Open
Close

Глаз близорукость и дальнозоркость физика. Что интересного происходит в науке: Близорукость и физика

Глаз человека - это оптическая система. Лучи света, попадающие в глаз, преломляются на поверхности роговицы и хрусталика.

Хрусталик - это прозрачное тело, похожее на линзу. Особая мышца может менять форму хрусталика, делая его то более, то менее выпуклым.

Благодаря этому хрусталик то увеличивает, то уменьшает свою кривизну и вместе с ней фокусное расстояние. Оптическую систему глаза можно рассматривать как собирающую линзу с переменным фокусным расстоянием, проецирующую изображение на сетчатку.



Если предмет находится очень далеко, изображение получается на сетчатке глаза без напряжения мышцы хрусталика (то есть когда глаз смотрит вдаль, он находится в расслабленном состоянии). Когда же рассматривается предмет, находящийся вблизи, происходит сжатие хрусталика и уменьшение фокусного расстояния настолько, что плоскость получаемого изображения снова совмещается с сетчаткой.

У некоторых людей глаза в расслабленном состоянии создают изображение предмета не на сетчатке, а перед ней. В результате изображение предмет "расплывается". Такие люди не могут видеть четко удаленные предметы, но зато хорошо видят предметы, находящиеся вблизи.

Это наблюдается, если велика ширина глаза или хрусталик слишком выпуклый (имеет большую кривизну) В этом случае четкое изображение предмета формируется не на сетчатке, а перед ней. Этот недостаток (дефект) зрения называется близорукостью (иначе миопия).




Близоруким людям необходимы очки с рассеивающими линзами. Пройдя через такую линзу, лучи света фокусируются хрусталиком точно на сетчатку. Поэтому близорукий человек, вооруженный очками, может рассматривать удаленные предметы, как и человек с нормальным зрением.




Другие люди хорошо видят далекие предметы, но не могут различить те, что находятся вблизи. У них в расслабленном состоянии четкое изображение удаленных предметов получается за сетчаткой. В результате изображение предмет "расплывается". Это возможно, когда ширина глаза недостаточно большая или хрусталик глаза плоский, тогда человек видит удаленные предметы четко, а близкие плохо. Этот недостаток зрения называется дальнозоркостью.




Особой формой дальнозоркости является старческая дальнозоркость или пресбиопия. Она возникает потому, что с возрастом снижается эластичность хрусталика, и он уже не сокращается так хорошо, как у молодых людей. Дальнозорким людям можно помочь с помощью очков с собирающими линзами.



Очки, являясь простым оптическим прибором, приносят людям, имеющим дефекты зрения, огромное облегчение в повседневной жизни.

5465 16.04.2019 5 мин.

Наши глаза позволяют нам получать максимально полную информацию об окружающем мире, но когда появляется близорукость или дальнозоркость, то без средств коррекции зрения мы начинаем чувствовать себя дискомфортно и неуверенно.

Близорукость (миопия) и дальнозоркость (гиперметропия) – это самые часто встречаемые патологии зрения. О том, что представляют собой два этих нарушения, мы поговорим подробно далее.

Физиологические особенности зрения

Под зрением понимается психофизиологическая функция, которая дает человеку возможность воспринимать и различать движение, расположение и цвета предметов окружающего мира. Благодаря работе зрительной системы, позволяющей воспринимать световые раздражители и объекты, в совокупности с высшими отделами центральной нервной системы мы можем видеть.

О правильном уходе за линзами читайте

Глаз воспринимает изображение за счет того, что поток световых лучей двигается через его среды. В первую очередь он проходит через роговицу, затем через переднюю и заднюю камеру глаз, через хрусталик и стекловидное тело, и наконец, попадает на сетчатку.

Благодаря желтому пятну и центральной ямке сетчатки, которые располагаются напротив зрачка рядом с выходом зрительного нерва, происходит фокусировка изображения.

Изображение попадает на сетчатку в перевернутом уменьшенном виде. Чтобы четко видеть предмет, хрусталик меняет свою кривизну. Кривизна может меняться под действием ресничной мышцы, которая может либо напрягаться, либо расслабляться.

В норме лучи должны фокусироваться на сетчатке. Это называется эмметропией. Аметропия – это отклонение от нормы, когда фокус находится перед сетчаткой (близорукость) или за ней (дальнозоркость).

Близорукость

Близорукость или миопия – это патология зрения, характеризующаяся тем, что фокус изображения находится перед сетчаткой. Поэтому человек плохо видит вдаль, но четко видит вблизи. У близоруких людей может быть увеличен в длину глаз либо роговица может обладать большой силой преломления. В первом случае близорукость называется осевой, а во втором – рефракционной.

Острота зрения при миопии может быть меньше единицы, поэтому близоруким выписывают .

Как показывает практика, в большинстве случаев миопия встречается в возрасте от шести до двадцати лет. К этой возрастной группе относятся школьники и студенты.

Причины развития близорукости:

  • Наследственная предрасположенность. Если родители близоруки, то высока доля вероятности, что у их детей тоже будет миопия.
  • Близорукость – частая спутница тех людей, кто в силу своей работы вынужден работать с предметами на близком расстоянии. Кроме того, плохое освещение и неправильная посадка за рабочим местом тоже могут спровоцировать возникновение миопии.
  • Неправильно подобранная коррекция зрения или ее отсутствие. Это ведет к прогрессированию заболевания.
  1. Очки, контактные линзы.

Дальнозоркость

Дальнозоркость или гиперметропия – это патология зрения, характеризующаяся тем, что фокус изображения находится за сетчаткой. В данном случае длина глаза уменьшается, поэтому человек плохо видит близко расположенные предметы, но при этом хорошо видит вдаль. При дальнозоркости сила преломления довольно слабая, поэтому, чтобы фокус попал именно на сетчатку, перенапрягаются мышцы, изменяющие кривизну хрусталика.

Степени дальнозоркости описаны в .

При гиперметропии может наблюдаться и вдаль (в особенности при большой степени гиперметропии).

Кроме того при избыточном напряжении глаз могут возникать головные боли и жжение, часто могут развиваться различные воспалительные заболевания, например, и так далее. У детей может возникать амблиопия или косоглазие .

Как видит человек в очках и без

Для лечения дальнозоркости используются такие методы как:

  1. Очки, контактные линзы.
  2. Фоторефрактивная кератэктомия.
  3. Лазерная термокератопластика.
  4. Замена хрусталика.
  5. Имплантация линзы.

Методы определения дальнозоркости и близорукости

Обобщающие факторы (стадии заболевания)

Как дальнозоркость, так и близорукость могут иметь три стадии:

  1. Слабая;
  2. Средняя;
  3. Тяжелая.

Вне зависимости от того, имеет человек миопию или гиперметропию, ему необходимо дважды в год посещать врача-офтальмолога.

Регулярная проверка позволит отследить прогрессию заболевания и своевременно подбирать новые очки или контактные линзы. Это также позволит вовремя обнаружить опасные заболевания, например, которые являются частыми спутницами близорукости и дальнозоркости.

Дальнозоркость

Для определения дальнозоркости существуют следующие методы:

  • Проверка остроты зрения с помощью таблиц. Позволяет определить количество видимых пациентом строчек без коррекции.
  • Компьютерная диагностика зрения – авторефрактометрия. С помощью этого метода можно измерить оптическую силу глаз. Также авторефрактометрия позволяет диагностировать астигматизм.
  • Измерение оптической силы роговицы – .
  • Циклоплегия – расширение зрачков с помощью глазных капель. Капли блокируют работу цилиарной мышцы, что позволяет выявить скрытую дальнозоркость.

Таблица Орлова для проверки зрения находится .

  • Скиаскопия и авторефрактометрия на расширенном зрачке. Позволяет определить истинную степень гиперметропии. Скиаскопия обычно выполняется для детей, поскольку им бывает сложно сфокусировать взгляд.
  • Измерение длины глаза с помощью ультразвукового исследования. Длина глаза определяется для оценки степени гиперметропии. Метод нужен для проведения оперативных вмешательств по лечению этого заболевания.

Иногда используется такой дополнительный метод определения дальнозоркости как топография роговицы. У дальнозорких людей роговица обычно утолщена. Еще один метод, который применяется для людей после сорока лет, – это гониоскопия. Она позволяет определить состояние угла передней камеры глаза.

Если внимательно присмотреться к моему фото в блоге, то можно заметить, что у меня довольно сильная близорукость (в зависимости от глаза и от направления от −12 до −14). В целом это, конечно, неудобно, но у близоруких людей тем не менее есть некоторые оптические преимущества перед «обычными» людьми — мы можем видеть некоторые вещи, которые обычные люди не видят (или не замечают). Так что вот небольшой рассказ с картинками про то, как вижу я. :)

Я конечно не могу приложить фотографии того, как я вижу в реальности, поэтому я буду всё иллюстрировать на фотографических эффектах.

1. Расплывчатость. У близорукого человека кристаллик хрусталик фокусирует свет от далекого источника не на сетчатку, а перед ней, поэтому на самой сетчатке изображение получается расплывчатым. Это наверно знают все, но не все догадываются, какого типа эта расплывчатость. Это вовсе не «gaussian blur», который есть в фотошопе, а скорее похоже на эффект боке на фотоснимках (что и неудивительно, поскольку физика по сути та же).

Удобнее всего пояснить разницу на ночном снимке с яркими огнями. Вот возьмем такое красивое фото ():

Применим к нему gaussian blur и получим вот такое изображение:


Так вот, это совершенно непохоже на то, как я вижу без очков! А вижу я примерно вот так ():


Отличие в том, что при обычной размазке светлые и темные участки смешиваются в нечто среднее. А при эффекте боке яркие точки расплываются в кружочки, довольно чётко очерченные между прочим, которые просто наползают на темные области. При подходящем освещении это бывает очень красиво. :)

Дополнение. Вот еще мне в комментариях дали ссылку на картины Филипа Барлоу , написанные как раз в «близоруком стиле».

2. Дифракция. На фотографии с боке кружочки выглядят маленькими и однородными. На самом деле при моем зрении эти кружочки большие (примерно 4-5 градусов), и в каждом из них я вижу богатый «внутренний мир». На каждом кружочке есть точки, пятнышки, полоски, иногда плавные, иногда четко очерченные. Примерно вот так, только еще богаче ():


Это проявления микроскопических пылинок и ворсинок на поверхности глаза, а также неоднородностей на границах раздела уже где-то в глубине глаза (они дают неподвижную «рябь»). [Как мне объяснили в комментариях, плавающие ворсинки, которые обычно называют «мушками», находятся физически внутри стекловидного тела; см. подробности . ] Мне видно, как они эти пылинки плывут по поверхности глаза, как они резко дергаются при моргании и т.д. И что самое красивое — на всех кружочках в поле зрения картина примерно одна и та же, все эти плавные движения происходят синхронно по всему полю зрения. Но изображения в двух глазах, конечно, разные.

Концентрические кольца и прочие узоры, которые окружают пылинки и прочие границы — это проявление дифракции света. Да, дифракция действительно легко видна невооруженным глазом, по крайней мере близоруким людям! Более того, иногда даже видно пятно Араго-Пуассона (максимум яркости в центре геометрической тени) у совсем мелких пылинок (они кстати, на этой фотке видны). За всей этой «жизнью» иногда бывает забавно наблюдать.

3. Неравномерная освещенность. Пятнышко на предыдущем фото всё равно освещено более-менее равномерно. А я в реальности вижу пятна, яркость которых меняется от края к краю. Причем в двух глазах этот градиент яркости совсем не совпадает. Я попытался примерно изобразить то, как я реально вижу расплывчатое пятнышко без очков:


Это, кстати, создает дополнительные проблемы: два глаза «не знают», как им совмещать эти изображения, то ли по контурам кружочка, то ли по центру яркости.

Откуда у меня это берется, я так и не знаю.

4. Расстояние комфортного зрения. При близорукости плохо видны далекие предметы, но зато всё отлично видно вблизи. Более того, видно намного комфортнее, чем для обычного человека, потому что мне не требуется напрягать глаза. У меня расстояние комфортного зрения — 7 см. Т.е. я расслабляю глаз, словно я собираюсь смотреть вдаль, и отлично рассматриваю мельчайшие детали у предмета на расстоянии 7 см. Поскольку я без проблем могу рассматривать предметы так близко и поскольку с сетчаткой у меня всё в порядке, у меня получается выигрыш в «ближней зоркости».

5. Спектральный анализ. И наконец, супервозможность — я умею раскладывать свет в спектр! Посмотрю так боком на источник света и вижу отдельные линии излучения и т.д. Вот примерно так, только не столь четко:


Это умение, конечно, получается благодаря очкам, особенно с высокоиндексными стеклами (у моих коэффициент преломления 1,8). На краю стекла они выступают в роли призмы, которая раскладывает свет в спектр, и из-за того, что у меня большой минус, это разложение довольно сильное. Я без проблем отличаю лампы накаливания с их сплошным спектром от газовых ламп, вижу отдельные узкие линии излучения, легко отличаю, например, истинно желтый огонек от зеленого+красного. Ну а вкупе с разверткой по времени, которую я тоже , мне становится доступной времени-разрешенная спектроскопия! В разумных пределах, конечно. :)

Кстати, еще один эффект, связанный с дисперсией света в сильных очках — огоньки разных цветов кажутся мне находящимися на разном расстоянии. При бинокулярном зрении (т.е. при взгляде двумя глазами) это вообще приводит к чудесным иллюзиям. Скажем, синий светодиод на поверхности какого-нибудь девайса для меня выглядит так, словно он висит в воздухе в нескольких сантиметрах над подверхностью. А разноцветная светящаящая неоновая вывеска для меня выглядит смонтированной на нескольких плоскостях.

Цели урока:

  • Обучающие : изучить строение, оптическую систему и основные свойства глаза; установить причины близорукости и дальнозоркости; научиться различать линзы, применяемые в очках для исправления близорукости и дальнозоркости.
  • Развивающие: развитие речевых навыков, теоретического мышления; умение выражать мысли вслух; развитие внимания и любознательности; повышение интереса к изучаемому предмету.
  • Воспитательные: формирование у детей толерантного осознания; воспитание умения выслушивать товарища, уважать мнение оппонента; развитие стремления к познанию.

Оборудование и пособия: таблица «Строение глаза»; учебник биологии для 8-го класса «Человек» (на каждой парте); диапроектор; диапозитивы «глаз. Дефекты зрения и их исправление»; обучающие карточки-памятки (на каждой парте); портрет И. Кеплера; карточки-задания «Проверочный тест», индивидуальные карточки; наглядные плакаты; магнитная доска, стенгазета «Вот такие бывают глаза!»; приложение .

План урока

№ п/п Этапы Время, мин Приемы и методы
Организационный 1 I – 2 I Приветствие, проверка готовности к уроку, благоприятный настрой учащихся на восприятие материала урока, запись темы урока.
Подготовка к усвоению новых знаний (актуализация знаний). 5 I – 7 I Фронтальный опрос. Одновременно для сильных учеников письменное индивидуальное задание, для слабых – тест.
Объяснение новой темы. 23 I Вступительное слово учителя. Беседа. Сообщения учащихся. Фронтальный ученический эксперимент. Объяснение учителя. Запись на доске и в тетрадях.
Первичная проверка изучаемого материала 2 I – 3 I Фронтальный опрос.
Закрепление изученного материала. 5 I Кратковременный тест.
Подведение итогов урока, выставление оценок. 2 I Запись домашнего задания в дневник.

I. Организационный момент

Приветствие, проверка готовности к уроку, благоприятный настрой учащихся на восприятие материала, запись темы урока в рабочие тетради.

II. Подготовка к усвоению новых знаний (актуализация знаний)

Фронтальный опрос (для среднего звена класса):

  1. Что называют линзой?
  2. Чем отличаются выпуклые линзы от вогнутых линз? (использование наглядной таблицы).
  3. Какую точку называют главным фокусом линзы?
  4. Что называют оптической силой линзы? (запись на доске)

Одновременно для сильных учащихся – индивидуальные карточки (решение задач на определение оптической силы линзы или системы линз), для слабых учащихся – тест (на индивидуальных карточках).

  1. Чему равна оптическая сила системы двух линз, одна из которых имеет фокусное расстояние F 1 = -20 см, а другая – оптическую силу Д 2 = 5 дптр?
  2. Оптическая сила системы линз равна Д = 2,5 дптр. Чему равно фокусное расстояние собирающей линзы, если вторая линза имеет оптическую силу Д 2 = -4,5 дптр?
  3. Оптическая сила линзы 0,5 дптр. Что это за линза и чему равно фокусное расстояние этой линзы?
  4. Фокусное расстояние линзы 10 см. Чему равна оптическая сила этой линзы? Назовите, какая это линза?
  5. Оптическая сила системы линз равна Д = 4,5 дптр. Чему равна оптическая сила собирающей линзы, если первая линза имеет оптическую силу Д 1 = -1,5 дптр? Назовите первую линзу?
  1. Какой буквой обозначается главный фокус линзы?
    а) F; б) О; в) Д.
  2. В каких единицах измерения дается оптическая сила линзы?
    а) мм; б) кг; в) дптр; г) А.
  3. Фокусное расстояние линзы F = -20 см. Какая это линза?
  4. Оптическая сила линзы Д = 2 дптр. Какая это линза?
    а) собирающая; б) рассеивающая.

III. Объяснение новой темы

Вступительное слово учителя:

В одном мгновенье видеть вечность,
Огромный мир – в зерне песка,
В единой горсти – бесконечность,
И небо – в чашечке цветка!

Человека окружает удивительный мир, богатый красками, звуками, запахами. Мы воспринимаем его то с восхищением, а то, и с опаской.

Информация о происходящем в окружающей среде мы получаем через органы чувств – зрения, слуха, осязание, вкуса и обоняния.

Тема нашего урока «Глаз и зрение. Близорукость и дальнозоркость. Очки» (запись на доске). Цель урока: изучить строение, оптическую систему и основные свойства глаза; установить причины близорукости и дальнозоркости; научиться различать линзы, применяемые в очках для исправления близорукости и дальнозоркости.

План изучения темы (записан на доске):

  1. Значение зрения в жизни.
  2. Строение органа зрения.
  3. Оптическая система глаза.
  4. Близорукость и дальнозоркость.
  5. Офтальмологические приборы (очки и контактные линзы).
  6. Гигиена зрения.
  7. Калейдоскоп фактов.
  8. Подведение итогов.

В процессе урока вам предстоит заслушать заранее подготовленные краткие сообщения ваших одноклассников.

Сообщение 1 (ученик):

Глаз – это орган, который можно сравнить с окном в окружающий мир.

Всегда ли можно доверять тому, что мы видим? Все мы видим?

Мы живем в удивительно мире света. Свет доставляет радость всем. Внешний мир мы видим благодаря зрению. Орган зрения играет огромную роль в жизни человека. Символом жизни и вечной юности, всегда был и останется солнечный свет. Свет – это электромагнитная волна длиной излучения от 400 до 760 нм. Другие волны не вызывают зрительных ощущений. Наши глаза чувствительны только к определенному, сравнительно узкому интервалу длин волн. Более 90% информации об окружающем мире мы получаем с помощью зрения.

Глаз обладает свойствам адаптации – способностью менять свою чувствительность в зависимости от величины светового потока. Глаз очень чувствительный аппарат. «Наши глаза способны различать тончайшие оттенки цветов - они воспринимают голубизну морской волны и зарево заката, золото осеннего листа и палитру Левитан» - писал в книге «Бионика» И.Б. Литинецкий. (репродукция Левитана ).

Учитель: смотреть на мир и видеть его красоту большое счастье. И это счастье человеку дают глаза.

Познакомимся со строением глаза (таблица «Строение глаза», термины записаны на доске ). Глаз человека состоит из глазного яблока, соединенного зрительным нервом с головным мозгом, и вспомогательного аппарата (веки, слезные органы и мышцы, двигающие глазное яблоко).

Глазное яблоко защищено плотной оболочкой, называемой склерой. Передняя (прозрачная) часть склеры называется роговицей. За роговицей расположена радужная оболочка, которая у людей может иметь различный цвет. В радужный оболочке есть небольшое отверстие – зрачок. Диаметр зрачка может изменяться от 2 до 8 мм, уменьшаясь на свету и увеличиваясь в темноте. За зрачком расположено прозрачное тело, напоминающее двояковыпуклую линзу – хрусталик. Хрусталик окружен мышцами, прикрепляющими его к склере. За хрусталиком расположено стекловидное тело. Задняя часть склеры – глазное дно - покрыто сетчатой оболочкой (сетчаткой). Она состоит из тончайших волокон, устилающих глазное дно и представляющих собой разветвленные окончания зрительного нерва.

Как возникают и воспринимаются глазом изображения различных предметов? (диапроектор, диапозитивы ).

Свет, преломляясь в оптической системе глаза, которую образуют роговица, хрусталик и стекловидное тело, дает на сетчатке действительное, уменьшенные и обратные изображения предметов. Попав на окончания зрительного нерва, свет раздражает эти окончания. Эти раздражения передаются в мозг, и у человека появляются зрительные ощущения: он видит предметы.

Изображение предмета, возникающее на сетчатке глаза, является перевернутым. Первым это доказал, построив ход лучей в оптической системе глаза, был немецкий астроном И. Кеплер (Портрет учёного ). Вся эта система аналогична оптической системе собирающей линзы (таблица «оптическая система линзы» на доске).

Но почему тогда же мы видим предметы неперевернутыми? Процесс зрения непрерывно корректируется мозгом. (Учебник биологии «Человек», 8 класс, иллюстрация «Строение зрительного аппарата »). В свое время английский поэт Уильям Блейк подметил:

Посредством глаза, а не глазом
Смотреть на мир умеет разум.

Человеческий глаз представляет собой устройство, принцип действия которого повторен в фотоаппарате.

Глаз приспособлен к работе в различных условиях: при различной удаленности предметов, как на близкое, так и на более дальнее расстояние (благодаря аккомодации) различной интенсивности освещения (благодаря адаптации). (Термины «аккомодация», «адаптация» на магнитную доску ). При рассмотрении близко расположенных предметов хрусталик становится более выпуклым, радиус кривизны его поверхности уменьшается, а, следовательно, увеличивается оптическая сила (Д = 1/ F на магнитную доску ).

Чувствительность глаза к свету может меняться в миллиарды раз, благодаря изменению диаметра зрачка.

Приспособляемость глаза может вызвать иллюзии – наблюдаемый предмет нам таким, каков он есть на самом деле. (Термин «иллюзия зрения» на магнитную доску плакаты ).

У человека два глаза. Какое преимущество дает зрение двумя глазами?

Во-первых, мы можем различить расстояние между предметами. Это позволяет видеть предмет объемным, а не плоским. Во-вторых, увеличивает поле зрения. (Учебник биологии «Человек», 8-й класс, стр. 76-77 иллюстрация ).

В процессе развития организма могут возникнуть отклонения от нормы, вследствие чего нарушаются основные условия наилучшего зрения, так как хрусталик теряет эластичность, способность менять свою кривизну. Эти отклонения называются дефектами зрения. Изображение близко расположенных предметов расплывается – развивается дальнозоркость. Другой дефект зрения – близорукость, когда люди, наоборот, плохо видят удаленные предметы. (Диапроектор, диапозитив «Дефекты зрения», таблица «Близорукость. Дальнозоркость »).

Причиной дальнозоркости и близорукости могут быть и врожденные изменения глазного яблока. При близорукости изображение предмета фиксируется перед сетчаткой и поэтому воспринимается как расплывчатое. При дальнозоркости изображение предмета фиксируется за сетчаткой и тоже воспринимается как расплывчатое.

«По долговременном течениях наших дней
Тупеет зрение ослабленных очей.
Велика сердцу скорбь, лишиться чтенья книг:
Скучнее вечной тьмы, тяжелее вериг!
Тогда противен день, веселее досада!
Одна лишь нам Стекло в сей бедности отрада.
Оно способствуем искусная руки
Подать нам зрение умеет через очки!»
(М.В. Ломоносов)

Очки были изобретены до Ломоносова, и мы знаем, что с их помощью человек корректирует свое зрение, т.е. исправляет близорукость и дальнозоркость.

Сообщение 2 (ученик ):

«Мы век проводим за трудами дома
И только в праздник видим мир в очки».
(И.В.Гете «Фауст»)

Изображение оптических стекол в средние века открыло огромные возможности. Увеличительные стекла захватили воображение. Через них рассматривали мелкие предметы. Потребовалось немало усилий, чтобы простейшие линзы превратились в современные бинокли, микроскопы, телескопы и другие оптические приборы, наконец, просто в очки (плакаты ).

Очки – простейший медицинский прибор. Близорукость и дальнозоркость исправляют (компенсируют) применением линз. Сейчас вместо очков часто используют контактные линзы, сделанные из особой прозрачной пластмассы. Они накладываются на веко непосредственно, на глазное яблоко. Контактные линзы не требуют никакой оправы, не запотевают, незаметны. Существуют до 80 типов очков различного назначения.

Учитель: Какие же линзы следует применять в очках?

При близорукости необходимо изображение предмета отодвинуть от хрусталика и переместить на сетчатку. Для этого применяют линзы вынутые – рассеивающие свет с отрицательной оптической силой.

При дальнозоркости изображение предмета за сетчаткой перемещают с помощью линз выпуклых – собирающих свет. Оптическая сила таких линз - положительная. (Таблица «Линзы, применяемые в очках для исправления близорукости и дальнозоркости »).

IV. Первичная проверка изучаемого материала:

Ответьте на следующие вопросы:
Врач-окулист выписывает пациенту очки, оптическая сила которых равна +2 дптр. Какой недостаток зрения исправляют эти очки? (дальнозоркость).

Если человек близорук, то какие очки ему необходимы: +1,5 дптр или -1,5 дптр? (-1,5 дптр)

V. Объяснение новой темы (Продолжение):

Глаз – это живой оптический прибор. Мышцы глаза ученика за один учебный день испытывает такую же нагрузку, какую испытывают мышцы его рук и торса, если он пытался бы поднять и удержать над головой штангу весом предназначенного для среднего профессионала-атлета. Чтобы спасти глаза от перенапряжения, необходима специальная гимнастика, которая восстанавливает зрение.

Простейшие упражнения можно использовать в любых условиях, в том числе и в школе, где глаза устают больше всего.

Выполним все вместе некоторые из упражнений:

  1. Зажмурь изо всех сил глаза, а потом открой их. Повтори это 4-6 раз.
  2. Поглаживай в течение 30 секунд веки кончиками (подушечками) пальцев.
  3. Делай круговые движения глазами: налево – вверх - направо – вниз - направо – вверх - налево - вниз.
  4. Вытяни вперед руку. Следи взглядом за ногтем пальца, медленно приближая его к носу, а потом так же медленно отодвигая обратно. Повтори 3 раза.

А если ты носишь очки?

В этом случае важно правильно их хранить и регулярно мыть теплой водой с мылом. Ведь от очков теперь зависит твое зрение!

И главное, если у тебя нарушено зрение, необходимо строго выполнять предписание врача-окулиста. Хорошо подобранная оправа очков украшает лицо, делает его привлекательнее.

Для нормального формирования зрения и его сохранение необходимо соблюдать простые правила:

  1. читать, писать в хорошем освещенном помещении;
  2. нельзя читать в транспорте, лежа располагать тексты ближе или дальше 30-35 см от глаз;
  3. очень вредно смотреть на слишком яркий свет;
  4. чаще бывать на свежем воздухе;
  5. оберегать глаза от ударов;
  6. в пищу употребляй витамин А.

Глаз человека – это тонкий и ценный инструмент. Берегите зрение с детства!

А сейчас обратимся к калейдоскопу интересных факторов:

Сообщение 3 . (ученик ):

Во многих славянских языках есть слово «око». Когда-то оно было единственным словом для названия органа зрения. От него в разное время образовались новые слова: очки, окунь.

Сообщение 4 . (ученик ):

В XVI веке появилось слово «глаз». Как считают многие ученые, это слово потреблялось в переносном смысле и означало: «камешек».

Сообщение 5 . (ученик ):

Глаз человека различает 7 тысяч оттенков различных цветов.

А также глаза не мерзнут. Это потому, что они не имеют нервных окончаний, чувствительных к холоду. Наоборот, в кончиках пальцев, носа этих точек очень много, поэтому эти места, прежде всего и сильнее всего чувствуют холод.

Сообщение 6 . (ученик ):

Самая богатая водой ткань человеческого тела - стекловидное тело глаза – содержит 99% воды. Самая бедная – зубная эмаль – 0,2 % воды.

Сообщение 7 . (ученик ):

Еще одним дефектом зрения является цветная слепота. Глаз не способен различать красный и зеленый цвета. Этот случай впервые описал английский химик Дальтон, отсюда и произошло название – дальтонизм. Для многих профессий он несуществен, но для водителя, машиниста железной дороги, лоцмана крайне важно отличать красный цвет от зеленого.

Учитель: Спасибо за интересные сообщения. Итак, проведем краткий обзор изученного материала. Сегодня на уроке мы говорили о значении зрения в нашей жизни. Изучили строение оптической системы и свойства глаза. А так же узнали с помощью, каких линз можно исправлять близорукость и дальнозоркость.

Все это мы изучили благодаря биологии, истории, литературы, и конечно физики.

VI. Закрепление изученного материала:

Как мы освоили новый изученный материал, нам поможет узнать кратковременный проверочный тест.

  1. Какая часть глазного яблока является двояковыпуклой линзой?
    а) хрусталик; б) роговица
  2. На какой части глазного яблока образуется изображение предмета?
    а) на сетчатке; б) на роговице
  3. Способность глаза приспосабливаться к видению, как на близком, так и так и на более далёком расстоянии:
    а) адаптацией; б) аккомодацией; в) иллюзией зрения
  4. При близорукости применяют очки
    а) с рассеивающими линзами; б) с собирающими линзами
  5. При дальнозоркости применяют очки
    а) с рассеивающими линзами; б) с собирающими линзами.

(Работа выполняется на отдельных листах, которые сдаются для проверки учителю. Одновременно запись проводится на полях в рабочей тетради ученика, для того чтоб самостоятельно оценить и проанализировать свою работу).

Работа проводиться с целью самоконтроля самими учениками своих работ (Подобная форма работы ребятам знакома, так как проводится регулярно). Проверяются первичные знания учащихся по изученной теме:

  • дано пять правильных ответов – оценка «5»
  • дано четыре правильных ответа – оценка «4»
  • три правильных ответа – оценка «3»
  • два и менее правильных ответа - оценка «2»

VII. Поведение итогов урока, выставление оценок.

Каждому ученику вручаются памятки «Гимнастика для глаз» и «Как уберечь глаз от травмы»

Домашнее задание : § 37,38 (для желающих стр.148 учебника №149)

Список литературы

  1. Громов С.В.Физика: Учебник для 9 класса общеобразовательных учреждений / С.В. Громов, Н.А. Родина. – М.: Просвещение, 2002
  2. Лукашик В.Н. Сборник задач по физике для 7-9 классов общеобразовательных учреждений / В.И. Лукашик, Е.В. Иванова. – М.: Просвещение, 2002 .
  3. Демченко Е.А. Нестандартные уроки физики 7-11 классы. – Волгоград, 2002.
  4. Кирик Л.А. Физика – 9. Разноуровневые самостоятельные и контрольные работы. Илекса, 2003
  5. Юный эрудит. – М.: №2, 2003.
  6. Физика в школе. – М.: школа – Пресс, № 6/91, № 2/97.
  7. Энциклопедический словарь нового физика / сост. В.А. Чуянов. Педагогика - Пресс, 1998.
  8. Биология в школе. – М.: Школа – Пресс, № 8/93, № 1/95.
  9. Медицинская энциклопедия / сост. М.П. Обрамян. – М.: Медицина, т.3 1983 .

ГЛАЗ И ЗРЕНИЕ. БЛИЗОРУКОСТЬ И ДАЛЬНОЗОРКОСТЬ. ОЧКИ

Интеграция предметов: физика - биология.

Пояснительная записка:

1. На уроке понадобятся: модель глаза человека; плакат «Строение глаза и фотоаппарата»; очки на близорукость и дальнозоркость, линзы собирающая и рассеивающая.

Ход урока

Учитель физики . Ребята, сегодня на уроке мы будем изучать глаз человека, выясним, почему мы видим, узнаем, какие бывают дефекты глаза и как они устраняются.

Глаз иногда по праву называют живым фотоаппаратом (плакат «Строение глаза и фотоаппарата»), так как оптическая система глаза, дающая изображение, сходна с объективом фотоаппарата.

Что же представляет глаз человека (не только человека)?

Учитель биологии . Глаз человека и многих животных имеет почти шарообразную форму (рис. 1).

Рис. 1. Строение глаза человека

Глазное яблоко человека имеет диаметр примерно 25 мм. Глаз защищен плотной оболочкой, называемой склерой (1). Передняя часть склеры - роговая оболочка, или роговица (10), прозрачна. За роговицей расположена радужная оболочка (7), которая у разных людей имеет разный цвет. Между роговицей и радужной оболочкой находится водянистая жидкость (5) или передняя камера.

Учитель физики . Роговица имеет форму сферической чашечки диаметром около 12 мм и толщиной 1 мм. Радиус кривизны ее в среднем 8 мм. Показатель преломления 1,38.

Учитель биологии . В центре радужной оболочки имеется отверстие - зрачок (6), размер которого при помощи мышечных волокон, управляемых из центральной нервной системы, может меняться.

Учитель физики. Зрачок меняется от 2-3 мм при ярком освещении до 6-8 мм при слабом. Таким образом регулируется количество света, проходящего внутрь глаза.

Учитель биологии : Непосредственно позади зрачка находится хрусталик (5), прозрачное и упругое тело.

Учитель физики: Хрусталик по форме близок к двояковыпуклой линзе. Диаметр его 8-10 мм. Радиус кривизны передней поверхности в среднем 10 мм, а задней 6 мм. Показатель преломления вещества хрусталика 1,44.

Учитель биологии . Хрусталик окружен мышцами, прикрепляющими его к склере (9). За хрусталиком расположено стекловидное тело (4). Оно прозрачно и заполняет всю остальную часть глаза.

Глазное дно покрыто сетчатой оболочкой (сетчаткой) (3), которая прилегает к сосудистой оболочке (2). Сетчатая оболочка имеет толщину около 0,5 мм и состоит из нескольких слоев, содержащих волокна зрительного нерва. Сетчатка состоит из палочек и колбочек и нервных клеток, от которых возбуждение идет в головной мозг. Общее число колбочек ≈ 7 · 10 6 , а палочек ≈ 100 · 10 6 . Колбочки сосредоточены в центральной части сетчатки, в желтом пятне, и особенно в его центральной ямке. Палочки расположены главным образом в периферических частях сетчатки.

Палочки имеют высокую светочувствительность, но не обеспечивают различение цвета.

Рис. 2. Схематическое изображение строения глаза человека

Колбочки имеют более низкую светочувствительность и создают ощущение цвета.

Учитель физики . Оптическая система глаза - роговица, хрусталик, стекловидное тело. Главная оптическая ось системы 00 проходит через геометрические центры роговицы, зрачка и хрусталика.

Учитель биологии . В глазе различают еще зрительную ось 00", проходящую через центр хрусталика и желтое пятно. В этом направлении глаз имеет небольшую светочувствительность.

Учитель физики . Оптическая и зрительная оси образуют небольшой угол ≈ 5°.

Как же получается и воспринимается глазом изображение предмета?

Свет, падающий в глаз, преломляется на передней поверхности глаза (роговице) на границе ее с воздухом. Поэтому из всех преломляющих сред роговица имеет наибольшую оптическую силу (40 дптр). Затем свет, проходя через хрусталик, еще преломляется. Оптическая сила хрусталика 16-20 дптр. Свет еще преломляется в передней камере и стекловидном теле, оптическая сила которого 3-5 дптр. Итак, оптическая сила глаза = 63 дптр, благодаря чему на сетчатке глаза образуется действительное, уменьшенное и перевернутое изображение рассматриваемых предметов.

Учитель биологии . Свет, падая на окончания зрительного нерва, из которых состоит сетчатка, раздражает эти окончания. Раздражения по нервным волокнам передаются в мозг, и человек получает зрительное впечатление, то есть видит предметы. Процесс зрения корректируется мозгом, поэтому мы предметы воспринимаем не перевернутыми.

Учитель физики . Теперь выясним, каким образом на сетчатке создается четкое изображение, когда мы переводим взгляд с удаленного предмета на близкий и наоборот. Это происходит потому, что кривизна хрусталика изменяется. Когда мы смотрим на дальние предметы, то кривизна хрусталика сравнительно невелика.

Учитель биологии . В этом случае мышцы, поддерживающие хрусталик, будут расслаблены и хрусталик будет вытянут. А когда переводят взгляд на близлежащие предметы, то мышцы сжимают хрусталик (рис. 3).

Рис. 3. Аккомодация глаза

Учитель физики . Тогда кривизна хрусталика и оптическая сила увеличиваются.

Учитель биологии . Способность глаза приспосабливаться к видению как на близком, так и на далеком расстоянии, называется аккомодацией глаза. Предел аккомодации глаза наступает, когда предмет находится на расстоянии 12 см от глаза. Придвиньте страницу учебника на расстояние 12 см, что вы наблюдаете? Расстояние наилучшего зрения (отодвигайте страницу от глаз), при котором детали предметов можно рассматривать без напряжения для нормального глаза, - 25 см. Это следует учитывать, когда пишете, читаете, шьете и т. д.

Учитель физики . Но какое преимущество дает зрение двумя глазами?

Учитель биологии. Во-первых, мы видим большее пространство, то есть увеличивается поле зрения. Во-вторых, зрение двумя глазами позволяет различать, какой предмет находится ближе, а какой дальше от нас. Дело в том, что на сетчатке левого и правого глаза получаются разные изображения, мы как бы видим предметы слева и справа. И чем ближе предмет, тем заметнее это различие, оно и создает впечатление разницы в расстоянии, хотя изображения сливаются в нашем сознании в одно. Благодаря зрению двумя глазами, мы видим предметы не плоскими, а объемными.

Учитель физики . Только благодаря аккомодации глаза изображение предметов получается на сетчатке глаза.

Это происходит, если глаз нормальный. Глаз называется нормальным, если он в ненапряженном состоянии собирает параллельные лучи в точке, лежащей на сетчатке.

Но есть недостатки глаза - близорукость или дальнозоркость. При суждении об оптических свойствах глаза используют понятие рефракции.

Рис. 4. Рефракция глаза:

А - соразмерная; Б - дальнозоркая; В - близорукая

Учитель биологии . Близорукость может быть обусловлена большим удалением сетчатки от хрусталика по сравнению с нормальным глазом (рис. 4 В).

Учитель физики . Значит, близоруким называется такой глаз, у которого фокус при спокойном состоянии глазной мышцы лежит внутри глаза. Тогда, если предмет находится на расстоянии 25 см (расстояние наилучшего зрения), то изображение получается не на сетчатке (как у нормального глаза), а ближе к хрусталику, впереди сетчатки. Поэтому, чтобы изображение оказалось на сетчатке, надо приблизить предмет к глазу. Следовательно, у близоруких людей расстояние наилучшего зрения меньше 25 см.

Учитель биологии . Близорукость может быть обусловлена тем, что сетчатка глаз расположена ближе к хрусталику, по сравнению с глазом нормальным.

Учитель физики . Значит, дальнозорким называют глаз, у которого фокус при спокойном состоянии глазных мышц лежит за сетчаткой. Изображение предмета получается за сетчаткой такого глаза. Если предмет удалить от глаза, то изображение попадает на сетчатку. Поэтому у дальнозорких людей расстояние наилучшего зрения больше 25 см.

Учитель биологии . Разница в расположении сетчатки даже в пределах миллиметра уже может приводить к заметной близорукости или дальнозоркости. Люди, имеющие в молодости нормальное зрение, в пожилом возрасте становятся дальнозоркими. Это объясняется тем, что мышцы, сжимающие хрусталик, ослабевают и способность аккомодации уменьшается. Происходит это и из-за уплотнения хрусталика, теряющего способность сжиматься в старости.

Но близорукость и дальнозоркость устраняются применением очков.

Учитель физики . Какие же очки следует применять для устранения этих недостатков зрения?

У близоруких людей изображение предметов получается внутри глаза, то есть впереди сетчатки. Чтобы оно передвинулось на сетчатку, надо уменьшить оптическую силу преломляющей системы глаза. Для этого применяют рассеивающую линзу в очках (рис. 5 Б).

Оптическую силу системы дальнозоркого глаза надо усилить, чтобы изображение попало на сетчатку, поэтому в очках используют собирающую линзу (рис. 5 А).

Рис. 5. Исправление рефракций глаза:

А - дальнозоркой; Б - близорукой

Учитель биологии. Изобретение очков явилось великим благом для людей, имеющих недостатки зрения.

Учитель физики. И это благо появилось давно. На гравюрах и картинах с древними сюжетами нередко можно видеть людей в очках. Художники (XV-XVII веков) охотно изображали в очках знатных людей прошлого, чтобы придать им более внушительный, ученый вид. При археологических раскопках Помпеи и Тира находили обработанные куски стекла, напоминающие собой увеличительные линзы. Есть основания считать, что именно в Италии в конце XIII века появились первые очки. В России очки появились в конце XV века. Вначале применялось только одно увеличительное стекло на длинной ручке. Затем появились двойные круглые стекла в металлической оправе. Их держали перед глазами или одевали на нос. Постепенно очки приобретали современный вид.

Итак, для исправления близорукости применяют очки с вогнутыми, рассеивающими линзами. Если человек, например, носит очки, оптическая сила которых -3 дптр, то значит он близорукий. В очках для дальнозорких глаз используют выпуклые, собирающие линзы. Такие очки могут иметь, например, оптическую силу +3 дптр.

Учитель биологии . На протяжении жизни человеку рано или поздно приходится прибегать к помощи очков. Очки позволяют лучше видеть, они словно удлиняют жизнь наших глаз и дают возможность большинству людей продолжать активную деятельность в пожилом возрасте.

Учитель физики . Ребята, как же отличить, какие очки для близоруких людей, а какие для дальнозорких? Оказывается очень просто. Беру очки для близоруких глаз и линзы от них, посмотрите, дают тень, а у дальнозорких линз тени нет. Это говорит о том, что у рассеивающих линз фокусы мнимые, а у собирающих - действительные.

Учитель биологии . Ребята, а какие глаза у представителей животного мира? Большинство членистоногих имеют много глаз, ориентированных по всем направлениям. Каждый такой глаз имеет форму очень узкой и глубокой воронки. У рыб глаза отличаются плоской роговицей и шарообразным хрусталиком.

Рис. 6. Глаза различных представителей животного мира:

А - глаз мухи; Б - глаз зебры; В - глаз человека

Учитель физики . Аккомодация глаза у рыб достигается перемещением хрусталика.

Учитель биологии . Птицы обладают острым зрением. У грифов, орлов глазное яблоко удлиненной формы. Глаза высокоорганизованных животных подобны глазу человека, только некоторые животные могут ими вращать, например хамелеон. В других случаях, например у зайца, они расположены по бокам головы, что дает обзор свыше 180°.

Учитель физики . Сегодня на уроке, ребята, вы познакомились с одним из органов чувств - зрением. Узнали строение глаза, дефекты глаза, о том, как эти дефекты исправляются ношением очков. Рефракция - это преломляющая способность глаза при покое аккомодации, когда хрусталик максимально уплощен.

Учитель биологии . Добавлю, что различают три вида рефракции глаза:

1) соразмерную (эмметропическую);

2) дальнозоркую (гиперметропическую);

3) близорукую (миопическую).

Учитель физики . Вы убедились в связи науки биологии с физикой. Законы природы едины и могут быть применимы и к живому организму. Сегодня на уроке мы применили законы физической оптики к глазу.