отворен
близо

Свойства на логаритмите. Какво е логаритъм? Решение на логаритми

Какво е логаритъм?

Внимание!
Има допълнителни
материал в специален раздел 555.
За тези, които силно "не много..."
И за тези, които "много...")

Какво е логаритъм? Как се решават логаритми? Тези въпроси объркват много завършили. Традиционно темата за логаритмите се счита за сложна, неразбираема и страшна. Особено - уравнения с логаритми.

Това абсолютно не е вярно. Абсолютно! Не вярвате? Добре. Сега, за около 10 - 20 минути вие:

1. Разберете какво е логаритъм.

2. Научете се да решавате цял клас експоненциални уравнения. Дори и да не сте чували за тях.

3. Научете се да изчислявате прости логаритми.

Освен това, за това ще трябва само да знаете таблицата за умножение и как числото се повишава до степен ...

Чувствам, че се съмнявате... Е, отбележете времето! Отивам!

Първо, решете следното уравнение наум:

Ако харесвате този сайт...

Между другото, имам още няколко интересни сайта за вас.)

Можете да практикувате решаването на примери и да разберете нивото си. Тестване с незабавна проверка. Учене - с интерес!)

можете да се запознаете с функции и производни.

Логаритъм на b (b > 0) до основа a (a > 0, a ≠ 1)е степента, до която трябва да повишите числото a, за да получите b.

Основният 10 логаритъм на b може да бъде записан като дневник(b), и логаритъмът към основата e (естествен логаритъм) - ln(b).

Често се използва при решаване на задачи с логаритми:

Свойства на логаритмите

Има четири основни свойства на логаритмите.

Нека a > 0, a ≠ 1, x > 0 и y > 0.

Свойство 1. Логаритъм на произведението

Логаритъм на произведениетое равно на сумата от логаритмите:

log a (x ⋅ y) = log a x + log a y

Свойство 2. Логаритъм на частното

Логаритъм на частнотое равно на разликата на логаритмите:

log a (x / y) = log a x – log a y

Свойство 3. Логаритъм на степента

Градусен логаритъме равно на произведението на степента и логаритъма:

Ако основата на логаритъма е в експонента, тогава се прилага друга формула:

Свойство 4. Логаритъм на корена

Това свойство може да се получи от свойството на логаритъма на степента, тъй като коренът от n-та степен е равен на степента на 1/n:

Формулата за преминаване от логаритъм в една основа към логаритъм в друга основа

Тази формула също често се използва при решаване на различни задачи за логаритми:

Специален случай:

Сравнение на логаритми (неравенства)

Да предположим, че имаме 2 функции f(x) и g(x) под логаритми със същите основи и между тях има знак за неравенство:

За да ги сравните, първо трябва да погледнете основата на логаритмите a:

  • Ако a > 0, тогава f(x) > g(x) > 0
  • Ако 0< a < 1, то 0 < f(x) < g(x)

Как да решаваме задачи с логаритми: примери

Задачи с логаритмивключени в ЕГПО по математика за 11 клас в задача 5 и задача 7, можете да намерите задачи с решения на нашия уебсайт в съответните раздели. Също така задачи с логаритми се намират в банката от задачи по математика. Можете да намерите всички примери, като потърсите в сайта.

Какво е логаритъм

Логаритмите винаги са се смятали за трудна тема в училищния курс по математика. Има много различни дефиниции на логаритъма, но по някаква причина повечето учебници използват най-сложните и лоши от тях.

Ще дефинираме логаритъма просто и ясно. Нека създадем таблица за това:

И така, имаме правомощия по две.

Логаритми - свойства, формули, как се решават

Ако вземете числото от долния ред, тогава лесно можете да намерите степента, до която трябва да вдигнете двойка, за да получите това число. Например, за да получите 16, трябва да повишите две на четвърта степен. И за да получите 64, трябва да вдигнете две на шеста степен. Това се вижда от таблицата.

И сега - всъщност дефиницията на логаритъма:

база a на аргумента x е степента, до която трябва да се повдигне числото a, за да се получи числото x.

Нотация: log a x \u003d b, където a е основата, x е аргументът, b всъщност е равен на логаритъма.

Например, 2 3 = 8 ⇒ log 2 8 = 3 (основният 2 логаритъм на 8 е три, защото 2 3 = 8). Може също да се регистрира 2 64 = 6, защото 2 6 = 64.

Операцията за намиране на логаритъм на число спрямо дадена основа се нарича. Така че нека добавим нов ред към нашата таблица:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

За съжаление, не всички логаритми се разглеждат толкова лесно. Например, опитайте се да намерите log 2 5. Числото 5 не е в таблицата, но логиката диктува, че логаритъмът ще лежи някъде в сегмента. Защото 22< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Такива числа се наричат ​​ирационални: числата след десетичната запетая могат да се записват за неопределено време и никога не се повтарят. Ако логаритъмът се окаже ирационален, по-добре е да го оставите така: log 2 5, log 3 8, log 5 100.

Важно е да се разбере, че логаритъмът е израз с две променливи (база и аргумент). В началото много хора бъркат къде е основата и къде е аргументът. За да избегнете досадни недоразумения, просто погледнете снимката:

Пред нас не е нищо повече от определението на логаритъма. Помня: логаритъмът е степента, към което трябва да повдигнете основата, за да получите аргумента. Именно основата е издигната до степен - на снимката е подчертана в червено. Оказва се, че основата винаги е отдолу! Казвам това прекрасно правило на моите ученици още на първия урок - и няма объркване.

Как да броим логаритмите

Разбрахме дефиницията - остава да се научим как да броим логаритми, т.е. отървете се от знака "дневник". Като начало отбелязваме, че от определението следват два важни факта:

  1. Аргументът и основата трябва винаги да са по-големи от нула. Това следва от дефиницията на степента чрез рационален показател, до който се свежда определението на логаритъма.
  2. Основата трябва да е различна от единица, тъй като единица за всяка степен все още е единица. Поради това въпросът „до каква степен трябва да се издигне, за да се получи двойка” е безсмислен. Няма такава степен!

Такива ограничения се наричат валиден диапазон(ODZ). Оказва се, че ODZ на логаритъма изглежда така: log a x = b ⇒ x > 0, a > 0, a ≠ 1.

Имайте предвид, че няма ограничения за числото b (стойността на логаритъма) не се налага. Например, логаритъмът може да бъде отрицателен: log 2 0,5 = −1, тъй като 0,5 = 2 −1 .

Сега обаче разглеждаме само числови изрази, при които не се изисква да се знае ODZ на логаритъма. Всички ограничения вече са взети предвид от съставителите на проблемите. Но когато влязат в действие логаритмичните уравнения и неравенствата, изискванията на DHS ще станат задължителни. Всъщност в основата и аргумента може да има много силни конструкции, които не отговарят непременно на горните ограничения.

Сега разгледайте общата схема за изчисляване на логаритми. Състои се от три стъпки:

  1. Изразете основата a и аргумента x като степен с най-малката възможна основа, по-голяма от единица. По пътя е по-добре да се отървете от десетичните дроби;
  2. Решете уравнението за променливата b: x = a b ;
  3. Полученото число b ще бъде отговорът.

Това е всичко! Ако логаритъмът се окаже ирационален, това ще се види още на първата стъпка. Изискването основата да е по-голяма от единица е много актуално: това намалява вероятността от грешка и значително опростява изчисленията. Аналогично и с десетичните дроби: ако веднага ги преобразувате в обикновени, ще има много пъти по-малко грешки.

Нека да видим как работи тази схема на конкретни примери:

Задача. Изчислете логаритъма: log 5 25

  1. Нека представим основата и аргумента като степен на пет: 5 = 5 1 ; 25 = 52;
  2. Нека направим и решим уравнението:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Получих отговор: 2.

Задача. Изчислете логаритъма:

Задача. Изчислете логаритъма: log 4 64

  1. Нека представим основата и аргумента като степен на две: 4 = 2 2 ; 64 = 26;
  2. Нека направим и решим уравнението:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Получих отговор: 3.

Задача. Изчислете логаритъма: log 16 1

  1. Нека представим основата и аргумента като степен на две: 16 = 2 4 ; 1 = 20;
  2. Нека направим и решим уравнението:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Получен отговор: 0.

Задача. Изчислете логаритъма: log 7 14

  1. Нека представим основата и аргумента като степен на седем: 7 = 7 1 ; 14 не е представено като степен на седем, защото 7 1< 14 < 7 2 ;
  2. От предходния параграф следва, че логаритъмът не се взема предвид;
  3. Отговорът е без промяна: дневник 7 14.

Малка забележка за последния пример. Как да се уверите, че едно число не е точна степен на друго число? Много просто - просто го разложете на прости фактори. Ако има поне два различни фактора в разширението, числото не е точна степен.

Задача. Разберете дали точните степени на числото са: 8; 48; 81; 35; четиринадесет.

8 \u003d 2 2 2 \u003d 2 3 - точната степен, т.к. има само един множител;
48 = 6 8 = 3 2 2 2 2 = 3 2 4 не е точна степен, защото има два фактора: 3 и 2;
81 \u003d 9 9 \u003d 3 3 3 3 = 3 4 - точна степен;
35 = 7 5 - отново не е точна степен;
14 \u003d 7 2 - отново не точна степен;

Забележете също, че самите прости числа винаги са точни степени на самите себе си.

Десетичен логаритъм

Някои логаритми са толкова често срещани, че имат специално име и обозначение.

на аргумента x е логаритъмът с основа 10, т.е. степента, до която трябва да се повиши 10, за да се получи x. Обозначение: lgx.

Например log 10 = 1; log 100 = 2; lg 1000 = 3 - и т.н.

Оттук нататък, когато в учебника се появи фраза като „Намери lg 0.01“, знайте, че това не е печатна грешка. Това е десетичният логаритъм. Ако обаче не сте свикнали с такова обозначение, винаги можете да го пренапишете:
log x = log 10 x

Всичко, което е вярно за обикновените логаритми, е вярно и за десетичните.

естествен логаритъм

Има и друг логаритъм, който има собствено обозначение. В известен смисъл тя е дори по-важна от десетичната. Това е естественият логаритъм.

на аргумента x е логаритъмът към основата e, т.е. степента, до която трябва да се повиши числото e, за да се получи числото x. Обозначение: lnx.

Мнозина ще попитат: какво е числото е? Това е ирационално число, точната му стойност не може да се намери и запише. Ето само първите числа:
e = 2,718281828459...

Няма да задълбаваме какво представлява този номер и защо е необходим. Само не забравяйте, че e е основата на естествения логаритъм:
ln x = log e x

Така ln e = 1; log e 2 = 2; ln e 16 = 16 - и т.н. От друга страна, ln 2 е ирационално число. По принцип естественият логаритъм на всяко рационално число е ирационален. Освен, разбира се, единица: ln 1 = 0.

За естествените логаритми са валидни всички правила, които са верни за обикновените логаритми.

Вижте също:

Логаритъм. Свойства на логаритъма (мощност на логаритъма).

Как да представим число като логаритъм?

Използваме определението за логаритъм.

Логаритъмът е индикатор за степента, до която трябва да се повдигне основата, за да се получи числото под знака на логаритъма.

По този начин, за да представите определено число c като логаритъм към основата a, трябва да поставите степен със същата основа като основата на логаритъма под знака на логаритъма и да запишете това число c в степента:

Под формата на логаритъм можете да представите абсолютно всяко число - положително, отрицателно, цяло число, дробно, рационално, ирационално:

За да не бъркате a и c в стресови условия на тест или изпит, можете да използвате следното правило, за да запомните:

това, което е отдолу, слиза надолу, което е отгоре, се изкачва.

Например, искате да представите числото 2 като логаритъм на база 3.

Имаме две числа - 2 и 3. Тези числа са основата и степента, които ще запишем под знака на логаритъма. Остава да се определи кое от тези числа трябва да бъде записано в основата на степента и кое - нагоре, в степента.

Основата 3 в записа на логаритъма е отдолу, което означава, че когато представим двойката като логаритъм към основата на 3, ние също ще запишем 3 надолу към основата.

2 е по-високо от 3. И в обозначението на степента пишем двете над трите, тоест в степента:

Логаритми. Първо ниво.

Логаритми

логаритъмположително число бпо разум а, където a > 0, a ≠ 1, е степента, до която трябва да се повиши числото. а, Придобивам б.

Определение на логаритъмможе да се напише накратко така:

Това равенство е валидно за b > 0, a > 0, a ≠ 1.Обикновено се нарича логаритмична идентичност.
Действието за намиране на логаритъм на число се нарича логаритъм.

Свойства на логаритмите:

Логаритъмът на произведението:

Логаритъм на частното от деление:

Замяна на основата на логаритъма:

Градусен логаритъм:

коренен логаритъм:

Логаритъм с основа на степента:





Десетични и естествени логаритми.

Десетичен логаритъмчислата извикват основния 10 логаритъм на това число и пишат   lg б
естествен логаритъмчислата извикват логаритъма на това число към основата д, където де ирационално число, приблизително равно на 2,7. В същото време те пишат ln б.

Други бележки по алгебра и геометрия

Основни свойства на логаритмите

Основни свойства на логаритмите

Логаритмите, като всяко число, могат да се добавят, изваждат и преобразуват по всякакъв възможен начин. Но тъй като логаритмите не са съвсем обикновени числа, тук има правила, които се наричат основни свойства.

Трябва да знаете тези правила - нито един сериозен логаритмичен проблем не може да бъде решен без тях. Освен това те са много малко – всичко може да се научи за един ден. Така че нека започваме.

Събиране и изваждане на логаритми

Да разгледаме два логаритъма с една и съща основа: log a x и log a y. След това те могат да се добавят и изваждат и:

  1. log a x + log a y = log a (x y);
  2. log a x - log a y = log a (x: y).

И така, сборът от логаритмите е равен на логаритъма на произведението, а разликата е логаритъмът на частното. Моля, обърнете внимание: ключовият момент тук е - същите основания. Ако основите са различни, тези правила не работят!

Тези формули ще помогнат за изчисляване на логаритмичния израз, дори когато отделните му части не се вземат предвид (вижте урока „Какво е логаритъм“). Разгледайте примерите и вижте:

log 6 4 + log 6 9.

Тъй като основите на логаритмите са еднакви, използваме формулата за сума:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Задача. Намерете стойността на израза: log 2 48 − log 2 3.

Основите са еднакви, използваме формулата за разлика:
log 2 48 - log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Задача. Намерете стойността на израза: log 3 135 − log 3 5.

Отново, основите са едни и същи, така че имаме:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Както можете да видите, оригиналните изрази са съставени от "лоши" логаритми, които не се разглеждат отделно. Но след трансформации се оказват съвсем нормални числа. Много тестове се основават на този факт. Да, контрол - подобни изрази с пълна сериозност (понякога - практически без промени) се предлагат на изпита.

Премахване на степента от логаритъма

Сега нека усложним малко задачата. Ами ако има степен в основата или аргумента на логаритъма? Тогава степента на тази степен може да бъде извадена от знака на логаритъма съгласно следните правила:

Лесно е да се види, че последното правило следва първите им две. Но все пак е по-добре да го запомните - в някои случаи това значително ще намали количеството на изчисленията.

Разбира се, всички тези правила имат смисъл, ако се спазва логаритъмът на ODZ: a > 0, a ≠ 1, x > 0. И още нещо: научете се да прилагате всички формули не само отляво надясно, но и обратно, т.е. можете да въведете числата преди знака на логаритъма в самия логаритъм.

Как се решават логаритми

Това е, което най-често се изисква.

Задача. Намерете стойността на израза: log 7 49 6 .

Нека се отървем от степента в аргумента според първата формула:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Задача. Намерете стойността на израза:

Забележете, че знаменателят е логаритъм, чиято основа и аргумент са точни степени: 16 = 2 4 ; 49 = 72. Ние имаме:

Мисля, че последният пример се нуждае от пояснение. Къде изчезнаха логаритмите? До последния момент работим само със знаменателя. Те представиха основата и аргумента на стоящия там логаритъм под формата на градуси и извадиха индикаторите - получиха „триетажна“ дроб.

Сега нека разгледаме главната дроб. Числителят и знаменателят имат едно и също число: log 2 7. Тъй като log 2 7 ≠ 0, можем да намалим дроба - 2/4 ще остане в знаменателя. Според правилата на аритметиката четирите могат да бъдат прехвърлени в числителя, което беше направено. Резултатът е отговорът: 2.

Преход към нова основа

Говорейки за правилата за събиране и изваждане на логаритми, специално подчертах, че те работят само с еднакви основи. Ами ако основите са различни? Ами ако не са точни степени на едно и също число?

На помощ идват формули за преминаване към нова база. Формулираме ги под формата на теорема:

Нека е даден логаритъм log a x. Тогава за всяко число c такова, че c > 0 и c ≠ 1, равенството е вярно:

По-специално, ако поставим c = x, получаваме:

От втората формула следва, че основата и аргументът на логаритъма могат да се разменят, но целият израз се „преобръща“, т.е. логаритъмът е в знаменателя.

Тези формули рядко се срещат в обикновените числови изрази. Възможно е да се оцени колко удобни са те само при решаване на логаритмични уравнения и неравенства.

Има обаче задачи, които изобщо не могат да бъдат решени, освен чрез преминаване към нова основа. Нека разгледаме няколко от тях:

Задача. Намерете стойността на израза: log 5 16 log 2 25.

Обърнете внимание, че аргументите на двата логаритма са точни експоненти. Нека извадим индикаторите: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Сега нека обърнем втория логаритъм:

Тъй като продуктът не се променя от пермутация на фактори, ние спокойно умножихме четири и две и след това изчислихме логаритмите.

Задача. Намерете стойността на израза: log 9 100 lg 3.

Основата и аргументът на първия логаритъм са точни степени. Нека го запишем и да се отървем от индикаторите:

Сега нека се отървем от десетичния логаритъм, като се преместим на нова основа:

Основна логаритмична идентичност

Често в процеса на решаване се изисква числото да се представи като логаритъм към дадена основа.

В този случай формулите ще ни помогнат:

В първия случай числото n става експонента в аргумента. Числото n може да бъде абсолютно всичко, защото това е само стойността на логаритъма.

Втората формула всъщност е перифразирана дефиниция. Нарича се така:

Наистина, какво ще се случи, ако числото b се повиши до такава степен, че числото b в тази степен да даде числото a? Точно така: това е същото число а. Прочетете внимателно този абзац отново - много хора се „окачват“ на него.

Подобно на новите формули за основно преобразуване, основната логаритмична идентичност понякога е единственото възможно решение.

Задача. Намерете стойността на израза:

Обърнете внимание, че log 25 64 = log 5 8 - просто извадих квадрата от основата и аргумента на логаритъма. Като се имат предвид правилата за умножение на степени със същата основа, получаваме:

Ако някой не е наясно, това беше истинска задача от Единния държавен изпит 🙂

Логаритмична единица и логаритмична нула

В заключение ще дам две идентичности, които трудно могат да се нарекат свойства – по-скоро това са следствия от дефиницията на логаритъма. Те постоянно се срещат в проблеми и, изненадващо, създават проблеми дори за "напреднали" ученици.

  1. log a a = 1 е. Запомнете веднъж завинаги: логаритъмът към всяка основа a от самата основа е равен на единица.
  2. log a 1 = 0 е. Основата а може да бъде всичко, но ако аргументът е единица, логаритъмът е нула! Тъй като 0 = 1 е пряко следствие от дефиницията.

Това са всички имоти. Не забравяйте да практикувате прилагането им! Изтеглете листа за мами в началото на урока, разпечатайте го и решете проблемите.

Както знаете, когато умножавате изрази със степени, техните експоненти винаги се сумират (a b * a c = a b + c). Този математически закон е изведен от Архимед, а по-късно, през 8-ми век, математикът Вирасен създава таблица с целочислени показатели. Именно те послужиха за по-нататъшното откриване на логаритмите. Примери за използване на тази функция могат да бъдат намерени почти навсякъде, където е необходимо да се опрости тромавото умножение до просто събиране. Ако отделите 10 минути, четейки тази статия, ще ви обясним какво представляват логаритмите и как да работите с тях. Прост и достъпен език.

Определение в математиката

Логаритъмът е израз в следната форма: log a b=c, тоест логаритъмът на всяко неотрицателно число (тоест всяко положително) "b" по неговата основа "a" се счита за степента на "c" , до което трябва да се повдигне основата "a", така че накрая да се получи стойността "b". Нека анализираме логаритъма с помощта на примери, да кажем, че има израз log 2 8. Как да намерим отговора? Много е просто, трябва да намерите такава степен, че от 2 до необходимата степен да получите 8. След като направихме някои изчисления в ума си, получаваме числото 3! И правилно, защото 2 на степен 3 дава числото 8 в отговора.

Разновидности на логаритмите

За много ученици и студенти тази тема изглежда сложна и неразбираема, но всъщност логаритмите не са толкова страшни, основното е да разберете общото им значение и да запомните техните свойства и някои правила. Има три различни вида логаритмични изрази:

  1. Естествен логаритъм ln a, където основата е числото на Ойлер (e = 2.7).
  2. Десетична а, където основата е 10.
  3. Логаритъмът на произволно число b спрямо основата a>1.

Всеки от тях се решава по стандартен начин, включващ опростяване, редукция и последващо свеждане до един логаритъм с помощта на логаритмични теореми. За да получите правилните стойности на логаритмите, трябва да запомните техните свойства и реда на действията в техните решения.

Правила и някои ограничения

В математиката има няколко правила-ограничения, които се приемат като аксиома, тоест не подлежат на обсъждане и са верни. Например, не е възможно числата да се разделят на нула, а също така е невъзможно да се извлече корен от четна степен от отрицателни числа. Логаритмите също имат свои собствени правила, следвайки които лесно можете да научите как да работите дори с дълги и обемни логаритмични изрази:

  • основата "a" винаги трябва да е по-голяма от нула и в същото време да не е равна на 1, в противен случай изразът ще загуби смисъла си, тъй като "1" и "0" до всяка степен винаги са равни на техните стойности;
  • ако a > 0, тогава a b > 0, се оказва, че "c" трябва да е по-голямо от нула.

Как се решават логаритми?

Например, като се има предвид задачата да се намери отговорът на уравнението 10 x \u003d 100. Много е лесно, трябва да изберете такава степен, като повишите числото десет, до което получаваме 100. Това, разбира се, е 10 2 \u003d 100.

Сега нека представим този израз като логаритмичен. Получаваме log 10 100 = 2. При решаване на логаритми всички действия на практика се сближават с намирането на степента, до която трябва да се въведе основата на логаритъма, за да се получи дадено число.

За да определите точно стойността на неизвестна степен, трябва да научите как да работите с таблица с градуси. Изглежда така:

Както можете да видите, някои експоненти могат да бъдат отгатнати интуитивно, ако имате технически начин на мислене и познания за таблицата за умножение. Въпреки това, по-големи стойности ще изискват таблица за мощност. Може да се използва дори от тези, които не разбират нищо от сложни математически теми. Лявата колона съдържа числа (база а), горният ред числа е стойността на степента c, до която се повдига числото a. На пресечната точка в клетките се определят стойностите на числата, които са отговорът (a c = b). Нека вземем например първата клетка с числото 10 и я квадратираме, получаваме стойността 100, която е посочена в пресечната точка на нашите две клетки. Всичко е толкова просто и лесно, че дори най-истинският хуманист ще разбере!

Уравнения и неравенства

Оказва се, че при определени условия степента е логаритъмът. Следователно всякакви математически числови изрази могат да бъдат записани като логаритмично уравнение. Например, 3 4 = 81 може да се запише като логаритъм от 81 към основа 3, което е четири (log 3 81 = 4). За отрицателните степени правилата са едни и същи: 2 -5 = 1/32 записваме като логаритъм, получаваме log 2 (1/32) = -5. Един от най-увлекателните раздели на математиката е темата за "логаритмите". Ще разгледаме примери и решения на уравнения малко по-ниско, веднага след изучаване на техните свойства. Сега нека разгледаме как изглеждат неравенствата и как да ги разграничим от уравненията.

Даден е израз от следния вид: log 2 (x-1) > 3 - това е логаритмично неравенство, тъй като неизвестната стойност "x" е под знака на логаритъма. И също така в израза се сравняват две количества: логаритъмът на желаното число в основа две е по-голям от числото три.

Най-важната разлика между логаритмичните уравнения и неравенствата е, че уравненията с логаритми (например логаритъмът на 2 x = √9) предполагат една или повече конкретни числови стойности в отговора, докато при решаване на неравенството и двата диапазона на приемливи стойности и точките, нарушаващи тази функция. В резултат на това отговорът не е прост набор от отделни числа, както в отговора на уравнението, а непрекъсната серия или набор от числа.

Основни теореми за логаритмите

При решаване на примитивни задачи за намиране на стойностите на логаритъма, неговите свойства може да не са известни. Но когато става дума за логаритмични уравнения или неравенства, на първо място е необходимо ясно да се разберат и приложат на практика всички основни свойства на логаритмите. По-късно ще се запознаем с примери за уравнения, нека първо анализираме всяко свойство по-подробно.

  1. Основната идентичност изглежда така: a logaB =B. Прилага се само ако a е по-голямо от 0, не е равно на единица и B е по-голямо от нула.
  2. Логаритъмът на произведението може да се представи в следната формула: log d (s 1 * s 2) = log d s 1 + log d s 2. В този случай предпоставката е: d, s 1 и s 2 > 0; а≠1. Можете да дадете доказателство за тази формула от логаритми, с примери и решение. Нека log a s 1 = f 1 и log a s 2 = f 2 , след това a f1 = s 1 , a f2 = s 2. Получаваме, че s 1 *s 2 = a f1 *a f2 = a f1+f2 (степенни свойства ), и по-нататък по дефиниция: log a (s 1 *s 2)= f 1 + f 2 = log a s1 + log a s 2, което трябваше да се докаже.
  3. Логаритъмът на частното изглежда така: log a (s 1 / s 2) = log a s 1 - log a s 2.
  4. Теоремата под формата на формула приема следната форма: log a q b n = n/q log a b.

Тази формула се нарича "свойство на степента на логаритъма". Наподобява свойствата на обикновените степени и не е изненадващо, защото цялата математика се основава на редовни постулати. Нека разгледаме доказателството.

Нека log a b \u003d t, оказва се, a t = b. Ако повдигнете двете части на степен m: a tn = b n ;

но тъй като a tn = (a q) nt/q = b n , следователно log a q b n = (n*t)/t, тогава log a q b n = n/q log a b. Теоремата е доказана.

Примери за проблеми и неравенства

Най-често срещаните видове логаритмни задачи са примери за уравнения и неравенства. Те се намират в почти всички задачници, а също така са включени в задължителната част от изпитите по математика. За да влезете в университет или да преминете приемни тестове по математика, трябва да знаете как да решавате правилно такива задачи.

За съжаление няма единен план или схема за решаване и определяне на неизвестната стойност на логаритъма, но към всяко математическо неравенство или логаритмично уравнение могат да се прилагат определени правила. На първо място, трябва да разберете дали изразът може да бъде опростен или сведен до обща форма. Можете да опростите дългите логаритмични изрази, ако използвате правилно техните свойства. Да ги опознаем скоро.

При решаване на логаритмични уравнения е необходимо да се определи какъв вид логаритъм имаме пред нас: пример за израз може да съдържа естествен логаритъм или десетичен.

Ето примери ln100, ln1026. Тяхното решение се свежда до факта, че трябва да определите степента, до която основата 10 ще бъде равна съответно на 100 и 1026. За решения на естествени логаритми трябва да се прилагат логаритмични идентичности или техните свойства. Нека разгледаме примери за решаване на логаритмични задачи от различен тип.

Как да използвате логаритмни формули: с примери и решения

И така, нека разгледаме примери за използване на основните теореми за логаритмите.

  1. Свойството на логаритъма на произведението може да се използва в задачи, при които е необходимо да се разложи голяма стойност на числото b на по-прости фактори. Например log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Отговорът е 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - както виждате, прилагайки четвъртото свойство на степента на логаритъма, успяхме да решим на пръв поглед сложен и неразрешим израз. Необходимо е само да се факторизира основата и след това да се извадят стойностите на степента от знака на логаритъма.

Задачи от изпита

Логаритмите често се срещат на приемните изпити, особено много логаритмични проблеми в Единния държавен изпит (държавен изпит за всички завършили училище). Обикновено тези задачи присъстват не само в част A (най-лесната тестова част от изпита), но и в част C (най-трудните и обемни задачи). Изпитът предполага точно и перфектно познаване на темата "Естествени логаритми".

Примерите и решаването на проблеми са взети от официалните версии на изпита. Нека видим как се решават подобни задачи.

Даден е log 2 (2x-1) = 4. Решение:
нека пренапишем израза, като го опростим малко log 2 (2x-1) = 2 2, по дефиницията на логаритъма получаваме, че 2x-1 = 2 4, следователно 2x = 17; х = 8,5.

  • Всички логаритми се редуцират най-добре до една и съща основа, така че решението да не е тромаво и объркващо.
  • Всички изрази под знака на логаритъма са посочени като положителни, следователно, когато се изважда степента на степента на израза, която е под знака на логаритъма и като негова основа, изразът, оставащ под логаритъма, трябва да бъде положителен.

произтичащи от неговата дефиниция. И така логаритъмът на числото бпо разум адефиниран като степента, до която трябва да се повиши числото аза да получите номера б(логаритъмът съществува само за положителни числа).

От тази формулировка следва, че изчислението x=log a b, е еквивалентно на решаване на уравнението ax=b.Например, log 2 8 = 3защото 8 = 2 3 . Формулирането на логаритъма дава възможност да се обоснове, че ако b=a c, след това логаритъмът на числото бпо разум асе равнява С. Ясно е също, че темата за логаритъма е тясно свързана с темата степен на брой.

С логаритмите, както с всички числа, можете да изпълнявате операции по събиране, изважданеи се трансформира по всякакъв възможен начин. Но с оглед на факта, че логаритмите не са съвсем обикновени числа, тук важат собствени специални правила, които се наричат основни свойства.

Събиране и изваждане на логаритми.

Вземете два логаритма със същата основа: log xи регистрирайте у. След това премахване е възможно да се извършват операции по събиране и изваждане:

log a x+ log a y= log a (x y);

log a x - log a y = log a (x:y).

дневник а(х 1 . х 2 . х 3 ... x k) = log x 1 + log x 2 + log x 3 + ... + log a x k.

От теореми за частен логаритъмможе да се получи още едно свойство на логаритъма. Добре известно е, че дневника а 1= 0, следователно,

дневник а 1 /б= дневник а 1 - дневник а б= -дневник а б.

Значи има равенство:

log a 1 / b = - log a b.

Логаритми от две взаимно реципрочни числана една и съща основа ще се различават един от друг само по знак. Така:

Log 3 9= - log 3 1 / 9 ; log 5 1 / 125 = -log 5 125.