + Эдвард Страсбургер (1844-1912 ) - немецкий ботаник, основные научные труды которого относятся к цитологии, анатомии и эмбриологии растений. Ввел в науку понятие цитоплазма, гаплоидный набор хромосом, описал мейоз у высших растений, оплодотворение в папоротникообразных, голосеменных, обнаружил, что клетки и ядра растений образуются путем разделения, объяснил биологическое значение редукции числа хромосом и др. Его "Практикум по ботанике" на протяжении длительного времени был основным пособием по микроскопии растений.

    Энергия не создается и не исчезает, а лишь переходит из одной формы в другую.

    Закон сохранения энергии

    При половом размножении дочерний организм возникает в результате слияния двух половых клеток (гамет ) и последующего развития из оплодотворенной яйцеклетки -зиготы. Половые клетки родителей обладают гаплоидным набором (n ) хромосом, а в зиготе при объединении двух таких наборов число хромосом становится диплоидным (2n ): каждая пара гомологичных хромосом содержит одну отцовскую и одну материнскую хромосому .Гаплоидные клетки образуются из диплоидных в результате особого клеточного деления - мейоза.Мейоз - разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых желез образуются гаплоидные гаметы (1n). При оплодотворении ядра гаметы сливаются, и восстанавливается диплоидный набор хромосом. Таким образом, мейоз обеспечивает сохранение постоянного для каждого вида набора хромосом и количества ДНК.Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу. В результате мейоза I число хромосом уменьшается вдвое (редукционное деление): при мейозе II гаплоидность клеток сохраняется (эквационное деление). Клетки, вступающие в мейоз, содержат генетическую информацию 2n2хр.

    В профазе мейоза I происходит постепеннаяспирализация хроматина с образованием хромосом. Гомологичные хромосомы сближаются, образуя общую структуру, состоящую из двух хромосом (бивалент) и четырех хроматид (тетрада). Соприкосновение двух гомологичных хромосом по всей длине называется конъюгацией. Затем между гомологичными хромосомами появляются силы отталкивания, и хромосомы сначала разделяются в области центромер, оставаясь соединенными в области плеч, и образуют перекресты (хиазмы). Расхождение хроматид постепенно увеличивается, и перекресты смещаются к их концам. В процессе конъюгации между некоторыми хроматидами гомологичных хромосом может происходить обмен участками - кроссинговер, приводящий к перекомбинации генетического материала. К концу профазы растворяются ядерная оболочка и ядрышки, формируется ахроматиновое веретено деления. Содержание генетического материала остается прежним (2n2хр).

    В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. Содержание генетического материала не изменяется (2п2хр).

    В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна - число хромосом уменьшается вдвое (происходит редукция). Содержание генетического материала становится 1n2хр у каждого полюса.

    В телофазе происходит формирование ядер и разделение цитоплазмы - образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома - две хроматиды (1n2хр).

    Интеркинез - короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.

    В профазе мейоза II происходят тс же процессы, что и в профазе митоза. В метафазе хромосомы располагаются в экваториальной плоскости. Изменений содержания генетического материала не происходит (1n2хр).

    В анафазе мейоза II хроматиды каждой хромосомы отходят к противоположным полюсам клетки, и содержание генетического метериала у каждого полюса становится lnlxp.

    В телофазе образуются 4 гаплоидные клетки (lnlxp).

    Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II - случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости.Отличие мейоза 1 от мейоза 2:

    1. Первому делению предшествует интерфаза с редупликацией хромосом, при втором делении редупликации генетического материала нет, то есть отсутствует синтетическая стадия.

    2. Профаза первого деления длительная.

    3. В первом делении происходит конъюгация хромосом и
    кроссинговер.

    4. В первом делении к полюсам расходятся гомологичные хромосомы (биваленты, состоящие из пары хроматид), а во втором – хроматиды.

    Отличия мейоза от митоза:

    1. В митозе одно деление, а в мейозе – два (из-за этого получается 4 клетки).

    2. В профазе первого деления мейоза происходит конъюгация (тесное сближение гомологичных хромосом) и кроссинговер (обмен участками гомологичных хромосом), это приводит к перекомбинации (рекомбинации) наследственной информации.

    3. В анафазе первого деления мейоза происходит независимое расхождение гомологичных хромосом (к полюсам клетки расходятся двухроматидные хромосомы). Это приводит к рекомбинации и редукции.

    4. В интерфазе между двумя делениями мейоза удвоения хромосом не происходит, поскольку они и так двойные.

    5. После митоза получается две клетки, а после мейоза – четыре.

    6. После митоза получаются соматические клетки (клетки тела), а после мейоза – половые клетки (гаметы – сперматозоиды и яйцеклетки; у растений после мейоза получаются споры).

    7. После митоза получаются одинаковые клетки (копии), а после мейоза – разные (происходит рекомбинация наследственной информации).

    8. После митоза количество хромосом в дочерних клетках остается таким же, как было в материнской, а после мейоза уменьшается в 2 раза (происходит редукция числа хромосом; если бы её не было, то после каждого оплодотворения число хромосом возрастало бы в два раза; чередование редукции и оплодотворения обеспечивает постоянство числа хромосом).

    Биологическое значение мейоза :

    1) является основным этапом гаметогенеза;

    2) обеспечивает передачу генетической информации от организма к организму при половом размножении;

    3) дочерние клетки генетически не идентичны материнской и между собой.

    Атак же, биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются. Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Однако это противоречит правилу постоянства числа хромосом. Благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом.

    23. Размножение, как основное свойство живого. Бесполое и половое размножение. Формы бесполого и полового размножения. Определение, сущность, биологическое значение.

    Размножение - это свойство воспроизведения себе подобных, обеспечивающие непрерывность и преемственность жизни. Различают два способа размножения: бесполый и половой.

    Бесполое размножение различные формы размножения организмов, при которых новый организм возникает из соматических клеток одного родителя, потомки являются точной копией его.

    Формы бесполого размножения у одноклеточных .

    1. Деление надвое (митозом) - из одной материнской клетки образуются две дочерние клетки, имеющие одинаковую наследственную информацию с материнской клеткой (саркодовые).

    2. Множественное деление (шизогония) – ряд последовательных делений ядра с последующим делением цитоплазмы и образованием множества одноядерных клеток(споровики).

    3. Почкование – формирование дочерней клетки (почки) меньшего размера на материнской клетке. Дочерняя клетка может отпочковываться от материнской клетки(дрожжи).

    4. Спорообразование – формирование спор – одноклеточных образований, окруженных плотной оболочкой, служащих для распространения и переживания неблагоприятных условий(плесень мукор).

    5. Эндогония – внутреннее почкование, когда ядро делится на 2 части, каждая даёт дочернюю особь (токсоплазма).

    Формы бесполого размножения у многоклеточных.

    1. Вегетативное размножение – образование новой особи из части родительской, приводящее к появлению генетически однородных групп особей.

    а) у грибов происходит путем отделения специализированных или неспециализированных участков таллома; у растений - черенками, клубнями, листьями, луковицами, усами и др.

    б) у животных вегетативное размножение осуществляется:

    Путем обособления частей тела с последующим восстановлением до целого организма – фрагментация (ресничные и дождевые черви);

    Почкованием – образованием на материнском организме почки – выроста, из которого развивается новая особь (гидра).

    2. Спорообразование – один из этапов цикла воспроизведения с помощью спор у семенных растений, у высших споровых.

    Половое размножение – различные формы размножения организмов, при которых новый организм возникает из специализированных половых клеток или особей, выполняющих эти функции. При половом размножении необходимо, как правило, наличие двух родительских особей. Потомки, как правило, неидентичны.

    Формы полового размножения у одноклеточных.

    1. Копуляция – процесс слияния двух половых клеток или особей, не различающихся между собой (изогаметы) – у споровиков, жгутиковых.

    2. Конъюгация – половой процесс, заключающийся во временном соединении двух особей и обмене частями их ядерного аппарата, а так же небольшим количеством цитоплазмы (у бактерий, инфузорий).

    Формы полового размножения у многоклеточных.

    1. С оплодотворением .

    Оплодотворению предшествует осеменение – процессы, обуславливающие встречу гамет. Оно бывает наружное и внутреннее.Оплодотворение – (сингамия) – слияние мужской половой клетки (сперматозоид, спермий) с женской (яйцо, яйцеклетка), приводящее к образованию зиготы, которая дает начало новому организму. Когда в яйцеклетку проникает один спермий, то такое явление называют моноспермией , если несколько –полиспермией .

    2.Без оплодотворения.

    Партеногенез – форма полового размножения, при котором женские организмы развиваются из неоплодотворенной яйцеклетки. Различают естественный и искусственный партеногенез.Естественный партеногенез открыт Ш.Бонне, происходит в природе без вмешательства человека. Он в свою очередь подразделяется на:

    а)факультативный - любое яйцо может дробиться как без оплодотворения, так и после него.

    б)облигатный - развитие яйца возможно только без оплодотворения. Такой вид партеногенеза открыт в 1886г. А.А. Тихомировым. При этой форме партеногенеза развитие организма из неоплодотворенного яйца происходит после его механического или химического раздражения в лабораторных условиях.

    Андрогенез – форма размножения организмов, при которой в развитии зародыша участвуют одно или два ядра, привнесенные в яйцо сперматозоидами, а женское ядро - не участвует. (встречается у тутового шелкопряда)

    Гиногенез – форма размножения организмов, при которой сперматозоид стимулирует начало дробления яйцеклетки, но ядро его не сливается с ядром яйца и не участвует в последующем развитии зародыша. Иногда гиногенез рассматривают как одну из форм партеногенеза. Встречается гиногенез у покрытосеменных растений, некоторых видов рыб и земноводных, круглых червей.

    Биологическая роль полового размножения.

    При половом размножении наблюдается перекомбинация наследственных признаков родителей, поэтому появляются разнообразные генотипически и фенотипически потомки. Таким образом, половое размножение дает источник изменчивости, благодаря чему появляется возможность лучшего приспособления организмов к среде обитания, к сохранению различных видов организмов.